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ABSTRACT12

Inference of effective population size from genomic data can provide unique information about13

demographic history, and when applied to pathogen genetic data can also provide insights into14

epidemiological dynamics. The combination of non-parametric models for population dynamics with15

molecular clock models which relate genetic data to time has enabled phylodynamic inference based16

on large sets of time-stamped genetic sequence data. The methodology for non-parametric inference17

of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist18

approach based on non-parametric latent process models of population size dynamics. We appeal to19

statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that20

control shape and smoothness of the population size over time. We demonstrate the flexibility and21

speed of this approach in a series of simulation experiments, and apply the methodology to reconstruct22

the previously described waves in the seventh pandemic of cholera. We also estimate the impact of non-23

pharmaceutical interventions for COVID-19 in England using thousands of SARS-CoV-2 sequences.24

By incorporating a measure of the strength of these interventions over time within the phylodynamic25

model, we estimate the impact of the first national lockdown in the UK on the epidemic reproduction26

number.27
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INTRODUCTION28

Past fluctuation in the size of a population are reflected in the genealogy of a sample of individuals29

from that population. For example, under the coalescent model, two distinct lines of ancestry coalesce30

(i.e. find a common ancestor) at a rate that is inversely proportional to the effective population size at31

any given time (Kingman 1982; Griffiths and Tavare 1994; Donnelly and Tavare 1995). More coalescent32

events are therefore likely when the population size is small compared to when the population size is33

large. This causal effect of population size on genealogies can be reversed in an inferential framework34

to recover past population size dynamics from a given pathogen genealogy. This approach to inference35

of past demographic changes was first proposed 20 years ago (Pybus et al. 2000, 2001; Strimmer and36

Pybus 2001) and has been fruitfully applied to many disease systems (Pybus and Rambaut 2009; Ho37

and Shapiro 2011; Baele et al. 2016).38

Population size analysis is often performed within the Bayesian BEAST framework (Suchard et al. 2018;39

Bouckaert et al. 2019) which jointly infers a phylogeny and demographic history from genetic data. Here40

we focus on an alternative approach in which the dated phylogeny is inferred first, for example using41

treedater (Volz and Frost 2017), TreeTime (Sagulenko et al. 2018) or BactDating (Didelot et al. 2018),42

and demography is investigated on the basis of the phylogeny. Although potentially less sensitive,43

this approach has the advantage of scalability to very large sequence datasets. This post-processing44

approach also allows more focus on models and assumptions involved in the demographic inference45

itself as previously noted in studies following the same strategy (Lan et al. 2015; Karcher et al. 2017;46

Volz and Didelot 2018; Volz et al. 2020). However, some of the methodology and results we describe47

here should be applicable in a joint inferential setting as well.48

The reconstruction of past population size dynamics is usually based on a non-parametric model, since49

the choice of any parametric function for the past population size would cause restrictions and be50

hard to justify in many real-life applications (Drummond et al. 2005; Ho and Shapiro 2011). However,51

even if a non-parametric approach offers a lot more flexibility than a parametric one, it does not fully52

circumvent the question of how to design the demographic model to use as the basis of inference. For53

example, the skygrid model considers that the logarithm of the effective population size is piecewise54

constant, with values following a Gaussian Markov chain, in which each value is normally distributed55

around neighbouring values and standard deviation determined by a precision hyperparameter (Gill56
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et al. 2013). This model can be justified as the discretisation of a continuous skyride model in which the57

logarithm of the population size is ruled by a Brownian motion (Minin et al. 2008). Alternatively, the58

skygrowth model is a similar Gaussian Markov chain on the growth rate of the population size (Volz59

and Didelot 2018). Both models can be conveniently extended to explore the association between60

population size dynamics and covariate data (Gill et al. 2016; Volz and Didelot 2018).61

The skygrid, skygrowth or other similar models can be assumed when performing the inference of62

the demographic function, and the effect of this model choice has not been formally investigated.63

