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Mutations of comparative gene identification 58 (CGI-58) in
humans cause Chanarin-Dorfman syndrome, a rare autosomal
recessive disease in which excess triacylglycerol (TAG) accumu-
lates in multiple tissues. CGI-58 recently has been ascribed two
distinct biochemical activities, including coactivation of adipose
triglyceride lipase and acylation of lysophosphatidic acid (LPA).
It is noteworthy that both the substrate (LPA) and the product
(phosphatidic acid) of the LPA acyltransferase reaction are well-
known signaling lipids. Therefore, we hypothesized that CGI-58 is
involved in generating lipid mediators that regulate TAG metab-
olism and insulin sensitivity. Here, we show that CGI-58 is re-
quired for the generation of signaling lipids in response to
inflammatory stimuli and that lipid second messengers generated
by CGI-58 play a critical role in maintaining the balance between
inflammation and insulin action. Furthermore, we show that CGI-
58 is necessary for maximal TH1 cytokine signaling in the liver.
This novel role for CGI-58 in cytokine signaling may explain why
diminished CGI-58 expression causes severe hepatic lipid accu-
mulation yet paradoxically improves hepatic insulin action. Col-
lectively, these findings establish that CGI-58 provides a novel
source of signaling lipids. These findings contribute insight into
the basic mechanisms linking TH1 cytokine signaling to nutrient
metabolism. Diabetes 61:355–363, 2012

C
omparative gene identification 58 (CGI-58), also
known as a/b hydrolase domain-containing
protein 5 (ABHD5), recently has gained atten-
tion as the master regulator of triacylglycerol

(TAG) hydrolysis and phospholipid metabolism (1–4).
However, molecular mechanisms by which CGI-58 regu-
lates these metabolic processes still are incompletely un-
derstood. Because the discovery that mutations in CGI-58
cause Chanarin-Dorfman syndrome (CDS) (5), several
groups have studied CGI-58’s biochemical properties in
vitro (1–4). An important advancement on this front
came when it was demonstrated that CGI-58 indirectly pro-
motes TAG hydrolysis by coactivating adipose triglyceride

lipase (ATGL) (1). However, recent studies in mice with
diminished levels of CGI-58 clearly show that ATGL-
independent functions for CGI-58 also must exist (2,6). In
addition to activating ATGL, CGI-58 catalyzes the acylation
of lysophosphatidic acid (LPA) to generate the critical
lipid second messenger phosphatidic acid (PA). Both the
substrate (LPA) and the product (PA) of the LPA acyl-
transferase (LPAAT) reaction are well-known signaling
lipids with critical roles in angiogenesis, cardiac de-
velopment, carcinogenesis, and immunity (7–9). Further-
more, fibroblasts from CDS patients have dramatically
altered rates of synthesis and turnover of other major
lipids with signaling potential, including phosphatidylcho-
line (PC), phosphatidylinositol, and phosphatidylserine
(10,11). Given the central importance of lipid mediators in
growth factor and cytokine-mediated signal transduction
(7–9), we reasoned that CGI-58 may be a novel source of
signaling lipids. Unfortunately, conventional gene targeting
of CGI-58 in mice results in premature lethality (6). To
circumvent this, we used targeted antisense oligonucleo-
tides (ASOs) to test whether CGI-58 plays a quantitatively
important role in the generation of signaling lipids in vivo.
Our findings show that CGI-58 is a novel source of sig-
naling lipids that links inflammation to TAG and glucose
metabolism.

