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Abstract

Identifying the directed connectivity that underlie networked activity between different cortical 

areas is critical for understanding the neural mechanisms behind sensory processing. Granger 

causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, 

but there the temporal resolution is low, making it difficult to capture the millisecond-scale 

interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond 

resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, 

which makes GC inference challenging. Conventional methods proceed in two stages: First, 

cortical sources are estimated from MEG using a source localization technique, followed by 

GC inference among the estimated sources. However, the spatiotemporal biases in estimating 

sources propagate into the subsequent GC analysis stage, may result in both false alarms and 

missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) 
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inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive 

processes and estimates their parameters directly from the MEG measurements, integrated 

with source localization, and employs the resulting parameter estimates to produce a precise 

statistical characterization of the detected GC links. We offer several theoretical and algorithmic 

innovations within NLGC and further examine its utility via comprehensive simulations and 

application to MEG data from an auditory task involving tone processing from both younger and 

older participants. Our simulation studies reveal that NLGC is markedly robust with respect to 

model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage 

methods result in high false alarms and mis-detections. We also demonstrate the advantages 

of NLGC in revealing the cortical network-level characterization of neural activity during tone 

processing and resting state by delineating task- and age-related connectivity changes.

Keywords

MEG; Granger causality; Source localization; Statistical inference; Functional connectivity 
analysis; Auditory processing

1. Introduction

Characterizing the directed connectivity among different cortical areas that underlie brain 

function is among the key challenges in computational and systems neuroscience, as 

it plays a key role in revealing the underlying mechanism of cognitive and sensory 

information processing (Lochmann and Deneve, 2011; Sporns, 2014). A remarkable data-

driven methodology for statistical assessment of directed connectivity is commonly referred 

to as Granger causality, which quantifies the flow of information based on improvement in 

the temporal predictability of a time-series given the history of another one (Bressler and 

Seth, 2011). Mathematically speaking, for two time series x1,t and x2,t, if using the history 

of x1,t can significantly improve the prediction of x2,t, we say that there is a Granger causal 

(GC) link from x1,t to x2,t, i.e., x1 ↦ x2; otherwise, there is no GC link from x1 to x2. 

An essential attribute of Granger causality distinguishing it from other connectivity metrics, 

such as Pearson correlation or mutual information, is its directionality, which makes it a 

powerful statistical tool for brain functional connectivity analysis (Seth et al., 2015).

Granger causality has been widely utilized in analyzing functional magnetic resonance 

imaging (fMRI) data, in which multivariate autoregressive models are fit to the voxel-level 

activity, followed by parametric (Azarmi et al., 2019; Chen et al., 2018; Roebroeck et al., 

2005) or non-parametric (Deshpande et al., 2009; Dong et al., 2019) testing of statistical 

significance. In addition to technical challenges such as hemodynamic variability and 

ambiguity in the interpretation of Granger causality analysis for fMRI data (Deshpande and 

Hu, 2012; Roebroeck et al., 2011), due to the relatively low temporal resolution of fMRI, 

on the order of seconds, cortical network interactions that occur on the millisecond-scale 

in cognitive and sensory processing cannot be captured. Magnetoencephalography (MEG) 

and Electroencephalography (EEG), on the other hand, provide higher temporal resolution 

in the order of milliseconds, but unlike fMRI, only provide low-dimensional linear mixtures 

of the underlying neural sources. Typically, the number of sensors and sources are in the 
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order of ~ 102 and ~ 104, respectively, which makes the problem of estimating cortical 

sources highly ill-posed (Baillet et al., 2001; Hämäläinen and Ilmoniemi, 1994; Hauk 

et al., 2019; Samuelsson et al., 2020). To address this issue, existing methods typically 

follow a two-stage procedure, in which the neuromagnetic inverse problem is solved first 

to obtain source estimates, followed by connectivity analysis performed on the estimated 

sources (Schoffelen and Gross, 2009). The connectivity analysis in the second stage is 

either performed using multivariate autoregressive fitting and non-parametric statistical 

assessment of Granger causality (Blanco-Elorrieta et al., 2018; Brookes et al., 2016; Cope 

et al., 2017; Farokhzadi et al., 2018; Gao et al., 2020; Liu et al., 2020; Lu et al., 2013; 

Manomaisaowapak et al., 2021; Rosenberg et al., 2021; Seymour et al., 2018; Sohrabpour et 

al., 2016), forming a sparse estimate of the source covariance matrix (Liu et al., 2019), or by 

estimating the direct transfer function (Hejazi and Nasrabadi, 2019).