Furthermore, these non-parametric models require several model design choices which are often64

given little consideration in practice. This includes the number of pieces in the piecewise constant65

demographic function, the location of boundaries between pieces, and the prior expectation for the66

difference from one piece to another. All of these model design choices may have significant effect on67

the inference results. Here we propose several statistical procedures to optimise these variables. In68

particular, the parameter controlling the smoothness of the population size function is usually assumed69

to have an arbitrary non-informative prior distribution in a Bayesian inferential setting (Minin et al.70

2008; Gill et al. 2013), whereas we show here that it can be selected using a frequentist statistical71

approach based on out-of-sample prediction accuracy. We tested the effect of these procedures on72

simulated datasets, where the correct demographic function is known and can be used to assess the73

relative accuracy of inference under various conditions. We applied our methodology to a previously74

published dataset of Vibrio cholerae, the causative agent of cholera. We also analysed a state-of-the-art75

real dataset and show how our methodology can be used to estimate the impact of non-pharmaceutical76

interventions for SARS-CoV-2 in England.77
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MATERIALS AND METHODS78

Demographic Models79

Let the demographic function Ne(t) denote the effective population size of a pathogen at time t. Let80

us consider that Ne(t) is piecewise linear with R pieces of equal lengths h over the timescale of interest.81

Let γi denote the logarithm of the effective population size in the i-th piece. In the skygrid model82

(Gill et al. 2013), the values of γi follow a Gaussian Markov chain, with the conditional distribution83

of γi+1 given γi equal to:84

γi+1 ∼ N (γi, h/τ) (1)

By contrast, the skygrowth model (Volz and Didelot 2018) is defined using the effective population size85

growth rates ρi which are assumed constant in each interval and are equal to:86

ρi =
exp(γi+1)− exp(γi)

hexp(γi)
(2)

These growth rate values form a Gaussian Markov chain, with:87

ρi+1 ∼ N (ρi, h/τ) (3)

We also define a new model which we call skysigma based on the values σi of the second order differences88

of the logarithm of the effective population size:89

σi = (γi+1 − γi)− (γi − γi−1) = γi+1 − 2γi + γi−1 (4)

Once again we consider a Gaussian Markov chain in which:90

σi+1 ∼ N (σi, h/τ) (5)

Dependency on known covariate time series can be easily incorporated into these models as previously91

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2021.01.18.427056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427056
http://creativecommons.org/licenses/by/4.0/


described (Gill et al. 2016; Volz and Didelot 2018). Let there be a m×p matrix X1:m,1:p of p covariate92

measurements for each of m time points. Ideally these time points would correspond to the R + 193

boundaries between pieces of the demographic function, but otherwise linear interpolation can be used94

to make it so. We model the effect of this covariate data as a modification of the expected change in95

the demographic variables defined above (γi, ρi or σi). For example, in the skysigma model (Equation96

5), the kernel of the Markov chain becomes:97

σi+1 ∼ N (σi + (Xi+1,1:p −Xi,1:p)β, h/τ) (6)

where β1:p is a vector of coefficients for a linear model of the covariate data on the expected value of98

the increments. Note in particular that if a term in the β vector is equal to zero, then this covariate99

measurement has no effect on the demographic function, so that to test the significance of covariate100

requires to test whether the corresponding value in the β vector is non-zero.101

Coalescent framework102

Each of the models above defines a demographic function Ne(t) from which the likelihood of the103

genealogy G can be calculated as briefly described below. Let n denote the number of tips in G, let104

s1:n denote the dates of the leaves and c1:(n−1) denote the dates of the internal nodes. Let A(t) denote105

the number of extant lineages at time t in G which is easily computed as the number of leaves dated106

after t minus the number of internal nodes dated after t:107

A(t) =
n∑

i=1

1[si > t]−
n−1∑
i=1

1[ci > t] (7)

This quantity is important because in the coalescent model, each pair of lineages finds a common108

ancestor at rate 1/Ne(t), so that the total coalescent rate at time t is equal to:109

λ(t) =


A(t)(A(t)−1)

2Ne(t)
, if A(t) ≥ 2

0, otherwise.