RESEARCH DESIGN AND METHODS

Male C57BL/6N mice (Harlan) were maintained on standard rodent chow or
a high-fat diet (HFD) for a period of 4–10 weeks and simultaneously injected
with ASOs targeting knockdown (KD) of CGI-58, as previously described (2).
The diets and ASOs used here have been described elsewhere (2). The HFD
was prepared by our institutional diet core and contains ~45% of energy as
lard (16:0 = 23.3, 18:0 = 15.9, 18:1 = 34.8, and 18:2 = 18.7%). The 20-mer
phosphorothioate ASOs were designed to contain 2’-0-methoxyethyl groups at
positions 1–5 and 15–20 and were synthesized, screened, and purified, as de-
scribed previously (12), by ISIS Pharmaceuticals (Carlsbad, CA). The CGI-58
ASOs used in the current studies were described as CGI-58 ASOb in our pre-
vious work (2). All mice were maintained in an American Association for
Accreditation of Laboratory Animal Care–approved specific pathogen-free
environment on a 12:12-h light:dark cycle and allowed free access to regular
chow and water. All experiments were performed with the approval of the
institutional animal care and use committee.
Lipopolysaccharide-induced acute-phase response. Mice were injected
with control or CGI-58 ASOs and maintained on standard chow or an HFD for
a period of 4 weeks, as previously described (2). After 4 weeks of ASO
treatment, mice were injected intraperitoneally with either saline or 5 mg li-
popolysaccharide (LPS) (Escherichia coli 0111:B4). Following injection,
plasma was collected at 1 h by submandibular puncture (for tumor necrosis
factor [TNF] ameasurements), and exactly 6 h after injection mice were killed
with ketamine/xylazine (100–160 mg/kg ketamine and 20–32 mg/kg xylazine).
Thereafter, a midline laparotomy was performed, and blood was collected by
heart puncture. After blood collection, a whole-body perfusion was conducted
by puncturing the inferior vena cava and slowly delivering 10 mL sterile 0.9%
saline into the left ventricle of the heart to remove residual blood. Multiple
tissues were collected and snap-frozen for subsequent analysis.
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In vivo insulin-signaling analyses.Mice were injected with control or CGI-58
ASOs and maintained on standard chow or an HFD for a period of 8 weeks, as
previously described (2). After an overnight fast (11:00 P.M. to 9:00 A.M.), mice
were anesthetized with isoflurane (4% for induction and 2% for maintenance)
and were maintained on a 37°C heating pad to control body temperature. A
minimal midline laparotomy was performed, and the portal vein was visual-
ized. Sterile saline or recombinant human insulin (0.5 units/kg body wt; Novo
Nordisk) was administered directly into the portal vein. Exactly 5 min later,
tissues were excised without saline perfusion and immediately snap frozen in
liquid nitrogen. Protein extracts from tissues were analyzed by Western blot-
ting, as previously described (13–15).
In vivo hepatic TNFa-signaling analyses.Mice were injected with control or
CGI-58 ASOs and maintained on standard chow or an HFD for a period of 4
weeks, as previously described (2). After an overnight fast (11:00 P.M. to 9:00 A.M.),
mice were anesthetized with isoflurane (4% for induction and 2% for mainte-
nance) and were maintained on a 37°C heating pad to control body temper-
ature. A minimal midline laparotomy was performed, and the portal vein was
visualized. Saline or mouse recombinant TNFa (10 ng/mouse, no. 410-MT;
R&D Systems) was administered directly into the portal vein. Exactly 5 min
later, the liver was excised without saline perfusion and immediately snap-
frozen in liquid nitrogen. Protein extracts from tissues were analyzed by
Western blotting, as previously described (13–15), and lipid extracts were
analyzed using mass spectrometry methods (16), as described in detail below.
Cytokine signaling in primary hepatocytes. After 4 weeks of ASO treat-
ment, mouse primary hepatocytes were isolated by collagenase perfusion from
chow-fed mice, as previously described (17). Hepatocytes were cultured for
3–6 h to dampen serum-driven signaling and then stimulated with recombinant
mouse TNFa (100 ng/mL, no. 410-MT; R&D Systems), interleukin (IL)-1b (10
ng/mL, no. 401-ML; R&D Systems), or IL-6 (10 ng/mL, no. 406-ML/CF; R&D
Systems) over an acute time course. Protein extracts from tissues were ana-
lyzed by Western blotting for phospho–c-Jun NH2-terminal kinase (p-JNK;
Thr183/Tyr185), phospho-S6 ribosomal protein (p-S6; Ser235/236), and b-actin,
as previously described (13–15).
Plasma biochemistries. Detailed descriptions of plasma lipid and lipoprotein
analyses have been previously described (14,15). Plasma cytokines were
quantified by multiplex assay (Bio-Plex; Bio-Rad) as previously described (18).
In some cases (Fig. 4A), the level of plasma TNFa was determined by enzyme-
linked immunosorbent assay (no. MTA00; R&D Systems).
LPA acyltransferase activity assay. Whole-liver homogenates were pre-
pared from snap-frozen mouse liver by dounce homogenization in 50 mmol/L
Tris, pH 7.5; 300 mmol/L NaCl; 50 mmol/L NaF; and Sigma protease inhibitor
cocktail just before the assay. Cellular debris was removed by centrifugation at
1,000g for 15 min at 4°C, and the supernatant was used for determination of
protein content by Lowry assay (19). Total hepatic LPAAT activity was de-
termined by measuring the conversion of [1-14C]-oleoyl-CoA to [1-14C]-PA, as
previously described (3). The reaction was assembled in 100 mL of 50 mmol/L
Tris (pH 7.5) containing 50 mmol/L oleoyl-sn1-glycerol-3-phosphate (Avanti
Polar Lipids, Alabaster, AL) and 10 mmol/L [1-14C]-oleoyl-CoA (specific activity
8,000 dpm/nmol) using 5 mg of whole-liver homogenate and continued for 10
min at 30°C.
Immunoblotting.Whole-tissue homogenates were made from multiple tissues
in a modified radioimmunoprecipitation assay buffer, as previously described
(13–15). Proteins were separated by 4–12% SDS-PAGE and transferred to pol-
yvinylidene difluoride membranes, and proteins were detected after incubation
with specific antibodies. Information on the antibodies used is available upon
request.
Hepatic neutral lipid and glycerophospholipid analyses. Extraction of
liver lipids for enzymatic quantification of total TAG, cholesteryl esters (14,15), free
cholesterol, and phospholipid was performed as previously described. Glycer-
ophospholipids were extracted using a modified Bligh and Dyer procedure (20).
Approximately 10 mg of frozen mouse liver was homogenized in 800 mL ice-cold
0.1 N HCl:CH3OH (1:1) using a tight-fit glass homogenizer (Kimble/Kontes Glass,
Vineland, NJ) for ~1 min on ice. Suspension was then transferred to cold 1.5-mL
microfuge tubes (Laboratory Product Sales, Rochester, NY) and vortexed
with 400 mL cold CHCl3 for 1 min. The extraction proceeded with centrifu-
gation (5 min, 4°C, 18,000g) to separate the two phases. The lower organic layer
was collected and the solvent was evaporated. The resulting lipid film was
dissolved in 100 mL isopropanol:hexane:100 mmol/L NH4CO2H(aq) (58:40:2)
(mobile phase A). Quantification of glycerophospholipids was achieved by
the use of a liquid chromatography–mass spectrometry technique using synthetic
(non–naturally occurring) diacyl and lysophospholipid standards. Typically,
200 ng of each odd-carbon standard was added per 10–20 mg tissue.
Glycerophospholipids were analyzed on an Applied Biosystems/MDS SCIEX
4000 Q TRAP hybrid triple quadrupole/linear ion trap mass spectrometer
(Applied Biosystems, Foster City, CA) and a Shimadzu high-pressure liquid
chromatography system with a Phenomenex Luna Silica column (2 3 250 mm,
5-mm particle size) using a gradient elution, as previously described (16). The