While this two-stage approach is convenient to adopt, it comes with significant limitations. 

First, Granger causality, as a network-level property, is a second-order spatiotemporal 

relation between two sources. As such, it requires reliable estimates of second-order 

moments of cortical source activity. Source localization techniques, however, predominantly 

use strong priors to combat the ill-posedness of the neuromangetic inverse problem and 

thereby to estimate first-order moments of cortical sources with controlled spatial leakage 

(Babadi et al., 2014; Fukushima et al., 2015; Gramfort et al., 2013b; Krishnaswamy et al., 

2017; Lamus et al., 2012; Pirondini et al., 2018; Sekihara et al., 2010; Sohrabpour et al., 

2016; Wipf et al., 2010). In additional to the challenges caused by artefactual spatial mixing 

and mis-localization of the estimated sources, which can readily complicate connectivity 

analysis (Palva and Palva, 2012), the biases introduced in favor of accurate estimation of 

first-order source activities typically propagate to the second stage of connectivity analysis 

and may result not only in mis-detection of pair-wise interactions, but also capturing 

spurious ones (Palva et al., 2018).

Second, a necessary step in establishing causal relationships among cortical sources entails 

accurate estimation of their temporal dependencies. Source localization methods using 

linear or non-linear state-space models address this challenge by modeling source dynamics 

as multivariate autoregressive processes. The source time-courses are estimated from the 

observed M/EEG data using the Expectation-Maximization algorithm (Cheung et al., 2010; 

Cheung and Van Veen, 2011; Ding et al., 2007; Lamus et al., 2012; Limpiti et al., 2009; 

Long et al., 2006; Nalatore et al., 2009; Pirondini et al., 2018; Sekihara et al., 2011; 2010), 

beam-forming (Cho et al., 2015; Hui and Leahy, 2006), or variational inference (Fukushima 

et al., 2015). While these methods are able to increase the spatiotemporal resolution of the 

estimated sources, notably when they enforce spatiotemporal priors on the source activity 

(Fukushima et al., 2015; Pirondini et al., 2018; Sekihara et al., 2010), they come with 

massive computational requirements, especially when the number of sources and the length 

of the temporal integration window grows (Cheung et al., 2010; Long et al., 2011; Sekihara 

et al., 2010). Finally, existing methods that address these challenges lack a precise and 

scalable statistical inference framework to assess the quality of the inferred GC links and 

control spurious detection (Manomaisaowapak et al., 2021).
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In this paper, we address the foregoing challenges by introducing the Network Localized 

Granger Causality (NLGC) inference framework to directly extract GC links at the cortical 

source level from MEG data, without requiring an intermediate source localization step. 

We model the underlying cortical source activity as a latent sparse multivariate vector 

autoregressive (VAR) process. We then estimate the underlying network parameters via an 

instance of the Expectation-Maximization (EM) algorithm with favorable computational 

scalability. The estimated network parameters are then de-biased to correct for biases 

incurred by the sparsity assumption, and used to form a test statistic that allows to detect 

GC links with high statistical precision. In doing so, we provide a theoretical analysis of 

the asymptotic distribution of said test statistic. We evaluate the performance of NLGC 

through comprehensive simulations by comparing it with several two-stage procedures. Our 

simulation results indeed confirm the expected performance gains of NLGC in terms of 

reducing spurious GC link detection and high hit rate.

We further examine the utility of NLGC by application to experimentally recorded MEG 

data from two conditions of pure-tone listening and resting state in both younger and older 

individuals. We consider two frequency bands of interest, namely, combined Delta and Theta 

bands (0.1–8 Hz) and Beta band (13–25 Hz), for GC analysis which have previously yielded 

age-related changes in resting state coherence analysis (Fleck et al., 2016). The detected GC 

networks using NLGC reveal striking differences across the age groups and conditions, in 

directional interactions between frontal, parietal, and temporal cortices. Further inspection 

of these networks reveals notable inter- vs. intra-hemispheric connectivity differences. In 

summary, NLGC can be used as a robust and computationally scalable alternative to existing 

two-stage connectivity analysis approaches used in MEG analysis.