(8)
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The full likelihood of the coalescent process is therefore computed as (Griffiths and Tavare 1994;110

Donnelly and Tavare 1995):111

L(G|Ne(t)) = exp

(
−
∫ ∞
−∞

1[A(t) ≥ 2]
A(t)(A(t)− 1)

2Ne(t)
dt

) n−1∏
i=1

1

Ne(ci)
(9)

This computation is straightforward for the models considered here where the demographic function112

Ne(t) is piecewise constant.113

Selection of the precision parameter114

The demographic models described above (skygrid, skygrowth and skysigma) all rely on a precision

parameter τ (also known as the ’smoothing’ parameter). The value of τ controls how much consecutive

values of the effective population size will vary when the data is uninformative. The selection of this

parameter is therefore shaped by competing aims of optimising the fit to observed data and maximizing

explanatory power and avoidance of overfitting. In frequentist statistics, a standard approach to

selecting smoothing parameters is to minimize the out-of-sample prediction error. Here, we pursue a

k-fold cross-validation strategy where genealogical data is partitioned into k sets, k − 1 of which are

used for fitting, and the last one is used for prediction. This procedure is equivalent to maximizing

the following objective function:

f(τ) =

k∏
j=1

L(G \Xj |N̂e(Xj , τ)), (10)

where N̂e(Xj , τ) is the maximum likelihood estimates of Ne on the partial data Xj ⊂ G and assuming115

the precision parameter is τ . In this case Xj=1:k represents a subset of the sample times and internal116

node times of the genealogy G.117

This is a standard formulation of the cross-validation method, but the implementation depends on how118

genealogical data is partitioned. We use the strategy of discretizing the coalescent likelihood (Equation119

9) into intervals bordered by the time of nodes (tips si or internal nodes ci of the tree) and/or the R−1120

times when the piecewise-constant Ne changes value. Given R − 1 change points, n tips, and n − 1121

internal nodes of G, there are R+ 2n−3 intervals (ι1, · · · , ιR+2n−3). Each cross-validation training set122
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is formed by taking a staggered sequence of intervals and collecting the genealogical data contained in123

each, so that Xk = {ιj=1:R+2n−3|modulo(j, k) 6= 0}.124

Selection of the grid resolution125

Before any of the non-parametric models described above can be fitted, the number R of pieces in the126

piecewise demographic function needs to be specified. Setting R too low may lead to an oversimplified127

output that does not capture all the information on past population changes suggested by the genealogy,128

whereas setting R too high can lead to overfitting.129

We therefore propose to use well established statistical methods to select the optimal value of R. First130

the model is fitted for multiple proposed values of R, and then for each output we compute the Akaike131

information criterion (AIC), which is equal to:132

AICR = 2R− 2log(LR) (11)

where LR is the maximum value of the likelihood when using R pieces. The value of R giving the133

smallest value of AICR is selected. We also implemented the Bayesian information criterion (BIC),134

which is equal to:135

BICR = Rlog(n− 1)− 2log(LR) (12)

Simulation of testing data136

In order to test the accuracy of our methodology, we implemented a new simulator of coalescent137

genealogies given sampling dates and a past demographic function Ne(t). When the demographic138

function is constant, the simulation of coalescent genealogies is equivalent to simulating from a139

homogeneous Poisson process, in which the waiting times from one event to the next are exponentially140

distributed. To extend this to the situation where the demographic function is non-constant requires to141

simulate from an equivalent non-homogeneous Poisson process. The approach we used to achieve this142

is to consider a homogeneous Poisson process with a population size Nm which is lower than any value143

of Ne(t), i.e. ∀t,Ne(t) ≥ Nm. We simulate this process using exponential waiting times, but filter an144
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event happening at time t according to the ratio Nm/Ne(t). Specifically, we draw u ∼ Unif(0, 1) and145

if u < Nm/Ne(t) the event is accepted and otherwise rejected. The resulting filtered Poisson process146

simulates from the non-homogeneous Poisson process as required (Ross 2014). The disadvantage of147

this approach over other methods of simulations is that there may be many rejections if Ne(t) takes148

small values so that Nm needs to be small too. However, efficiency of simulation is not important for149

our purpose here, and this method has the advantage to avoid the computation of integrals on the150

