
A General Model for Binary Cell Fate Decision Gene
Circuits with Degeneracy: Indeterminacy and Switch
Behavior in the Absence of Cooperativity
Mircea Andrecut1, Julianne D. Halley1¤, David A. Winkler2,3*, Sui Huang1*

1 Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta, Canada, 2 Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Materials Science and Engineering, Clayton, Australia, 3 Monash Institute for Pharmaceutical Science, Parkville, Australia

Abstract

Background: The gene regulatory circuit motif in which two opposing fate-determining transcription factors inhibit each
other but activate themselves has been used in mathematical models of binary cell fate decisions in multipotent stem or
progenitor cells. This simple circuit can generate multistability and explains the symmetric ‘‘poised’’ precursor state in which
both factors are present in the cell at equal amounts as well as the resolution of this indeterminate state as the cell commits
to either cell fate characterized by an asymmetric expression pattern of the two factors. This establishes the two alternative
stable attractors that represent the two fate options. It has been debated whether cooperativity of molecular interactions is
necessary to produce such multistability.

Principal Findings: Here we take a general modeling approach and argue that this question is not relevant. We show that
non-linearity can arise in two distinct models in which no explicit interaction between the two factors is assumed and that
distinct chemical reaction kinetic formalisms can lead to the same (generic) dynamical system form. Moreover, we describe a
novel type of bifurcation that produces a degenerate steady state that can explain the metastable state of indeterminacy
prior to cell fate decision-making and is consistent with biological observations.

Conclusion: The general model presented here thus offers a novel principle for linking regulatory circuits with the state of
indeterminacy characteristic of multipotent (stem) cells.
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Introduction

Development of the diversity of cell types in the mammalian

body involves pluri- and multipotent stem and progenitor cells

making fate decisions that are typically binary in nature, thereby

committing to either of two to distinct cell lineages [1,2,3]. The

appropriate lineage-specific genes that implement the pheno-

types of the various cell types have to be either induced or

suppressed in order to ultimately produce the genome-wide

gene expression patterns commensurate to a particular cell

lineage [4,5]. Cell fate (lineage)-determining transcription

factors (TFs) that directly control the expression of these

lineage-specific genes also play a central role in coordinating

entire gene expression programs, for instance, ensuring their

mutual exclusivity, by engaging in specific gene regulatory

circuits [6,7,8,9]. Over the past years an increasing number of

such gene circuits that govern the binary decisions in which a

pluri- or multi-potent cell faces the choice of committing to two

mutually exclusive lineages have been characterized, ranging

from circuits of embryonic stem cells to those in various adult

multipotent progenitor cells that control the choice between two

alternative differentiation options [2,3,10,11].

From the cases studied the picture is emerging that the typical

architecture of the core gene regulatory circuit that drives the

binary lineage splitting in a common precursor consists of at least

of two mutually repressing (cross-antagonizing) TFs, X and Y, each

of which is typically a fate determining TF for either one of the two

mutually exclusive lineages and is later expressed as a lineage-

specific marker at high levels. Fate determining TFs are sufficient

to impose a lineage decision and much of the ensuing canonical

cell phenotype if over expressed in the precursor cell (or even in

cells of related lineages, leading to ‘reprogramming’) [12,13].

Dynamically, the mutual repression of the two TFs X, and Y has

long been proposed to establish a bistable ‘‘toggle switch’’, readily

explaining the two mutual exclusive fate outcomes characterized

by the stable expression configuration {X..Y} and {Y..X},

respectively [2,14,15,16,17]. Conversely, the multipotent progen-

itor or stem cell is in a metastable state of indeterminacy, poised to

commit to either lineage depending on instructive signals or

stochastic influences that will elevate the expression of either X or
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Y. They express the ‘‘promiscuous’’ expression pattern {X<Y} in

which both opposing TF are present at low levels and which is

characteristic of multipotent cells. This undetermined state is

locally stable, consistent with the notion of a ‘‘ground state’’ of the

ES cells [18] but is globally rather unstable because many

perturbations (such as just a suboptimal culture conditions) enforce

a fate decision and commitment into one of the two available fate

options: the {X<Y} balance is tilted into the stable {X..Y} or

{Y..X} state, and hence, it is often considered ‘‘metastable’’

[9,19]. The differentiated states are more stable, as reflected in the

quasi-irreversibility of terminal differentiation. Of interest, the

extent of stability of the poised metastable {X<Y} state appears to

be regulated by signaling pathways [18,20].

Thus, this simple model system has (at least) three experimentally

observable attractor states, two stable asymmetrical attractor states

(with steady-state patterns {X..Y} and {Y..X} and a central

metastable {X<Y}. It has been suggested that the latter (meta-)

stable state, which represents the poised stem cell state, is stabilized

by the auto-stimulation of the TFs X and Y. In fact for numerous

circuits that control binary cell fate decisions, there is functional and

molecular evidence for a circuit architecture that would support

cross-antagonism combined with self-activation [3,7,9,10,21].