2. Results

2.1. Overview of NLGC

Here, we give an overview of the proposed NLGC inference methodology, as depicted in 

Fig. 1, and highlight the novel contributions.

The sources of the signals recorded by MEG/EEG sensors are mainly the post-synaptic 

primary currents of a bundle of tens of thousands of synchronously active pyramidal cells 

that form an effective current dipole (Da Silva, 2009; Hämäläinen et al., 1993; Murakami 

and Okada, 2006). As such, to formulate the MEG/EEG forward model, a distributed 

cortical source space is considered in which the cortical surface is discretized using a mesh 

comprising a finite number of current dipoles placed at its vertices. These current dipoles are 

henceforth called sources, and their activity as source time-courses.

Assuming that there are M such sources, we denote the collective source activity at discrete 

time t as an M-dimensional vector xt, where its ith element, xi,t is the activity of source i, for 

i = 1, 2, …, M and t = 1, 2, …, T, where T denotes the data duration. The N MEG sensors 

measure the N-dimensional observation vector yt at time t. The MEG observations follow a 

well-known linear forward model given by Baillet et al. (2001); Mosher et al. (1999); Sarvas 

(1987):
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yt = Cxt + nt, (1)

where the N × M matrix C maps the source space activity to the sensor space and is 

commonly referred to as the lead-field matrix. The N-dimensional measurement noise vector 

nt is modeled as a zero mean Gaussian random vector with covariance matrix R and is 

assumed to be identically and independently distributed (i.i.d.) across time (Cheung et al., 

2010; Cheung and Van Veen, 2011; Long et al., 2011; Wipf et al., 2010).

As for the evolution of the sources, we consider xt as a latent state vector and model its 

evolution over time by the following generic stochastic dynamical model:

xt = ∑
k = 1

K
Akxt − k + wt, t = 1, …, T , (2)

where the M-dimensional vectors wt are assumed to be i.i.d. zero mean Gaussian random 

vectors with unknown diagonal covariance matrix Q = diag σ1
2, …, σM

2  and independent of 

vt. The M × M coefficient matrix Ak quantifies the contribution of the neural activity from 

time t − k to the current activity at time t, for k = 1, …, K. This dynamical model is 

conventionally called a Vector Autoregressive (VAR) model of order K (or VAR (K)) and is 

commonly used in time-series analysis (Johansen, 1995).

Assuming that the source time-series xt form an underlying network (Fig. 1, top left), our 

main contribution is to find the inverse solution to this latent network, in a Granger causality 

sense, directly from the MEG observations yt (Fig. 1, bottom left). If reliable estimates of 

the network parameters Ak k = 1
K

 were at hand, one could perform a statistical assessment 

of causality from source j to i by checking whether Ak i, j = 0 for all k = 1, 2, …, K 

(i.e., no causal link) or Ak i, j ≠ 0 for at least one of k = 1, 2, …, K (i.e., causal link). 

However, reliable estimation of the network parameters based on noisy and low-dimensional 

measurements yt of typically short duration is not straightforward. When noisy, but direct, 

observations of the sources are available, statistical methods such as LASSO are typically 

used to test for these hypotheses; however, when the number of sources M and lags K are 

large, such methods suffer from the large number of statistical comparisons involved.

The classical notion of Granger causality circumvents this challenge by considering the 

“bulk” effect of the history of one source on another in terms of temporal predictability. 

To this end, for testing the GC link from source j to source i, two competing models 

are considered: a full model, in which all sources are considered in Eq. (2) to estimate 

the network parameters and thereby predict source i; and a reduced model, in which the 

coefficients from source j to i are removed from Eq. (2), followed by estimating the network 

parameters and predicting source i. The log-ratio of the prediction error variance between 

the reduced and full models is used as the Granger causality measure. In other words, the 

better the prediction of the full model compared to the reduced model, the more likely 

that source j has a causal contribution to the activity of source i, in the sense of Granger 

causality.
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Considering the inverse problem of Fig. 1, there are several key challenges. First, unlike 

the classical GC inference frameworks, the sources are not directly observed, but only 

their low-dimensional and noisy sensor measurements are available. Second, GC inference 

inherently demands single-trial analysis, but the trial duration of cognitive and sensory 

experiments are typically short, which renders reliable model parameter estimation difficult. 