Ne(t) function which other methods would require.151

Implementation152

We implemented the simulation and inference methods described in this paper into a new R153

package entitled mlesky which is available at https://github.com/emvolz-phylodynamics/mlesky. The154

optimisation of the demographic function makes use of the quasi-Newton Broyden-Fletcher-Goldfarb-155

Shanno (BFGS) method implemented in the optim command (Nash 2014). Confident intervals are156

computed based on an approximation of the curvature of the likelihood surface around its maximum.157

If multiple CPU cores are available, these resources are exploited within the procedure of selection158

of the smoothing parameter where the computation can be split between the different cross values159

in the cross-validation. Multicore processing is also applied in the procedure of selection of the grid160

resolution where computation can be split between different values of the resolution parameter R.161

All the code and data needed to reproduce our results on simulated and real datasets is available at162

https://github.com/mrc-ide/mlesky-experiments.163

RESULTS164

Application to simulated phylogeny with constant population size165

A dated phylogeny was simulated with 200 tips sampled at regular intervals between 2000 and 2020,166

and a constant past population size function Ne(t) = 20 (Figure S1). To illustrate the importance of167

the resolution R and precision τ parameters, we inferred the demographic function under the skygrid168
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model (cf Equation 1) for a grid of values with R ∈ {5, 20, 50} and τ ∈ {1, 10, 20} (Figure 1). The169

results look quite different depending on the parameters used, and in particular when R is large and τ170

is small, fluctuation in the population size are incorrectly inferred. When applying the AIC procedure171

to this dataset, the correct value of R = 1 was inferred for which the parameter τ becomes irrelevant.172

In these conditions the effective population size was estimated to be 19.65 with confidence interval173

ranging from 17.10 to 22.57 which includes the correct value of 20 used in the simulation. We repeated174

the AIC procedure for 100 different phylogenies all which had been simulated under the same constant175

population size conditions described above. For 65 of these phylogenies the AIC procedure selected176

R = 1, with the third quartile falling on R = 3 and 94% of the simulations giving R ≤ 5. We also177

applied the BIC procedure for the same 100 phylogenies, and found that R = 1 was selected in all but178

one instance for which R = 2 was inferred. However, the BIC is well known to be overly conservative179

(Kuha 2004; Weakliem 1999) and so the rest of results make use of the AIC procedure.180

Application to simulated phylogeny with varying population size181

Next we simulated a dated phylogeny with the same number and dates of the tips as previously,182

but using a demographic function Ne(t) that was sinusoidal with minimum 2 and maximum 22, with183

period 6.28 years. Figure S2 shows both the demographic function used and the resulting simulated184

phylogeny. We attempted to reconstruct the demographic function based on the phylogeny under the185

three models skygrid, skygrowth and skysigma described in Equations 1, 3 and 5, respectively. For186

each model the precision parameter τ was optimised using our new cross-validation procedure and the187

number of pieces was set to be R = 20 for ease of comparison. The results obtained in these conditions188

were very similar under the three models (Figure 2). This suggests that when the precision parameter is189

optimised using the cross-validation method, the choice between these three models becomes relatively190

unimportant. The same conclusions when reached when comparing the results of inference based on191

the three models to other simulated phylogenies. The choice of using one model rather than another is192

therefore mostly guided by the presence of covariate data and whether these are expected to correlate193

with the effective population size directly or some other function of it such as the population growth194

rates (Gill et al. 2016; Volz and Didelot 2018).195

One situation in which all models are expected to perform poorly is when then there are sudden changes196

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2021.01.18.427056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.18.427056
http://creativecommons.org/licenses/by/4.0/


to the demographic function. To exemplify this, we simulated another dated phylogeny with the same197

and dates of the tips as before, but using a bottleneck function for Ne(t) which was equal to 10 at all198

times except between 2005 and 2010 when it was equal to 1 (Figure 3A). The phylogeny simulated199

using this bottleneck function is shown in Figure 3B. We reconstructed the demographic function using200

the skygrid model. The lowest value of the AIC was obtained for R = 14, and the precision parameter201

was optimised using the cross-validation procedure to τ = 0.87. The inferred demographic function is202

shown in Figure 3C, where the bottleneck between 2005 and 2010 has been accurately detected.203