identification of the individual species, achieved by liquid chromatography–
tandem mass spectrometry, was based on their chromatographic and mass
spectral characteristic. This analysis allows identification of the two fatty
acid moieties but does not determine their position on the glycerol backbone
(sn-1 vs. sn-2). TAG, diacylglycerol (DAG), and monoacylglycerol (MAG)
from frozen mouse liver tissue (10–15 mg) were extracted by homogenizing
tissue in the presence of internal standards (500 ng each of 14:0 MAG, 24:0
DAG, and 42:0 TAG) in 2 mL 13 PBS and extracting with 2 mL ethyl acetate:
trimethylpentane (25:75). After drying the extracts, the lipid film was dis-
solved in 1 mL hexane:isopropanol (4:1) and passed through a bed of Sili-
cagel 60 Å to remove the remaining polar phospholipids. Solvent from the
collected fractions was evaporated and lipid film was redissolved in 100 mL
CH3OH:CHCl3 (9:1), containing 10 mL of 100 mmol/L CH3COONa for mass
spectrometry analysis, essentially as described previously (21).$
Quantitative real-time PCR. Tissue RNA extraction and quantitative real-
time PCR (qPCR) was conducted as previously described (14,15). Cyclophilin
or hypoxanthine phosphoribosyltransferase 1 was used as invariant controls
for these studies, and expression levels were calculated based on the DDCT

method. qPCR was conducted using the Applied Biosystems 7500 Real-Time
PCR System. Primers used for qPCR are available on request.
Statistical analysis. All data are expressed as means 6 SEM and were an-
alyzed using either a one-way or two-way ANOVA followed by Student t tests
for post hoc analysis using JMP version 5.0.12 software (SAS Institute, Inc.,
Cary, NC).