Finally, testing the improvement of the full model over the reduced model requires a precise 

statistical characterization to limit false detection of GC links.

Existing methods mostly treat these challenges separately, by operating in a two-stage 

fashion: a source localization procedure is first performed to estimate the sources, followed 

by performing parameter estimation and conventional GC characterization. However, source 

localization techniques use specific priors that aim at combating the ill-posed nature of the 

neuromagnetic inverse problem and thereby bias the source estimates in favor of spatial 
sparsity or smoothness (Babadi et al., 2014; Gramfort et al., 2013b; Krishnaswamy et 

al., 2017; Lamus et al., 2012; Sohrabpour et al., 2016; Wipf et al., 2010). As such, the 

network parameters, which inherently depend on second-order current source moments, are 

recovered from these biased first-order source estimates and thus incur significant errors that 

complicate downstream statistical analyses.

In contrast, NLGC aims at addressing these challenges jointly and within a unified inference 

framework. The resulting solution is composed of a network parameter estimation module, 

in which the VAR model parameters Ak k = 1
K  are estimated directly from the MEG data 

by assuming sparse interactions among the sources, as opposed to the commonly-used 

spatial sparsity assumption. As such, the biases induced by this approach only effect the 

VAR coefficients, and not the spatiotemporal distribution of the sources. Furthermore, we 

account for these biases in the statistical inference module of NLGC: a de-biasing block is 

used to correct for biases incurred by sparse VAR estimation, a false discovery rate (FDR) 

control block is used to correct for multiple comparisons, and a test strength characterization 

block assigns a summary statistic in the range of [0,1] to each detected link, denoting the 

associated statistical test power (i.e., Youden’s J-statistic).

While the building blocks that form NLGC are individually well-established in statistical 

inference literature, including but not limited to Granger causal inference from directly 

observable states (Bolstad et al., 2011; Endemann et al., 2022) and state-space model 

parameter estimation (Cheung et al., 2010; Nalatore et al., 2009; Pirondini et al., 2018; 

Sekihara et al., 2010), our contribution is to unify them within the same framework and 

specializing them to the problem of direct GC inference from MEG observations. To 

this end, our technical contributions include: 1) developing a scalable sparse VAR model 

fitting algorithm by leveraging steady-state approximations to linear Gaussian state-space 

inference, sparse model selection, and low-rank approximations to the lead field matrix 

(Sections 4.4.1, 4.5.1, 4.5.2 and A.1); and 2) providing a theoretical analysis characterizing 

the asymptotic distribution of a carefully designed test statistic, namely the de-biased 

deviance difference, that allows both FDR correction and test strength characterization 

(Theorem 1 in Section 4.4.3 and Appendix B).
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2.2. An illustrative simulation study

We first present a simple, yet illustrative, simulated example to showcase how the main 

components of NLGC work together to address the shortcomings of two-stage approaches. 

Consider M = 84 cortical patches, within which patches 1 through 8 are active and forming a 

VAR(5) network as shown in Fig. 2A, and the rest are silent (See Section 4.5.1 for details of 

source space construction). The ground truth GC map of a subset of sources, indexed from 

1 through 15, are shown in Fig. 2B (top left) for visual convenience. The (i, j) element of 

the GC matrix indicates the GC link (j ↦ i). The time courses of the cortical patch activities 

are observed through a random mixing matrix (each element is independently drawn from a 

standard normal distribution) corresponding to N = 155 sensors for three trials of duration T 
= 1000 samples each. To simulate the MEG observations, we used one lead-field per cortical 

patch for simplicity. The detailed parameter settings for this simulation study are given in 

Section 4.8.1.

We compare the performance of NLGC to two baseline two-stage methods composed of 

an initial source localization stage via the Minimum Norm Estimate (MNE) algorithm, 

followed by VAR model fitting via either (1) least squares with no sparsity assumption, and 

(2) ℓ1-norm regularized least squares to capture sparse parameters, similar to that used in 

NLGC. The details of the VAR model fitting given the source estimates are presented in 

Appendix A.2.