Application to simulated phylogeny with covariate data204

Finally, we used simulations to test our procedure for the analysis of association between demography205

and covariate data. An example is shown in Figure S3 where the covariate data follows a simple206

quadratic function in order to create a boom and bust dynamic (Figure S3A). The growth rate of207

the population however does not follow exactly this function, and is subjected to monthly Gaussian208

noise with standard deviation 0.4 in this case (Figure S3B). From this growth rate we compute the209

effective population size function over time (Figure S3C) and simulate a phylogenetic tree as previously,210

with 200 tips sampled at regular intervals between 2000 and 2020 (Figure S3D). We then analysed211

this simulated phylogeny alongside the covariate data, and found in this case a strong association212

with coefficient β = 0.77. We repeated this procedure 100 times with increasing values of the noise213

standard deviation and the results are summarised in Figure S4. As expected, we found that as the214

noise increases, the coefficient of association β between growth rate and the covariate decreases, and215

eventually the association becomes non-significant with an estimated coefficient of association close to216

zero.217

Application to Vibrio cholerae dataset218

We applied our methodology to a previously described collection of 260 genomes from the seventh219

pandemic of Vibrio cholerae (Didelot et al. 2015). A genealogy was estimated in this previous study220

using an early version of BactDating (Didelot et al. 2018), and it is reproduced in Figure 4A. We221

applied the AIC procedure to determine that the demographic function would be modelled using222
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R = 16 pieces. The precision parameter was optimised to a value of τ = 1.84 using the cross-validation223

procedure. The whole analysis took less than 20 seconds on a standard laptop computer. The inferred224

demographic function is shown in Figure 4B. A first peak was detected in the 1960s, followed by a225

second peak in the 1970s and finally a third peak in the 1990s. This demographic function follows226

closely on the previously described three “waves” of cholera spreading globally from the Bay of Bengal227

(Mutreja et al. 2011; Didelot et al. 2015; Weill et al. 2017). However, these three waves had previously228

been described based on phylogeographic reconstructions of the spread of the pandemic around the229

world. The fact that we found a similar wave pattern in our analysis which did not include any230

information about the geographical origin of the genomes provides further support for the validity of231

this phylodynamic reconstruction.232

Estimating the impact of non-pharmaceutical interventions for COVID-19233

in England234

We applied our methodology to the SARS-CoV-2 epidemic in England using data from the first235

epidemic wave spanning the spring of 2020. By incorporating data on timing of public health measures236

such as lockdowns, we estimated the association on non-pharmaceutical interventions (NPIs) with viral237

transmission. The COVID-19 Genomics UK Consortium (COG-UK) was established on 23rd March238

2020 and has coordinated a large-scale sequencing and bioinformatics effort to assist with COVID-19239

surveillance and response (COG-UK Consortium 2020). The proportion of cases with a virus genome240

has varied over time and increased rapidly in April 2020 following the establishment of large-scale241

national sequencing laboratories. In order to facilitate molecular clock dating, we carried out a stratified242

random sample of genomes between 1st January and 30th April 2020 ensuring good representation of243

sequences across a wide range of calendar time. Sequences were ordered by sample date, binned by244

day, and randomly selected from each bin. Duplicate sequences were removed. Repeating this process245

ten times resulted in ten distinct sequence sub-samples with a mean of 4,217 sequences each.246

As part of the COG-UK bioinformatics pipeline, a maximum likelihood tree is estimated at regular247

intervals on the MRC-CLIMB infrastructure (Nicholls et al. 2021). We pruned these trees to retain248

samples in each of our sequence sub-samples. Each of these sub-trees was then converted into time-249

scaled phylogenies using treedater v0.5.1 (Volz and Frost 2017) by randomly resolving polytomies in the250
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tree and sampling a molecular clock rate of evolution from a normal distribution with mean 5.91×10-4251

substitutions per site per year and standard deviation 1.92×10-5, based on previous analysis of SARS-252