Examples include the GATA1-PU.1 circuit [3] in the common

myeloid progenitor (CMP) cell which faces the fate options of the

erythroid and the myeloid lineage, the PU.1-c-Jun and the PU.1-C/

EBPa circuits [22,23,24,25,26] which control the decision between

the neutrophil and the monocyte/macrophage cells, or in the early

embryo, the Oct4-Cdx2 and the Nanog-Cdx2 circuit which face the

decision between the pluripotent inner cell mass and the

trophoectoderm cells [27,28]. Typically, the functional evidence

arises from the observation that overexpression of one of the TFs,

e.g., X, results in the down regulation or reduced activity of Y.

Support for the role of self-activation is weaker; evidence is often

provided indirectly by the presence of binding sites for X in the

promoter of X and in some case by promoter reporter studies.

The central problem for mathematical modeling is to formulate

a dynamical model based on what is known about molecular

interactions and to show that it predicts the three attractor states.

Models are typically formalized as chemical rate equation in ideal

chemical reaction conditions. The chemical kinetics formalism

corresponds to ‘‘stocks and flows’’ models of systems theory [29]

and is based on the laws of mass action in chemistry. One source

of potential confusion is that herein ‘connections’ of the circuit

(edges of reaction networks) represent a physical network of

reactant transformation ( = flows), that are subjected to conserva-

tion of matter at each network node ( = stock) but that this network

is then mapped to an abstract dynamical system which

fundamentally represents a different class of networks, namely a

causal influence network free of mass preservation constraints and

flows. Thus, these more abstract dynamical system networks

constitute a coarse-grained model of the chemical reactions. This

mapping between a physical system of chemical reactions and a

formal, minimal dynamical system is often taken for granted. Often

these two levels of description are not even distinguished.

Importantly, there is no 1:1 mapping between these two

descriptions, which is important to keep in mind when detailed

information about the vastly complicated underlying chemistry is

lacking. More specifically, in our circuit treated as a dynamical

system the key question is how the two inputs of each circuit node, X

and Y are integrated to influence the output (rate of change of the

value of X or Y) for which information about molecular events that is

needed for a formulating a precise chemical equation is absent.

The problem of mapping between these two levels of description

is often manifest in the interpretation of the steep sigmoidal

‘‘transfer function’’ (characterizing how the input variable X

regulate the rate of change (dY/dt) of its molecular target.

Dynamical systems considerations require such sigmoidality for

producing multi-stability in deterministic systems. Sigmoidal

functions are often by default equated with ‘‘cooperativity’’.

Herein lies a potential for misunderstanding. Thus, let as refer a

sigmoidal transfer function in system equations as ‘‘functional

cooperativity’’ to distinguish it from the actual ‘‘molecular

cooperativity’’ which was historically the main explanation for a

steep sigmoidal transfer function. Thus, sigmoidality in interac-

tions of influence networks (that do not make specific statements

about molecular mechanisms) is by default interpreted chemically:

namely as manifestation of multimer action with cooperativity,

which in the case of gene regulatory networks, would describes the

way the TF X binds to a promoter [30]. We refer to such explicit

mechanistically explained cooperative as ‘molecular’ cooperativity.

This interpretation stems from a conflating of the general

dynamical influence network with a chemical reaction network,

i.e., from a too literal interpretation of the first derivatives in a

formal dynamical system as chemical reaction rates when in

reality, the dynamical system equations represent a massive

coarse-graining of the chemistry of gene expression which consists

of many steps not explicitly considered (chromosome opening,

enhanceosome formation, transcription initiation, elongation,

RNAs splicing and export, translation, etc). The steps encompass

hundreds of elementary chemical reactions.

In fact it is already appreciated that a sigmoidal transfer

function in a dynamical system equation, i.e. ‘‘functional coopera-

tivity’’, does not need to reflect underlying molecular cooperativity

[31]. Several influences, such as the non-ideal physicochemical

reaction conditions (molecular crowding, lower than three-

dimensional, fractal reaction space, violation of quasi-stationary

(Bodenstein) kinetics, stochastic focusing [32] due to small

molecule number, etc.) per se can all give rise to sigmoidal transfer

functions in the absence of molecular cooperativity [31]. Thus, it is

important to note that a sigmoidal relationship between rate of a

process and abundance of its substrate, manifest e.g., in the form

of a Hill function with Hill exponent .1, is not equivalent to the

presence of molecular cooperativity.

Separately, the notion of multistability in the absence of

cooperativity discussed here shall not be confounded with the

phenomenon that in some models stochasticity itself can impart

multistability in systems that lack cooperativity and would be

monostable (or have a lower number of stable attractors) in the

absence of noise [17,33].