Fig. 2B shows the J-statistics corresponding to the detected GC links for NLGC and the 

two baseline methods based on MNE. Note that a J-statistic near 1 interprets as a detection 

with both high sensitivity and specificity, and a J-statistic near 0 corresponds to either low 

sensitivity or specificity, or both. As it can be seen in Fig. 2B, NLGC not only captures the 

true links, but also only detects a negligible number of false links. On the other hand, the 

two-stage methods based on MNE only detect about half of the true links and suffer from 

numerous spurious links. Note that while enforcing sparsity in the two-stage method seems 

to mitigate the number of spurious links (Fig. 2B, bottom left) compared to the two-stage 

method with no sparsity (Fig. 2B, bottom right), the errors incurred in the first stage of 

source localization can not be corrected through the second stage of parameter estimation.

Fig. 2C shows the expected value of estimated cortical patch activities corresponding to the 

full and reduced models of 4 cortical patches (indexed by 1, 3, 6, and 10). Since the GC link 

(1 ↦ 3) exists, in the corresponding reduced model, i.e., when the contribution of the 1st 

cortical patch (shown in the first line) is removed from the VAR model of the 3rd cortical 

patch, the activity of cortical patch 3 is highly suppressed (second line, gray trace) compared 

to that of the full model (second line, black trace). On the other hand, for cortical patches 6 

and 10, since none of the GC links (1 ↦ 6) and (1 ↦ 10) exist, including or excluding the 

1st patch in their VAR model does not effect their prediction accuracy and as a result, their 

estimated activity time-courses for both the full and reduced models are similar (third and 

fourth lines).

The results so far validate the superior performance of the first component of NLGC, i.e., 

network parameter estimation. As for the second component, statistical inference, a key 

theoretical result of this work is to establish the asymptotic distribution of a test statistic 
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called the debiased deviance difference between the full and reduced models of a link (i 

↦ j), denoted by D(i j)
db  In Theorem 1, we establish that if a GC link from cortical patch 

i to j does not exist, the corresponding test statistic D(i j)
db  is asymptotically chi-square 

distributed, and if the GC link exists, D(i j)
db  is distributed according to a non-central 

chi-square.

Here we empirically examine this theoretical result for the foregoing simulation. Consider 

the links (7 ↦ 1) and (7 ↦ 4) which are GC and non-GC, respectively. We generated 

200 different realizations of the VAR processes with the same parameters and compared the 

empirical distribution of the de-biased deviance corresponding to these two links with their 

theoretical distribution obtained by Theorem 1. Fig. 3A illustrates the close match between 

empirical and theoretical distributions of D(7 1)
db  and D(7 4)

db . Based on Theorem 1, for 

the non-GC link (7 ↦ 4), the de-biased deviance has a central χ2 (5) distribution. On the 

other hand, the de-biased deviance of the GC link (7 ↦ 1) is distributed according to a 

non-central χ2 (5, 61. 4).

In Fig. 3B, the histogram of the de-biased deviance differences corresponding to all links 

within the subset of sources indexed from 1 through 15 is plotted for three different 

realizations of the VAR processes with the same parameters as before. Depending on 

the threshold α for rejecting the null hypothesis to detect a GC link, one can obtain an 

equivalent threshold for D(i j)
db . In Fig. 3B, two thresholds are shown with dashed lines 

for α = 0.01 and 0.0001. It is noteworthy that most of de-biased deviance differences 

corresponding to the true GC links lie on the right hand side of the dashed lines for 

both thresholds and for the three realizations, suggesting robustness of GC link detection 

framework. On the other hand, most of the possible GC links are non-existent in our 

simulation setting, which results in the concentration of most of the de-biased deviance 

difference values to the left of the dashed lines, and hence few false detections as shown in 

Fig. 2B. In NLGC, we further leverage this virtue by using an FDR correction procedure to 

control the overall false discovery rate at a target level.

2.3. Simulated MEG data using a head-based model

We next present a more realistic and comprehensive simulation to evaluate the performance 

of NLGC and compare it with other two-stage approaches based on a number of different 

source localization techniques. In addition, we consider the effect of signal-to-noise (SNR) 

ratio and model mismatch on the performance of the different algorithms. The latter is 

an important evaluation component, as model mismatch is inevitable in practice due to 

co-registration errors between MR scans and MEG sensors as well as the choice of the 

distributed cortical source model.