RESULTS

CGI-58 KD paradoxically improves hepatic insulin
signaling. Our original interest in CGI-58’s role in in-
tracellular signaling was sparked by the unexplained
“metabolic paradox” apparent in mice with diminished
CGI-58 function (Fig. 1). We have discovered that CGI-58
KD results in striking hepatic steatosis (Fig. 1A) (2) yet
paradoxically improves systemic glucose and insulin tol-
erance (2). It is well accepted that hepatic lipotoxicity, and
more specifically the hepatic accumulation of signaling
lipids such as DAG and ceramides, is linked to insulin
resistance (22). However, hepatic lipid insult is not suf-
ficient to cause insulin resistance in CGI-58 ASO-treated
mice (Fig. 1) (2). Instead, CGI-58 KD actually improves sys-
temic insulin action despite these metabolic abnormalities
(2). To confirm that the hepatic steatosis seen in CGI-58
ASO-treated mice were indeed dissociated from primary
defects in insulin signaling, we analyzed acute Akt and
FoxO1 phosphorylation in response to portally adminis-
tered insulin (Fig. 1B–G). In agreement with previous
measures of systemic glucose and insulin tolerance (2),
CGI-58 KD significantly improved hepatic insulin signaling
(Fig. 1B and E). CGI-58 KD had no significant impact on
insulin-stimulated Akt phosphorylation in skeletal muscle
(Fig. 1C and F) and adipose tissue (Fig. 1D and G). Col-
lectively, these data have uncovered an unexpected role for
CGI-58 in dissociating hepatic steatosis from insulin re-
sistance. This prompted us to examine the molecular basis
for this dissociation.
CGI-58 KD prevents HFD-induced hepatic stress
kinase activation. CGI-58 ASO-treated mice have ele-
vated hepatic levels of multiple lipid species, TAG (Sup-
plementary Fig. 1), DAG (Supplementary Fig. 2), MAG
(Supplementary Fig. 3), and ceramides (2), yet accumula-
tion of these lipid intermediates is insufficient to cause
local insulin resistance (Fig. 1B and E). Thus, other factors
must overcome this lipid insult to improve insulin signaling
in the liver. In addition to the lipid hypothesis of insulin
resistance (22), chronic elevation of proinflammatory TH1
cytokine action in metabolic tissues also promotes insulin
resistance (23–28). It is noteworthy that both lipid- and
cytokine-induced insulin resistance involve the chronic
activation of stress kinase signaling pathways, such as
IkB kinase b (IKKb) (24,25), S6 kinase 1 (S6K1) (26), the
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mammalian target of rapamycin (mTOR) (26,27), and JNK
(28), which dampen insulin signaling by phosphorylating
serine residues of insulin receptor substrate (IRS) proteins
(IRS-1 and IRS-2). Hence, we examined circulating levels
of proinflammatory cytokines and the activation state of
cytokine-induced stress kinases (IKKb, S6K1, mTOR, and

JNK) in metabolic tissues of CGI-58 ASO-treated mice
(Fig. 2). CGI-58 KD caused modest elevations in the plasma
levels of several proinflammatory cytokines (IL12p40;
monocyte chemoattractant protein-1 (MCP-1); macro-
phage inflammatory protein-2 (MIP-2); CXCL1; regulated
upon activation, normal T-cell expressed, and secreted

FIG. 1. CGI-58 KD dissociates hepatic steatosis from insulin resistance. A: Photographs depicting hepatic steatosis and adiposity in C57BL/6N mice
fed either a chow or HFD for 10 weeks in conjunction with biweekly injections (25 mg/kg) of either a nontargeting control ASO or ASO targeting
KD of CGI-58 (CGI-58 ASO). B–G: Despite hepatic lipid insult, KD of CGI-58 enhances insulin signaling. Mice were fed either a chow or HFD and
treated with ASOs for 8 weeks. Mice were fasted for 10 h before saline or insulin injection into the portal vein. Exactly 5 min later, tissues were
excised and immediately snap-frozen in liquid nitrogen. Protein extracts from the liver (B), skeletal muscle (C), and adipose tissue (D) were
analyzed by Western blotting for total Akt, phospho (p)-Akt (Ser473 and Thr308), and phospho (p)-FoxO1 (Ser256); three representative animals
are shown for each group. E–G: Densitometric analyses of insulin signaling: Phospho-Akt protein levels were normalized to total Akt in liver (E),
skeletal muscle (F), and adipose tissue (G). □, control ASO; ■, CGI-58 ASO. Data represent the mean 6 SEM from three mice per group, and
values not sharing a common superscript letter differ significantly (P < 0.05). AU, arbitrary unit. (A high-quality digital representation of this
figure is available in the online issue.)
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[RANTES]; and IL-6) in chow-fed mice, and several of
these cytokines were further increased by HFD feeding
(Fig. 2A). However, despite elevated circulating TH1 cyto-
kines (Fig. 2A), CGI-58 ASO-treated mice were completely
protected against HFD-induced activation of stress kinases,