In the above cases of transcriptional regulation involving

GATA1, PU.1, Oct4, Nanog, Cdx2, etc. multi-meric reactions

have in fact not been reported. To achieve multistability more

complex circuits invoking unknown factors have also been

proposed [30]. This is reasonable since the canonical bistable or

tristable circuits certainly do not exist in isolation.

Here we propose a general approach to integrate the two inputs

to each gene that does not depend on the assumption of molecular

cooperativity or other explicit modeling of a steep sigmoidal

transfer function. This is important because nature uses a large

variety of interaction modes for reciprocal inhibition of TFs X and

Y involved in binary fate decisions, including protein-protein

interaction independent of DNA binding (in the case of GATA1

inhibition of PU.1) [3,34,35,36,37,38,39]; formation of a ternary

repressor complex of X and Y via physical interaction and DNA

binding of the complex (Cdx2 inhibition of Oct4 et v.v.) [40];

additional recruitment of complexes that modulate chromatin

structure (PU.1 inhibition of GATA1) [34,41,42,43] or repression

dominated by binding on each other’s promoter (mutual inhibition
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between Nanog and Cdx2) [28]. Despite the variety of known

molecular realization of cross-inhibition, which certainly only

represents a partial picture of effective processes, the overall

dynamics are similar: the production of a metastable indetermi-

nate state {X<Y} that can bifurcate into a bistable regime with the

two stable states {X..Y} and {X,,Y}. This convergence to the

similar global dynamics lends credence to the notion that a

multitude of chemical rate equations map into the same or very

similar dynamical systems. Evolution may have realized the same

bistable behavior using a variety of molecular implementations.

Thus, a general dynamical system description based on influence

networks can be of value.

To formally demonstrate this relationship we formulate here

two minimal chemical reaction schemes for the circuit architecture

shown in Fig. 1, employing a framework developed originally for

the mean-field description of the dynamics and the stochastic

simulation of transcription factor expression [33,44]. Given the

lack of knowledge of higher-level interactions we assume essential

independence of the two inputs, the auto-stimulation and the cross

inhibition. With this approach we arrive at two main conclusions:

(a) We show that even without explicit assumption of protein-

protein interactions and cooperativity a general dynamical form

can be derived in which multi-stability exists. (b) We also find

that for some parameter values of the dynamical system that

correspond to a symmetry between auto stimulation and inhibition

the system can give rise to a degenerate (rather than fixed point)

steady-state that corresponds to the indeterminate precursor state.

Results

Two reaction kinetics models of the gene regulation
circuit

In the two models of the gene circuit shown in Fig. 1 we will

focus on the kinetics of the elementary steps that must occur, such

as promoter binding of factors X and Y to their cognate promoter

elements, x and y, respectively. Importantly, we take an unbiased

approach, making no assumptions on higher-level relationships,

such as the molecular nature of the cross regulation of X and Y.

First model: Independent action of Y and X and

autoregulation integrated in effective induction. We first

consider that the two transcription factors X and Y in isolation and

model their effective activation (production) kinetics d[X]/dt and

d[Y]/dt under the influence of autostimulation without consider-

ing mutual repression mechanism. The promoter binding (1.1.),

subsequent dissociation (1.2) or self-activation (1.3.), and the

degradation (1.4.) reactions for X are:

xzX �?{
Kz

xx
xX ð1:1Þ

xX �?{
K{

xx
xzX ð1:2Þ

xX �?{
Kz

x
xXzX ð1:3Þ

X �?{
K{

x 60 ð1:4Þ

(Due to symmetry an analogous set of equations can be written for

Y and is omitted here).

Here, Kz
xx, K{

xx (or, analogously for Y, Kz
yy , K{

yy ) describe the

binding and release rates between factor and promoter element,

whileKz
x , K{

x (Kz
y , K{

y ) reflect the production and the degrada-

tion rates of the transcription factors. The dynamical behavior

(rate of change of active levels of the proteins) of the isolated

transcription factors is then described by the differential equations,

from (1.3. and 1.4), for X:

d

dt
X½ �~Kz

x xX½ �{K{
x X½ � ð1:5Þ

d

dt
Y½ �~Kz

y yY½ �{K{
y Y½ � ð1:6Þ

where [..] denote concentrations. Assuming that the binding and

release processes (in 1.1. and 1.2.) are fastcompared to the

production of the proteins (1.3.) and reach chemical equilibrium

and taking into account that the total promoter concentrations,

Figure 1. The generic architecture of the self-activation and mutual repression two-gene circuit. Top: coarse-grained circuit scheme for
the circuit of two genes X and Y as a dynamical system; bottom: molecular mechanism model amenable for a more detailed chemical reaction kinetics
formalism, indicating the variables for the model due to the distinction between genes/promoters (x and y) and the transcription factor proteins (X,
Y). Note that the modality for how the two inputs at each promoter, self-activation and cross inhibition is not specified by the scheme.
doi:10.1371/journal.pone.0019358.g001
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[x0] and [y0], are the sum of respective bound and free promoters,