As for the baseline methods, we consider two-stage GC detection schemes in which the 

source localization is performed by either the classical MNE (Hämäläinen and Ilmoniemi, 

1994) and Dynamic Statistical Parametric Mapping (dSPM) (Dale et al., 2000) methods, or 

the more advanced Champagne algorithm (Wipf et al., 2010). As for the VAR fitting stage, 
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we use the same ℓ1-regularized least squares scheme that is utilized by NLGC, to ensure 

fairness (See Appendix A.2).

In order to create realistic test scenarios for assessing the robustness of the different 

algorithms, we consider four cases with attributes defined by the presence vs. absence of 

source model mismatch, and exact vs. relaxed link localization error:

Source model mismatch As it is described in detail in Section 4.5.1, in order to reduce 

the computational complexity of NLGC, we utilize low-rank approximations to the lead 

field matrix by grouping dipoles over cortical patches and summarizing their contribution 

using singular value decomposition (SVD) to reduce the column-dimension of the lead-field 

matrix. Let rgen. be the number of SVD components used for each cortical patch to generate 

the simulated MEG data, and let rest. be the number of SVD components used in the GC 

detection algorithms. Clearly, if rest. = rgen., the forward model matches the ones used in 

the inverse solution, so there is no model mismatch. However, if rest. < rgen., some modes 

of activity in the simulated data cannot be captured by the inverse solution, thus creating 

a mismatch between the forward and inverse models. We note that this notion of model 

mismatch pertains to lack of spatial resolution in the inverse model as compared to the 

forward model. As such, it does not account for the misalignment of the lead-fields with 

respect to the anatomy, but instead captures the spatial resolution limitation incurred by the 

choice of the source space used in the inverse solution.

Link localization error Suppose that the GC link (i ↦ j) exists. If in the GC detection 

algorithm, i is mis-localized to i′ ≠ i or j is mis-localized to j′ ≠ j, the link is considered a 

miss under the exact link localization error criterion. Let N(k) be the 6 nearest neighbors of 

a source k. Under the relaxed link localization error, if i′ ∈ N(i) and j′ ∈ N(j), we associate 

(i′ ↦ j′) to the correct link (i ↦ j) and consider it a hit. This way, small localization errors, 

potentially due to errors in the head model or the underlying algorithms can be tolerated.

The source space is again composed of M = 84 cortical patches whose activity is mapped 

to N = 155 MEG sensors using a real head model from one of the subjects in the study. 

For more details on the parameter settings for this study, see Section 4.8.2. Fig. 4A shows 

the ground truth GC network and the estimated ones using NLGC and two-stage methods 

using MNE, dSPM, and Champagne when m = 10 patches are active. In this case, NLGC 

detected no spurious links and missed only 3 of the true GC links. On the other hand, even 

though MNE, dSPM and Champagne capture almost all true GC links, they suffer from a 

considerable number of falsely detected GC links.

To quantify this further, Fig. 4B shows the receiver operating characteristic (ROC) curves 

corresponding to the different methods for exact vs. relaxed link localization and presence 

vs. absence of model mismatch. Each point is obtained by varying the number of active 

patches m in the simulation in the range m = 2, 4, …, 20 and averaging the performance 

of each method over 10 independent trials with randomly allocated patch locations. The 

95% quantiles for the hit and false alarm rates are shown as vertical and horizontal bars, 

respectively. In the absence of source model mismatch (left columns), NLGC outperforms 

the other three methods in terms of both hit and false alarm rates. The gap between NLGC 
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and the other methods widens when there is source model mismatch (right column, top 

panel). While the hit rate of NLGC degrades using the exact localization criterion, it 

remarkably maintains a false alarm rate of < 5%, whereas the other algorithms exhibit 

false alarm rates as high as ~ 50%. By using the relaxed link localization error criterion 

(bottom plots), the hit rate of NLGC becomes comparable or better than the other three 

methods, while it still maintains its negligible false alarm rate. Moreover, the corresponding 

vertical and horizontal errors bars for NLGC are considerably smaller than the other three 

algorithms, suggesting the robustness of NLGC to the location of the active patches used for 

different trials.

Finally, in Fig. 4C, the hit and false alarm rates are plotted for varying levels of SNR in the 

range {0, −2, −5, −10} dB. The performance is averaged over 10 trials for m = 12 active 

patches. As the SNR reduces, even though the performance of all four methods becomes 

similar in terms of the hit rate, NLGC maintains its low false alarm rate whereas the other 

algorithms exhibit considerably high rates of false alarm.