such as IKKb, S6K1, and mTOR, in the liver (Fig. 2B). In
contrast, HFD-induced activation of these kinases was not
altered in adipose tissue (Fig. 2C). CGI-58 KD also prevented
HFD-induced serine phosphorylation of IRS-1 (Ser1101) in the
liver (Supplementary Fig. 13A and C) but did not alter IRS-1
phosphorylation in adipose tissue (Supplementary Fig.
13B and D).
CGI-58 KD prevents maximal TNFa signaling in the
liver. The LPAAT product (PA) is a known lipid second
messenger generated acutely in response to TNFa (29),
IL-1 (30), and lipid A (31) in cell models. Moreover, LPAAT
inhibitors can blunt inflammatory cytokine action in
models of sepsis (32) and acute lung injury (33). To further
test whether CGI-58 could contribute to TH1 cytokine
signaling in the liver, we examined the generation of lipid
second messengers and activation of downstream kinases
in response to TNFa administration (Fig. 3). Hepatic TNFa
signaling was interrogated based on its well-known ability
to dampen insulin signaling (23) and promote TAG hy-
drolysis (34), two pathways that are regulated by CGI-58 in
vivo (2,6). To examine acute TNFa signaling, we portally
administered physiological levels of recombinant TNFa
and analyzed signaling lipid generation at 5 min after
stimulation. In control ASO-treated mice, TNFa treatment
elicited a small (18%) but significant increase in hepatic
total PA levels, compared with saline treatment (Fig. 3A).
It is noteworthy that CGI-58 KD prevented TNFa-induced
PA generation (Fig. 3A). Neither TNFa nor CGI-58 KD
significantly altered total hepatic LPAAT activity (Fig. 3B),
which was not surprising because multiple LPAAT
enzymes are expressed in mouse liver (35). Of interest,
CGI-58 KD specifically prevented TNFa-driven increases in
34:2 PA and 38:4 PA species (Fig. 3A), whereas other PA
species were not altered (Supplementary Fig. 4). In addi-
tion, CGI-58 KD reduced basal levels of multiple hepatic
glycerophospholipid species with signaling potential (36:4
PA, 34:1 PE, 34:2 PE, 36:1 PE, 36:2 PE, 36:4 PE, 36:2 PEp,
34:1 PC, 34:2 PC, and 40:6 PC) regardless of TNFa treat-
ment (Supplementary Figs. 4–9). As previously reported
(2), CGI-58 KD also caused large increases in hepatic
phosphatidylglycerol levels, independent of TNFa treat-
ment (Fig. 3A and Supplementary Fig. 10). Because TNFa
signaling requires lipid second messengers (29), we ex-
amined whether CGI-58 KD blunted downstream signal
transduction in the liver (Fig. 3C). Five minutes after TNFa
administration in vivo, hepatic IkBa (a nuclear factor kB
inhibitory protein) was hyperphosphorylated at serine 32
in control mice, whereas CGI-58 KD significantly attenu-
ated hepatic IkBa phosphorylation (Fig. 3C). To determine
whether the role of CGI-58 in hepatic cytokine action was
cell autonomous, we isolated primary hepatocytes from
CGI-58 ASO-treated mice. CGI-58 KD prevented JNK
hyperphosphorylation and S6K1 activation in response to
a time-course stimulation with TNFa (Fig. 3D), IL-1b (Fig.
3E), and IL-6 (Fig. 3F). Collectively, these data suggest that
CGI-58–generated signaling lipids may participate in mul-
tiple cytokine signaling cascades, which deserves further
exploration.
CGI-58 KD alters the systemic response to endotoxin.
Although TH1 cytokines (TNFa, IL-1b, and IL-6) clearly
have been implicated in promoting chronic inflammatory
conditions that accompany obesity (23–28), TH1 cytokine
action has been best characterized in models of acute in-
flammation driven by microbial infection or tissue injury
(36,37). In acute inflammation, TH1cytokines are produced
transiently by macrophages and mast cells to promote