we can eliminate the ‘‘complex terms’’ [xX] and [yY] and obtain

(see Text S1):

d

dt
X½ �~Kz

x x0
� � X½ �

Kxxz X½ �{K{
x X½ � ð1:7Þ

d

dt
Y½ �~Kz

y y0
� � Y½ �

Kyyz Y½ �{K{
y Y½ � ð1:8Þ

where Kxx~K{
xx

�
Kz

xx and Kyy~K{
yy

.
Kz

yy are the equilibrium

constants.

In this first model, the auto-regulation is integrated into the

circuit in the following way. We introduce the ‘‘effective’’

activation rates for each transcription factor locus that will absorb

the auto-regulation by observing that the above set of chemical

reactions, describing the self-activation, can be replaced by only

four equivalent reactions:

x �?{
~KKz

x
xzX ð1:9Þ

X �?{
K{

x 60 ð1:10Þ

y �?{
~KKz

y
yzY ð1:11Þ

Y �?{
K{

y 60 ð1:12Þ

where

~KKz
x ~Kz

x

X½ �
Kxxz X½ � ð1:13Þ

~KKz
y ~Kz

y

Y½ �
Kyyz Y½ � ð1:14Þ

are the ‘‘effective’’ activation rates, in the ‘‘isolated’’ self-activation

regime, which are nonlinear functions of [X], and respectively [Y].

Now, let us take the view that the two gene loci interact via the

mutual repression mechanism mediated by their encoded proteins

that act as trans-repressor, independent of the self-activation that is

now encapsulated by the ‘‘effective activation’’ reaction of the loci.

The cross-antagonism is only considered through the binding of X

to y and Y to x, respectively, and no specific mechanism needs to

be assumed for the interaction with the components of the self-

activation machinery. Then, activation, repression and degrada-

tion reactions, for both transcription factors, are then given by:

x �?{
~KKz

x
xzX ð1:15Þ

X �?{
K{

x 60 ð1:16Þ

xzY �?{
Kz

xy
xY ð1:17Þ

xY �?{
K{

xy
xzY ð1:18Þ

(with an analogous set of equations for y R y + Y).

With the ‘‘effective’’ rates of the self-activation processes, ~KKz
x

and respectively ~KKz
y , the activation of two proteins follow the

these differential equations:

d

dt
X½ �~ ~KKz

x x½ �{K{
x X½ � ð1:19Þ

d

dt
Y½ �~ ~KKz

y y½ �{K{
y Y½ � ð1:20Þ

Here the free promoters x and y available for self-activation

depend on the concentration of the opposite factors Y and X,

respectively. To express d[X]/dt and d[Y]/dt in the above

equations as a function of protein concentrations only, we

eliminate [x] and [y], again, using the assumption that the binding

and release mechanism is fast compared to protein production and

mass conservation of promoters.

We arrive (see Text S1) at the following differential equations

that describe the dynamics of the system when the activation and

repression mechanisms are independent:

d

dt
X½ �~Kz

x Kxy x0
� � X½ �

Kxxz X½ �ð Þ Kxyz Y½ �
� �{K{

x X½ � ð1:21Þ

d

dt
Y½ �~Kz

y Kyx y0
� � Y½ �

Kyyz Y½ �
� �

Kyxz X½ �
� �{K{

y Y½ � ð1:22Þ

where Kxy and Kyx are the equilibrium constants for the ‘cross-

binding’ reactions of X to y and Y to x (see Text S1). Importantly,

this description does not require the explicit introduction of

cooperativity or the presence of an extra protein in order to obtain

sigmoidality in the system. On the contrary, this model requires

only protein monomers that act independently. Yet the cross-term

[X][Y] appears in the denominator and can be interpreted as the

formation of a heterodimer XY that contributes to cross-

inhibition, as is the case of the PU.1 inhibition by GATA1.

Clearly, this arises here as a consequence of independent actions of

the monomer proteins. We have thus mapped a reaction kinetics

formalism into a non-linear dynamical system whose dynamics will

be examined later.

Second model: Formation of ternary XY-promoter

complexes without cooperativity. We now explicitly allow

for direct interaction of the proteins and assume the following

reaction kinetics for the X-locus, in which Y binds to x and to the

complex xX:

xzX �?{
Kz

xx
xX ð2:1Þ

xX �?{
K{

xx
xzX ð2:2Þ

Indeterminacy in Stem Cell Gene Circuit
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xzY �?{
Kz

xy
xY ð2:3Þ

xY �?{
K{

xy
xzY ð2:4Þ

xXzY �?{
Kz

xxy
xXY ð2:5Þ

xXY �?{
K{

xxy
xXzY ð2:6Þ

xX �?{
Kz

x
xXzX ð2:7Þ

X �?{
K{

x 60 ð2:8Þ

(again, with an analogous set of reactions for Y).