Overall, while NLGC achieves comparable hit rate to the other three methods, it maintains 

consistently low false alarm rates over a wide range of the simulation parameter space. This 

is a highly desirable virtue, as false detection is the main pitfall of any connectivity analysis 

methodology. Thus, this simulation study corroborates our assertion that NLGC is a reliable 

alternative to existing two-stage approaches.

2.4. Application to experimentally recorded MEG data

We next consider application to MEG data from auditory experiments involving both 

younger and older subjects (the data used here is part of a larger experiment whose results 

will be reported separately). The MEG data corresponds to recordings from 22 subjects, 13 

younger adults (5 males; mean age 21.1 years, range 17–26 years) and 9 older adults (3 

males; mean age 69.6 years, range 66–78 years). Resting state data were recorded before and 

after the main auditory task, each 90 s long in duration. During the resting state condition, 

subjects with eyes open fixated at a red cross at the center of a grey screen. Just before 

the first resting state recording, 100 repetitions of 500 Hz tone pips were presented, during 

which the subjects fixated on a cartoon face image at the center of the screen and were asked 

to silently count the number of tone pips. The tones were presented at a duration of 400 ms 

with a variable interstimulus interval (1400, 1200, and 1000 ms). The task was around 150 

s long, from which two segments, each 40 s long in duration, were used for analysis. More 

details on the experimental setting is given in Section 4.6.

In order to assess the underlying cortical networks involved in tone processing and compare 

them with the resting sate, we further considered two key frequency bands of interest 

(Shafiei et al., 2021), namely the combined Delta and Theta bands (0.1–8 Hz), here called 

Delta + Theta band, and the Beta band (13–25 Hz). Since the goal is to capture the (age-

related) differences across tone listening versus resting state conditions, we combined the 

Delta and Theta bands for simplicity of our analysis, as they are both shown to be primarily 

involved in auditory processing (Başar et al., 2001). In addition, to structure our analysis in 

an interpretable fashion, we considered the frontal, temporal, and parietal regions of interest 
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(ROIs) in each hemisphere, which are known to play key roles in auditory processing and to 

change with age (Kuchinsky and Vaden, 2020).

NLGC for the delta + theta band (0.1–8 Hz) Fig. 5A shows the detected GC links between 

frontal (F) and temporal (T) areas overlaid on the dorsal brain view, for the tone processing 

vs. resting state conditions and separately for the younger and older subjects. The group 

average of the detected links across younger and older participants are shown on the left and 

those of two representative individuals (one younger and one older) are shown on the right. 

Note that the links involving parietal areas are not shown for the sake of visual convenience. 

As it can be seen from both the group average and individual-level plots, the top-down links 

from frontal to temporal areas (red arrows) have a higher contribution to tone processing 

(first and third columns) compared to resting state (second and fourth columns) for both 

younger and older adults. On the other hand, more bottom-up links from temporal to frontal 

areas (green arrows) are detected in the resting state as compared to the tone processing 

condition.

In Fig. 5B, the average normalized J-statistics of the detected GC links between the frontal, 

temporal and parietal (P) ROIs are shown as color-weighted edges in a directed graph. 

For instance, the arrows between temporal and frontal areas, enclosed in dashed ovals, 

show the normalized average of the arrows shown in the first two columns of Fig. 5A. In 

addition to the notable change of connectivity between temporal and frontal areas, i.e., from 

dominantly bottom-up under resting state to dominantly top-down under tone processing, 

there are several other striking changes both across conditions and age groups. First, from 

tone processing to the resting state condition, for both age groups, the contribution of 

outgoing links from frontal to parietal and temporal areas drops. Secondly, in the resting 

state condition, incoming GC links from parietal and temporal to frontal areas increase. 

Finally, frontal to frontal interactions become more prevalent in the resting state condition, 

for both younger and older subjects.