FIG. 2. CGI-58 KD alters HFD-induced inflammation: Evidence of he-
patic cytokine resistance. C57BL/6N mice were fed either a standard
chow or HFD in conjunction with biweekly injections of either a non-
targeting control ASO (□) or ASO targeting KD of CGI-58 (CGI-58
ASO; ■) for 10 weeks. A: Plasma levels of proinflammatory cytokines,
including IL-6 and IL-12p40; monocyte chemoattractant protein-1
(MCP-1); macrophage inflammatory protein-2 (MIP-2); CXCL1 (KC);
and regulated upon activation, normal T-cell expressed, and RANTES.
Data represent the mean 6 SEM from five mice per group, and values
not sharing a common superscript letter differ significantly (P < 0.05).
ND, levels below limit of detection. B and C: HFD-induced stress kinase
activation. Representative immunoblots from liver (B) or epididymal
adipose tissue (C) are shown for phospho-IkB kinase a/b (p-IKKa/b;
Ser176/180), phospho-mTOR (p-mTOR; Ser2448), and phospho-S6 ri-
bosomal protein (p-S6; Ser235/236). Membranes were probed for
b-actin and CGI-58 to serve as loading controls; data from four repre-
sentative animals are shown for each group.
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tissue reprogramming typified by the hepatic acute-phase
response (34,36,37). Of interest, the acute-phase response
in the liver also is associated with transient overproduction
of VLDL-TAG (34) and insulin resistance (24,25), two path-
ways that are stimulated by CGI-58 in vivo (2) (Figs. 1D–F).
To test whether CGI-58 participates in cytokine action and
TAG metabolism during acute inflammation, we injected
CGI-58 ASO-treated mice with a low dose of LPS (E. coli).
In response to LPS, CGI-58 KD significantly elevated
plasma levels of TNFa, IL-6, and IL-12p40, compared with
LPS-injected controls (Fig. 4A). Of note, 1 h after LPS in-
jection, mice that received CGI-58 ASOs had fivefold more
circulating TNFa than LPS-injected control mice (Fig.
4A). Despite the elevation in circulating TH1 cytokines (Fig.
4A), LPS-induced expression of TNFa and markers of the
acute-phase response (serum amyloid A [SAA] and serum
amyloid P-component [SAP]) were significantly reduced
in livers of CGI-58 ASO-treated mice (Fig. 4B). LPS-
induced plasma levels of SAA and haptoglobin also were
decreased in CGI-58 ASO-treated mice (Fig. 4A). How-
ever, LPS induced higher expression of other cytokines,
such as IL-12p40 and IL-10, in the livers of CGI-58 ASO-
treated mice (Fig. 4B). It is noteworthy that, in parallel
to altered circulating levels of cytokines (Fig. 4A), LPS

injection increased the expression of TNFa, IL-6, IL12p40,
and IL-10 in adipose of CGI-58 ASO-treated mice (Fig. 4C).

Of note, the LPS response in white adipose tissue–treated
mice was unique in CGI-58 ASO-treated mice (Supplemen-
tary Fig. 11). In support of this, LPS-induced expression of
IL-1b, TNFa, and several other TH1 cytokines was dramat-
ically elevated in the white adipose tissue of CGI-58 ASO-
treated mice compared with that of control mice (Fig. 4C
and Supplementary Fig. 11; data not shown). In contrast,
LPS-driven expression of IL-1b and TNFa was reciprocally
diminished in the liver, lung, spleen, and kidney of CGI-58
ASO-treated mice compared with LPS-injected controls
(Supplementary Fig. 11). Both white and brown adipose
tissue from CGI-58 ASO-treated mice had four- to seven-
fold higher expression of the macrophage marker CD-68
(Supplementary Fig. 11).

We surmised that the integrated inflammatory response to
endotoxin was dramatically altered by CGI-58 KD (Fig. 4
and Supplementary Fig. 11). However, we were concerned
that this effect may be simply a result of the abnormally high
accumulation of TAGs in the liver of CGI-58 ASO-treated
mice (2) (Supplementary Fig. 1). To rule out this possibility,
we fed mice an HFD for 4 weeks, which increased hepatic
TAG levels to the same levels seen in chow-fed CGI-58