The Eq. 2.5–2.6 (and the respective mirrored forms for the Y-

locus) describe the in situ formation of a hetero-dimer XY directly

on the promoter (ternary complex), without a-priori cooperativity

between X and Y. Since only the reaction of eq. 2.7 (and the

respective form for Y ) contributes to the protein production, the

dynamical behavior of the system is described by the following

differential equations:

d

dt
X½ �~Kz

x xX½ �{K{
x X½ � ð2:9Þ

d

dt
Y½ �~Kz

y yY½ �{K{
y Y½ � ð2:10Þ

Elimination of the promoter-protein complex terms [xX] and [yY]

(again, assuming equilibrium kinetics for promoter reactionsand

using mass conservation for the total promoter concentrations [x0]

and [y0]) we obtain the following differential equations that

describe the dynamics of the system (see Text S1):

d

dt
X½ �~

Kz
x Kxxy x0

� �
X½ �

Kxxy X½ �zK{1
xy KxxKxxy Y½ �z X½ � Y½ �zKxxKxxy

{K{
x X½ �

ð2:11Þ

d

dt
Y½ �~

Kz
y Kyxx y0

� �
Y½ �

Kyyx Y½ �zK{1
yx KyyKyyx X½ �z Y½ � X½ �zKyyKyyx

{K{
y Y½ �

ð2:12Þ

where, analogously, Kxxy and Kyyx are equilibrium constants for the

cross-binding of Y to the xX complex and X to the yY complex,

respectively (see Text S1).

Again, the term [X][Y] indicative of a ‘hetero-dimer’ appears

although formation of hetero-dimers was not explicitly assumed.

As discussed in the next section, despite distinct chemical

interpretation this form is dynamically identical to the result of

the first model. Thus, a set of distinct elementary chemical

reaction mechanisms of a small network can map to the same non-

linear dynamical system.

Bifurcation dynamics
We now treat the above chemical kinetics descriptions as a

generic dynamical system, as discussed in section 1. Thus, for both

models (Eqs. 1.21/22 and 2.11/12) we can write the following

generic differential equations:

d

dt
x~

a0x

xyza1xza2yza3

{a4x ð3:1Þ

d

dt
y~

b0y

xyzb1yzb2xzb3

{b4y ð3:2Þ

where x: X½ �, y: Y½ � and ai,bi§0, i~1,:::,4. (Note that

following customary use, hereafter x and y are simply the two

system variables of a generic dynamical system and do not

represent the promoters as above).

To simplify the description we assume a symmetrical system

where: ai~bi, i~1,:::,4. Thus, the simplified system takes the

following form:

d

dt
x~

ax

xyzbxzcyzd
{fx ð3:3Þ

d

dt
y~

ay

xyzbyzcxzd
{fy ð3:4Þ

The steady states of the above system of differential equations are

given by the solutions of the algebraic form safter setting dx/dt

= 0 and dy/dt = 0. For the steady states, one can then easily verify

that:

x0,y0ð Þ~ 0,0ð Þ ð3:5Þ

x1,y1ð Þ~ 0, a{dfð Þ=bfð Þ ð3:6Þ

x2,y2ð Þ~ a{dfð Þ=bf ,0ð Þ ð3:7Þ

x3,y3ð Þ~ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bzcð Þ2z4 a{dfð Þ=f

q
{b{c

� 	
,

�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bzcð Þ2z4 a{dfð Þ=f

q
{b{c

� 		 ð3:8Þ

are the four steady states of the system with positive values for x

and y (as required for concentrations) if:

awdf ð3:9Þ

To determine the local stability at these steady states we obtain

the two eigenvalues l and m for the Jacobian matrix evaluated at

these states. For the trivial steady state (x0, y0) the eigenvalues are:

Indeterminacy in Stem Cell Gene Circuit
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l~ a{dfð Þ=f

m~ a{dfð Þ=f



ð3:10Þ

This state is always unstable, since awdf is a necessary condition

for the positivity of the solutions.

The second, (x1, y1), and the third, (x2, y2), steady states have the

following eigenvalues:

l~
b{cð Þ a{dfð Þ
acz b{cð Þdf

f

m~{
a{df

a
f

8>><
>>:

ð3:11Þ

Since we always have awdf , these two states are stable if bvc and

are unstable for bwc.

The eigenvalues of the Jacobian for the forth steady state, (x3,

y3), are more complicated to calculate analytically. However, one

can show numerically that this state is unstable for bvc, and it

becomes stable for bwc.