CoV-2 in the UK (Volz et al. 2021). In all, 100 time trees were estimated representing uncertainty in253

phylogenetic dating and sampling variation. The skysigma model was fitted to the trees by maximizing254

the combined (average) likelihood. Maximum likelihood estimates were also computed for each tree255

and 95% quantiles were used to quantify the uncertainty in the parameter estimates. The results are256

shown in Figure 5A for the estimation of the effective population size function and in Figure 5B for the257

estimation of the basic reproduction number over time. The latter is calculated as R(t) = ρ(t)Ψ + 1258

where ρ(t) is the growth rate of the effective population size Ne(t) estimated through time and Ψ is259

the mean of the serial interval (Wallinga and Lipsitch 2007; Volz and Didelot 2018). The value Ψ = 6.5260

days was used based on previous studies of infector-infectees pairs (Chan et al. 2020; Bi et al. 2020;261

Wu et al. 2020).262

The estimated peak of the epidemic occurred on 1st April 2020, eight days after the imposition of the263

first national lockdown, illustrated by the red boxes in Figure 5. The rise and fall in Ne(t) precedes a264

similar dynamic in the number of confirmed cases by several weeks (Figure 5A), which is as expected265

since the case ascertainment rate was initially very low and improved dramatically in April. On the266

other hand, the estimated Ne(t) is approximately consistent with the number of genomic sequences267

available over time (Figure 5C). The estimated R(t) decreased gradually in the three weeks preceding268

the start of the national lockdown (Figure 5B). This may be due to changing behaviour prior to the269

national lockdown and a changing proportion of cases due to travel-related importation. Travel-linked270

cases declined while internal transmission increased throughout March and April (du Plessis et al.271

2021).272

To test for association between growth rates and NPIs, we also fitted the model to both the genealogical273

data and the OxCGRT health containment index (Hale et al. 2020), a time series representing the274

intensity of the public health response. A higher value of this index indicates more stringent NPIs.275

The model was fitted under the assumption that the differential of the logarithm of Ne(t) follows276

differential of the OxCGRT index, which approximately corresponds to the hypothesis that the basic277

reproduction number R(t) follows the daily change in the index (Volz and Didelot 2018). The median278

estimated epidemic trajectories are very similar when including this covariate (Figure 5A), and we279

observe improved precision in the estimate of the reproduction number (Figure 5B).280
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Figure 6 shows the coefficient β which represents the estimated strength of association between the281

reproduction number and the daily change in the OxCGRT index. A negative value of β indicates282

a negative association between changes in NPIs and the reproduction number. We investigated how283

the estimate of β depends on a lag (back-shift) between the value of the index and the demographic284

function. The largest effects (most negative values) were found when shifting the index back 8 days,285

which means relating the values of the index to the reproduction number 8 days later. In contrast,286

when changes in NPIs are compared to growth rates that precede them by several days (negative287

delay), the coefficient β is not significant.288

DISCUSSION289

Non-parametric phylodynamic inference of population size dynamics is usually carried out in a Bayesian290

framework (Drummond et al. 2005; Minin et al. 2008; Gill et al. 2013). Here we presented methods291

for performing such inference in a frequentist setting with a particular view towards model selection292

and avoiding over-fitting. Optimal smoothing can be obtained in a natural way using standard cross-293

validation methods, and the optimal resolution of the discretised demographic function is achieved294

using the well-established AIC criterion. This approach can be advantageous when prior distributions295

are difficult to design or results are sensitive to arbitrarily chosen priors. Methods based on likelihood296

maximization are also fast and scalable to datasets much larger than is conventionally studied with297