FIG. 3. CGI-58–generated signaling lipids are necessary for maximal TNFa signaling in the liver. A–C: Mice were maintained on a chow diet
for 4 weeks in conjunction with biweekly injections (25 mg/kg) of either a nontargeting control ASO (□) or ASO targeting knockdown of
CGI-58 (CGI-58 ASO; ■). Mice were fasted for 10 h before injection of saline or TNFa (10 ng) into the portal vein. Exactly 5 min later, the
liver was excised and immediately snap-frozen in liquid nitrogen for signaling analyses. A: Hepatic levels of PA and phosphatidylglycerol
(PG) were analyzed by mass spectrometry. B: Total hepatic LPAAT activity. Data in A and B represent the mean 6 SEM from four mice per
group, and values not sharing a common superscript letter differ significantly (P < 0.05). C: Protein extracts from the liver were analyzed for
total IkB a (IkBa) and phospho-IkBa (p-IkBa; Ser32); data from four representative animals are shown for each group. D–F: Acute stress
kinase activation in primary hepatocytes. Following 4 weeks of ASO treatment, hepatocytes were isolated from control and CGI-58 ASO-
treated mice by collagenase perfusion. Freshly isolated hepatocytes were stimulated for 15 min (15’) or 1 h with 100 ng/mL TNFa (D), 10 ng/mL
IL-1b (E), or 10 ng/mL IL-6 (F). Downstream signaling was analyzed by immunoblotting for p-JNK (Thr183/Tyr185), phospho-S6 ribo-
somal protein (p-S6; Ser235/236), and b-actin. Data in D–F represent responses of hepatocytes isolated from three individual mice per
condition.
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ASO-treated mice (Supplementary Fig. 12B). We then treated
these HFD-fed mice with LPS to determine whether HFD-
induced fatty liver could alter the acute-phase response in
a similar fashion to CGI-58 ASO treatment. Of importance,
HFD feeding did not mimic the effects of CGI-58 KD on
LPS-driven plasma cytokine levels (Supplementary Fig.
12C and D) or the hepatic acute-phase response (Supple-
mentary Fig. 12E). Moreover, CGI-58 ASO treatment in-
creased plasma TH1 cytokines and blunted the acute-phase
response of mice on both chow and HFDs (Supplemen-
tary Fig. 12C–E), further supporting the idea that CGI-58
ASO-driven alteration in inflammatory signaling is an on-
target effect of the ASO and not a result of hepatic TAG
accumulation.

Given CGI-58’s documented role in promoting adipose
lipolysis (1) and hepatic VLDL-TAG packaging (2), we ex-
amined these parameters in LPS-injected, CGI-58 ASO-
treated mice. LPS treatment increased plasma nonesterified
fatty acid levels by 18% in chow-fed control ASO-treated
mice and 25% in chow-fed CGI-58 ASO-treated mice,

indicating that LPS-driven adipose lipolysis was similar
between groups (data not shown). However, in these
same mice, the hepatic metabolic response to LPS was
altered (Fig. 4D and E). LPS treatment of chow-fed CGI-58
ASO-treated mice resulted in a significant (29%) in-
crease in hepatic TAG levels (Fig. 4D) but no comparable
change in control ASO-treated mice. Of interest, LPS
treatment caused a 73% increase in plasma TAG levels in
chow-fed control ASO-treated mice yet caused no hyper-
triglyceridemia in CGI-58 ASO-treated mice (Fig. 4E). These
data suggest that hepatic CGI-58 plays a critical role in the
overproduction of TAG-rich lipoproteins during infection.
Collectively, these data suggest that CGI-58 function is
critical to both the inflammatory and metabolic response to
acute infection.

DISCUSSION

Although it generally is accepted that CGI-58 indirectly
regulates TAG metabolism by coactivating ATGL (1), we

FIG. 4. CGI-58 KD alters the systemic inflammatory and metabolic response to endotoxin. C57BL/6N mice were fed a standard chow diet in
conjunction with biweekly injections of a nontargeting control ASO (□) or CGI-58 ASO (■) for 4 weeks. Thereafter, mice received a single in-
traperitoneal injection of either saline or LPS (5 mg/mouse) and were necropsied 6 h after injection. A: Plasma cytokine and acute-phase response
protein levels were measured at 1 h (for TNFa only) and 6 h after injection (for IL-6 and IL-12p40 and for SAA and haptoglobin). ND, levels below
limit of detection. B and C: qPCR analyses of hepatic (B) and epididymal adipose tissue (C) gene expression. SAP, serum amyloid P-component.
WAT, white adipose tissue. D: Hepatic TAG levels. E: Plasma TAG levels at 6 h after injection. Data in A, D, and E represent the mean 6 SEM (n =
6), and qPCR data in B and C represent the mean 6 SEM (n = 5). Within each panel, values not sharing a common superscript letter differ sig-
nificantly (P < 0.05). AU, arbitrary unit.
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now alternatively propose that CGI-58’s ability to acylate
LPA (3,4) also plays a critical role in CGI-58’s ability to
modulate TAG metabolism and insulin signaling. The ma-
jor findings of the current study are that CGI-58 KD in mice
1) improves insulin signaling in liver and skeletal muscle;
2) prevents HFD-induced stress kinase activation; 3) pre-
vents the generation of PA and other glycerophospholipid
species in response to TNFa, thereby attenuating down-
stream signaling; and 4) alters the integrated inflammatory
response to endotoxin. In our current working model
(Fig. 5), we propose that downstream of hepatic cytokine
receptor activation, in response to inflammatory stimuli
such as an HFD or LPS treatment, CGI-58 generates sig-
naling lipids either directly through direct acylation of LPA
or indirectly by coactivating ATGL-mediated TAG hydroly-
sis. CGI-58–generated PA, and likely other signaling lipids,
can subsequently act as lipid second messengers to activate
stress kinases such IKK-b, S6K1, and mTOR. These stress
kinases can then facilitate serine phosphorylation of critical
residues on IRS-1, thereby dampening hepatic insulin sig-
naling (Fig. 5). This role in cytokine signaling may partially
explain why CGI-58 KD causes severe hepatic lipid insult
and yet improves hepatic insulin signaling.