Therefore, the system undergoes a bifurcation by increasing the

ratio q~c=b. The system changes from a stable equilibrium state

(x3, y3), when qv1, to two stable equilibria (x1, y1) and (x2, y2),

when qw1. This bifurcation, which is distinct from a pitchfork

bifurcation of the toggle-switch [9,16,17], is illustrated numerically

in Fig. 2. Note the robustness of the stable states (x1, y1) and (x2, y2)

whose positions do not depend on q.

To gain some insight about the global dynamics of this system

[45,46] in Fig. 3 we present the results of the simulation of the

system using the stochastic differential equations, in order to

(approximately) visualize non-local dynamics [10,33,45,47,48]:

d

dt
x~

ax

xyzbxzcyzd
{fxzgx ð3:12Þ

d

dt
y~

ay

xyzbyzcxzd
{fyzgy ð3:13Þ

where gx and gy are Gaussian random functions of time,

introducing additive noise with a magnitude given by the standard

deviation s of the two independent Gaussian processes. (Since the

system variables x and y describe the concentration of protein

products, we require that no variable will drop below zero). This

probabilistic view affords, to some approximation, the notion of

the ‘‘relative depths’’ of attracting steady states in non-integrable

systems [45].

In Fig. 3 the density distribution of a trajectory of length

T~108Dt, is graphically represented, where Dt~0:01, a~f ~1,

d~0:5 and s~0:1, in the space (x, y). One can see that for

b~0:75wc~0:5, the system has only one (noisy) attractor,

corresponding to the stable steady state (x3, y3) (Fig. 3a), while

for b~0:5vc~0:75, the system exhibits two noisy attractors

corresponding to the stable steady states (x1, y1), and respectively

(x2, y2) (Fig. 3b).

An interesting case of the above analysis arises when there is

symmetry between b and c corresponding to the critical bifurcation

parameter q~c=b~1 (Fig. 3c). Note from eq. 2.11 and 3.3 that b

represents self-activation (together with a) and c is proportional to

cross-inhibition. In this case, one finds that the corresponding

steady state equations are degenerated, forming a manifold such

that:

y~ xzbð Þ{1
a=f {bx{dð Þ ð3:14Þ

Therefore, in this case there is an infinite number of possible

steady states (x, y), all of them satisfying the above equation. Thus,

Figure 2. The bifurcation of the system for the bifurcation
parameter q = c/b. Values are as follows: a = f = 1,d = b = 0.5 and
0ƒq~c=bƒ2. At the critical point q = 1 when c, which is proportional
to cross inhibition, becomes larger than b, the system bifurcates from
one stable (x3, y3) two to stable steady states (x1, y1) and (x2, y2) (solid
lines).
doi:10.1371/journal.pone.0019358.g002

Figure 3.The results of the stochastic simulation of the
systemfor three parameter configurations. (a) b.c, (b) c.b and
(c) c = b. (see text for details). Colors (or elevation, respectively)
represent the steady state probability distribution (cold-to-warm colors
for low-to-high probability for finding the circuit at a given position in
the xy-phase plane).
doi:10.1371/journal.pone.0019358.g003
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all the (x,y) points on this manifold (3.14) satisfy the steady state

condition.

The eigenvalues of the corresponding Jacobian (obtained by

setting = b) depend on the position on this manifold and, using

y~ xzbð Þ{1
a=f {bx{dð Þ, is given by:

l~
ab xz xzbð Þ{1

a=f {bx{dð Þz2ad
h i

x xzbð Þ{1
a=f {bx{dð Þzbxzb xzbð Þ{1

a=f {bx{dð Þzd
h i2

{2f v0

m~0

8>>><
>>>:

ð3:15Þ

for any xw0, such that y~ xzbð Þ{1
a=f {bx{dð Þw0. In Fig. 4

the case is shown for a~f ~1, d~0:5 and b~c~0:5. One can

see that for all the values x [ 0,1½ � we have l xð Þv0 and m xð Þ~0.

This result shows that in the case of c=b~1 there is a continuous

area (a manifold) of critical states, described by the above

equation. Biologically, this area may be associated with the set

of indeterminate and ‘‘primed’’ state of multipotent progenitor

cells in which one can observe intermediate values in the

expression of the two transcription factors X and Y and which

form a heterogeneous population with respect to X and Y levels

where individual cells exhibit on average inversely related levels of

X and Y [49,50,51,52]. Fig. 3c. shows the stochastic simulation

results (T~108Dt, Dt~0:01, a~f ~1, d~0:5, s~0:1) for

b~c~0:5, demonstrating that the stability of this region is quite

robust to a relatively high noise perturbation s~0:1ð Þ. However,

a perturbation of the parameters b and c such that bwc will cause

the system to collapse to the stable steady state(x3, y3), the

progenitor state, whereas a perturbation of the parameters b and c

such that bvc will force the system to choose its lineage since in

this regime only two stable attractor states (x1, y1) and ( x2, y2), exist

to either of which the progenitor cell must converge.