Bayesian methods, and the selection of smoothing parameters does not require arbitrarily chosen298

hyperparameters. Conventional AIC metrics also alleviate the difficulty of model selection. In most of299

our simulations, we find relatively little difference in our estimates when parameterizing the model in300

terms of log(Ne(t)) (Equation 1), the growth rate of Ne(t) (Equation 3) or the second order variation301

of log(Ne(t)) (Equation 5), as long as the precision parameter τ for each model is optimized as we302

proposed.303

Our methodology assumed that a dated phylogeny has been previously reconstructed from the genetic304

data. It is therefore well suited for the post-processing analysis of the outputs from treedater (Volz305

and Frost 2017) or TreeTime (Sagulenko et al. 2018). A key assumption of our method, as with306

its Bayesian counterparts, is that all samples in the phylogeny come from a single population ruled307
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by a unique demographic function. To ensure that this is indeed the case, complementary methods308

are emerging that can test for the presence or asymmetry or hidden population structure in dated309

phylogenies (Dearlove and Frost 2015; Volz et al. 2020). Conversely, if multiple phylogenies follow the310

same demographic dynamic, they can be analysed jointly to provide a more precise reconstruction311

of the demographic function and epidemiological parameters (Xu et al. 2019), and our software312

implementation is able to perform such a joint analysis when appropriate.313

Past variations in the effective population size of a pathogen population can reveal key insights into314

past epidemiological dynamics and help make predictions about the future. It is important to note315

that the effective population size is not generally equal to or even proportional to the number of316

infections over time (Volz et al. 2009; Dearlove and Wilson 2013). On the other hand, the growth rate317

of the effective population size can be used to estimate the basic reproduction number over time R(t)318

(Wallinga and Lipsitch 2007; Volz et al. 2013; Volz and Didelot 2018) as we used in our application319

to COVID-19 in England. Having good estimates of this quantity is especially important for assessing320

the effect of infectious disease control measures (Fraser 2007), and phylodynamic approaches provide321

a useful complementary approach to more traditional methods of estimation based on case report data322

(Cori et al. 2013).323
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Figure 1: Result on simulated phylogeny shown in Figure S1 using the skyline model, from top to
bottom R = 5, 20, 50 and from left to right τ = 1, 10, 20.
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Figure 2: Result of applying the three different models (from top to bottom, skygrid, skygrowth and
skysigma) to the phylogeny shown in Figure S2 which was simulated using a sinusoidal demographic
function.
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Figure 3: Demographic function (A), phylogeny (B) and inferred demographic function (C) for a
simulated dataset under a bottleneck model.
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Figure 4: Analysis of the seventh pandemic of Vibrio cholerae. (A). Dated phylogeny used as the
starting point of past population size inference. (B). Demographic function reconstructed based on
the phylogeny above.
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Figure 5: The epidemiological trajectory of SARS-CoV-2 in England during spring 2020. Thick solid
lines and shaded areas represent the median and 95% quantiles of Ne(t) with (purple) and without
(green) the OxCGRT health containment index as a covariate of Ne(t) growth rates. The model is
fitted with no back-shift in the covariate. Red shaded area represents period of first national lockdown
in England. Black dotted line represents daily confirmed cases (smoothed and rescaled). (A) Effective
population size Ne(t) through time. (B) Reproduction number R(t) through time. (C) Frequencies of
sample dates for tips in each sample week in the SARS-CoV-2 phylogenies.
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Figure 6: Distribution of association coefficients when testing for univariate association between daily
changes in the OxCGRT health containment index and daily changes in the reproduction number of
SARS-CoV-2 in England. Boxes represent the median and interquartile range; whiskers show 95%
quantiles. A positive delay of 10 represents testing an association between the OxCGRT index at time
t and the reproduction number at time t+ 10 days.
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Figure S1: Simulated phylogeny using a constant demographic function.
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Figure S2: Simulated phylogeny using a sinusoidal demographic function.
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Figure S3: Example of simulation with covariate data driving the growth rate. (A) Covariate data
following a quadratic function. (B) Growth rate equal to the covariate data plus some Gaussian noise.
(C) Effective population size. (D) Dated phylogeny.
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Figure S4: Results of the covariate analysis. For each value of the Gaussian noise (x-axis) ten
simulations were performed and the inferred values of the association coefficient β are shown (y-axis)
as boxplots.
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