It has now been a decade since the causal link between
CGI-58 mutations and CDS was established (5), yet mo-
lecular mechanism(s) by which CGI-58 prevents CDS has
remained elusive. Early studies using skin fibroblasts iso-
lated from patients with neutral lipid storage disease or
CDS showed that these cultured cells had striking accu-
mulation of intracellular TAGs under normal growth con-
ditions (10,11,38–41). However, the TAG accumulation
could not be explained by alteration in mitochondrial fatty

acid uptake, b-oxidation, in vitro lipase activity, or TAG
synthesizing enzyme activity (10,11,38–41). Instead, it was
found that neutral lipid storage disease fibroblasts had
impaired turnover of long-chain fatty acids from stored
TAGs (38–41). We have likewise demonstrated that tar-
geted knockdown of CGI-58 in hepatocytes impairs in-
tracellular TAG hydrolysis in vitro and in vivo (2,42). Of
interest, CGI-58 is a lipid-droplet–associated protein in
adipocytes, achieving this subcellular localization by di-
rectly interacting with perilipin A (43,44). However, it is
important to note that CGI-58 is not always associated with
lipid droplets in nonadipocyte cell models (42–44), and the
intracellular trafficking itinerary of CGI-58 under hormonal
or cytokine stimulation deserves further study.

The product of the LPAAT reaction, PA, is a well-studied
signaling lipid (7–9,45–47). In fact, PA participates in many
cellular signal transduction pathways and regulates mem-
brane trafficking (7–9,45–47). It is generally accepted that
PA regulates cell signaling by physically interacting with
target proteins through defined PA-binding motifs, thereby
altering either membrane localization or activation state.
Bona fide PA-binding proteins include protein kinases,
phosphatases, phosphodiesterases, scaffolding proteins,
and small guanine nucleotide exchange factors (7–9,45–47).
Although the majority of acute cytokine-stimulated PA
generation has been attributed to the enzymatic hydrolysis
of PC through the action of phospholipase D (45–47) or the
phosphorylation of DAGs by DAG kinases (48), there is
growing evidence that LPAAT enzymes make substantial
contributions to endotoxin- and cytokine-stimulated PA
generation (29–33). In fact, pharmacologic inhibition of
LPAAT activity protects mice against endotoxic shock,
lung injury, and pancreatic islet dysfunction in response
to endotoxin and IL-1 (32,33,49,50), implicating LPAAT-
derived PA in promoting inflammatory disease. Undoubtedly,
PA is a central lipid signaling molecule that can be syn-
thesized or broken down by a number of enzymatic path-
ways (45–50). We propose that CGI-58–driven synthesis of
PA represents a novel lipid-signaling pathway that may
have important implications in human diseases, such as
the metabolic syndrome and CDS. CGI-58 KD in mice
prevents diet-induced obesity and decreases fat-pad mass
(2), suggesting a defect in lipid storage by adipose tissue.
The possibility that CGI-58–generated signaling lipids may
regulate adipocyte function in vivo deserves further in-
vestigation. The signaling function of CGI-58 may also have
implications for neurologic defects in CDS, including
ataxia, mental retardation, and hearing loss. Given that
global deficiency of CGI-58 results in postnatal lethality,
tissue-specific CGI-58 knockout mice will be required to
further dissect the role of CGI-58–generated signaling lip-
ids in these other biological processes. In conclusion,
these studies demonstrate that CGI-58 is a novel source of
signaling lipids that integrate inflammation and nutrient
metabolism.
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