Discussion

Here we analyze two simple models for the gene regulatory

circuit that drives binary cell fate decisions, consisting of mutual

transcriptional cross-inhibition of two transcription factors X and Y

and self-activation of each. We formulate two distinct models

based on elementary chemical kinetics of transcriptional activation

controlled by promoter biding events and show that despite

fundamental differences in the formalization of the molecular

mechanisms they map to the same generic dynamical system that

can produce the defining indeterminate state of multipotency and

undergo a bifurcation that destabilizes it (form of eqs. 3.3. and 3.4).

We report here two novel aspects in the modeling of gene circuits

that control resolution of fate indeterminacy during binary cell fate

decision.

First, non-linearity and multi-stability arise without assumption

of molecular cooperativity. While it has been previously noted that

sigmoidal rate equations, and hence, bi/multistability, can arise in

the absence of such cooperativity if the system is noisy or given

particular network structures, or both [17], many theoretical

biologists still subliminally equate any sigmoidality in the rate

equations, which here we more generally would like to refer to as

‘functional’ cooperativity, with actual ‘molecular’ cooperativity.

Without entering into this technical and onomasiological discus-

sion (see introduction) we would like here to rather focus on the

mapping of chemical reaction kinetics formalism into a determin-

istic dynamical system as a source for multistability. It is important

to note again the obvious fact that the real molecular mechanisms

that govern the dynamics of this gene regulatory circuit are by

orders of magnitudes more complex, involving perhaps thousands

of steps (including opening of chromatin, formation of initiation

complex, transcript elongation, termination and export and the

entire system of mRNA maturation and of protein translation) and

many more factors, such that detailed molecular models are at the

moment not realistic. This is also one reason why the notion of

‘molecular’ cooperativity in mathematical models of mammalian

gene regulation is not very meaningful. However, what is certain

from observed cell fate decision behavior is the existence of an

indeterminate bipotent progenitor state, poised to have equal or

similar levels of X and Y, and the generation of two stable attractor

states with reciprocal expression pattern following cell fate decision

[6,7,8,9]. This fact is well captured by the general minimal

dynamical system of eqs. 3.3. and 3.4. Moreover, the basic

architecture of the circuit that involves mutual inhibition and

cross-antagonism of the two factors is also widely observed [9,19] –

as far as can be inferred from existing data or derived from

perturbation experiments, reporter analysis promoters, protein-

DNA binding studies and protein-protein interaction analysis.

Of particular interest and consistent with our conclusion is that

despite common general gene circuit architecture and behavior,

the molecular implementation can differ considerably. For

instance, inhibition of PU.1 by GATA1 occurs via (competitive)

protein-protein interaction and does not require GATA1 binding

to DNA ([34,38] and additional refs. in Introduction) whereas

inhibition of GATA1 by PU.1 requires PU.1 to bind to DNA and

to recruit other proteins that repress the GATA1 promoter, in part

via chromatin modification [34,35]. Conversely, studies on the

Figure 4.The eigenvalues in the critical region of the bifurca-
tion as a function x. Note that m is zero for all x (blue) and that there
is a minimum in l (red) (see text for details). Shown is also the position
of the steady state in the y dimension as function or x (dashed line, =
stable degenerate manifold, Eq. 3.14).
doi:10.1371/journal.pone.0019358.g004

(3.15)
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mutual inhibition between Oct4 and Cdx2 in the early embryo

suggest that these two transcription factors that control the first

binary cell fate decision, form a repressor complex [40]. In the

case of the mutual antagonism between Nanog and Cdx2 the

inhibition appears to rely on repressive binding of the cross-

antagonist to several distinct sites of the antagonized gene’s

regulatory region [28]. Thus, while the picture of the actual

molecular mechanism is only sketchy, the general statement can be

made that evolution has produced a common dynamical behavior

scheme for multipotency, as captured by our dynamical system

form (eqs. 3.3. and 3.4) and other forms proposed in which

mutually inhibitory and self-activating transcription factors are

engaged in a circuit [7,30,53,54]. Such circuits typically allow for

the existence of a central metastable indeterminacy state and a

bifurcation that destabilizes this central symmetric state to produce

the asymmetric attractors by employing a variety of molecular

realizations. This agrees with the formal notion that distinct

chemical kinetics models map into the same dynamical system.

The latter may thus be both evolutionarily beneficial and

inherently robust.

A similar but distinct dynamical system form that deviates from

the form of eqs. 3.3. and 3.4 has been suggested for the GATA1-

PU.1 system and shown to predict the observed trajectories of the

differentiating cells in the XY plane [9]. In that case the central

steady state undergoes a pitchfork bifurcation that also forces the

cells to adopt either one of the two asymmetric attractor states.

Other dynamical systems formulations of this very same GATA.1-

PU1 system based on distinct chemical reaction model assump-

tions produce similar dynamical behaviors and have been

compared directly in [55].

The second novelty we report here is the type of bifurcation (at

c = b) that is distinct from the pitchfork bifurcation seen in the

toggle switches (with or without self-activation of X, Y) [9,16,17]

and is characterized by the existence of a degenerate steady state

which forms an attracting manifold x = f(y) (eq. 3.14) in the phase

plane due to non-unique solution of the system equations for dX/

dt = dY/dt = 0. Each point on the manifold is an independent

steady state. Because of degeneracy the eigenvalues now can be a

function of (x, y). Specifically, one eigenvalue, m, is zero, and for

the other, l, we have l = f(x,y) ,0 (for 0#x#1) whose functional

form for the dependence on (x, y) is state in eq. 3.15. The manifold

is attracting, except along itself, that is, there is no ‘‘longitudinal’’

force on this manifold. Therefore every point on it is indifferently

stable. However, there is a minimum for l (Fig. 4), lmin which

becomes functionally manifest in the presence of noise, since the

point (x, y) on the manifold for lmin exerts the highest attracting

force. This region correspond to the state of indeterminacy of the

progenitor state that can be observed, in which X and Y are

expressed at (on average) similar levels but fluctuate in a inversely

correlated manner [49,50,51]. This model also would be con-

sistent with the proposal that the indeterminate stem cell state

reflects a noise-drive exploratory behavior [56]. In fact, an inverse

relationship of abundance of the opposing transcription factors the

levels of X and Y within the same clonal progenitor cell population

and despite their noisy fluctuations has recently been observed

[50,52,57,58].

The fact that this degenerate manifold exists only if b = c implies

that it is structurally unstable that is, it is sensitive to change in

control parameters and requires perfect tuning of these parame-

ters. Thus, is the degenerate manifold an artificial mathematical

constellation or has it practical relevance?

If the (x<y) state on it represents the indeterminate, multipo-

tential stem or progenitor cell, it would in fact capture its natural

biological properties: Although such cells are in general considered

distinct entities that are observable and isolatable, they are

‘‘relatively unstable’’ in the sense that while identifiable as discrete

entity they are short-lived in vivo and special differentiation-

inhibiting culture conditions are required to maintain the

multipotent cells which hence have been referred to as

‘‘metastable’’ [12,19]. In other words, this formal structural

instability may represent the physical instability at a different,

namely slower time scale. On the other hand, if we speculate that

the unlikely b = c condition exists given that it would nicely predict

the features of the undecided multipotent state, one would have to

simultaneously postulate that active regulative fine tuning and

maintenance of this b = c condition may have evolved to ensure the

poised state afforded by the degenerate attracting manifold. Such a

regulation could be conveyed by the multitudes of inputs from

other regulatory factors in which our 2-gene circuit is embedded.

At the same time, this structural instability would permit the quick

destabilization of the poised stem/progenitor cell state when cells

need to undergo a fate decision and commit to a lineage.

One often forgets that the separation of quantities in models

into ‘‘system variables’’ and ‘‘control parameters’’, which is rooted

in engineering sciences, is based on the artificial separation of time

scales and invokes some higher instance that tunes the control

parameters. Such discrete separation of time scales can collapse in

complex systems where processes in a continuous range of time

scales coexist [59]. Specifically, in a complex, high-dimensional

gene molecular network, it is likely that the parameters b and c are

themselves variables (nodes of the network). Then, the critical

point b = c could in principle represent a stable attractor state in

the high-dimensional state space, at least in the dimensions of the

variable b and c. This constellation may in fact not be difficult to

evolve given that there is selection pressure in metazoan cells to

have multipotent metastable states. While there is no experimental

evidence for the relative stability for the condition b = c yet and the

degenerate attractor is of limited mathematical novelty (although

to our knowledge not explicitly described) the concept of a

degenerate attractor in gene circuits offers a new biological

mechanism for producing metastable degenerate states. This can

be experimentally verified by single-cell analysis of X and Y in

large populations of bi-potent cells undergoing cell fate decision.

In conclusion, as the detailed molecular characteristics of the

chemical mechanisms underlying the interactions in the gene

circuit accumulate, the validity of the proposed simple dynamical

system can be further evaluated and adjusted as necessary.

However, since it is unrealistic to expect a maximally, molecular

level fine-grained chemical reaction kinetics model for biological

networks, the formulation of generic, simplifying dynamical system

equations to which an entire class of chemical reaction networks

may converge will remain a central strategy for understanding

gene regulatory networks in cell fate control.
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