To further quantify these observation, Fig. 5C summarizes statistical test results for 

comparing the detected link counts for the different connectivity types and across age 

groups. Interestingly, no significant difference between younger and older participants is 

detected in either of the conditions. Within each age group, however, several significant 

changes are detected. In particular, the aforementioned visual observations from Fig. 5B 

are indeed statistically significant: the top-down frontal to temporal connectivity under tone 

processing switches to bottom-up temporal to frontal connectivity; outgoing links from the 

frontal to temporal/parietal areas are significantly increased under tone listening compared 

to resting state; parietal to frontal connections have more contribution in the resting state 

compared to tone processing; and frontal to frontal connections increase in the resting state, 

as previously reported in the literature (Di Liberto et al., 2018; Henry et al., 2017; Müller et 

al., 2009).

We further inspected the inter- vs. intra-hemispheric contributions of the aforementioned 

changes, as shown in Fig. 6, where we have combined the older and younger subject pools, 

given that no significant age difference was detected. In the resting state, the inter- and 

intra-hemispheric networks are similar (Fig. 6A, right column). However, there are several 
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interesting changes in the inter- vs. intra-hemispheric networks under tone processing (Fig. 

6A, left column), such as the increased involvement of intra-hemispheric connections from 

frontal to parietal and from parietal to temporal areas. Statistical test results shown in Fig. 

6B suggest that the detected intra-hemispheric connections are significantly higher than 

inter-hemispheric ones under tone processing. In addition, the change from a dominantly 

bottom-up temporal to frontal network under resting state to a dominantly top-down frontal 

to temporal network under tone processing occurs at both inter- and intra-hemispheric levels.

NLGC for the beta band (13–25 Hz) Fig. 7 shows the results of Beta band NLGC analysis in 

a similar layout as Fig. 5. Fig. 7A shows the detected GC links between frontal and parietal 

areas for the tone processing vs. resting state conditions and separately for the younger and 

older subjects. The group average of the detected links across younger and older participants 

are shown on the left and those of two representative individuals (one younger and one 

older) are shown on the right. Note that the links involving temporal areas are not shown 

for the sake of visual convenience. As it can be seen from both the group average and 

individual-level plots, there is a striking dominance of frontal to parietal links (blue arrows) 

for older subject under tone listening (first and third columns, bottom plots), whereas in all 

the other three cases, parietal to frontal links (green arrows) dominate.

Fig. 7B shows the average normalized J-statistics of the detected GC links between the 

frontal, temporal and parietal ROIs as color-weighted edges in a directed graph. The edges 

between parietal and frontal areas, enclosed in dashed ovals, correspond to the normalized 

average of the weighted arrows shown in the first two columns of Fig. 7A. The GC network 

under the resting state condition is similar for both age groups, but during tone processing, 

the network structures are quite different. First, for younger subjects, frontal to frontal 

connections have a higher contribution to the network as compared to older subjects. On 

the other hand, as pointed out earlier, for older participants during tone processing, the 

number of incoming links to parietal from frontal areas increase, as compared to the younger 

group. Finally, for both younger and older subjects, there are more parietal to temporal 

connections in resting state compared to tone processing. Fig. 7C summarizes the statistical 

test results which indeed show both across-age and across-condition differences, for the two 

connectivity types of frontal to frontal and frontal to parietal, as well as several connectivity 

changes across the task conditions within the two age groups.

3. Discussion and concluding remarks

Extracting causal influences across cortical areas in the brain from neuroimaging data is 

key to revealing the flow of information during cognitive and sensory processing. While 

techniques such as EEG and MEG offer temporal resolution in the order of milliseconds 

and are thus well-suited to capture these processes at high temporal resolution, they only 

provide low-dimensional and noisy mixtures of neural activity. The common approach 

for assessing cortical connectivity proceeds in two stages: first the neuromagnetic inverse 

problem is solved to estimate the source activity, followed by performing connectivity 

analysis using these source estimates. While convenient to use, this methodology suffers 

from the destructive propagation of the biases that are introduced in favor of source 
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localization in the first stage to the second stage of network inference, often resulting in 

significant spurious detection.

In this work, we propose a unified framework, NLGC inference, to directly capture Granger 

causal links between cortical sources from MEG measurements, without the need for an 

intermediate source localization stage and with high statistical precision. We evaluated 

the performance of NLGC through comprehensive simulation studies, which revealed the 

performance gains of NLGC compared to the conventional two-stage procedures in terms of 

achieving high hit rate, remarkably low false alarm rate, and robustness to model mismatch 

and low SNR conditions.

We applied NLGC to experimentally recorded MEG data from an auditory experiment 

comparing trials of tone processing and resting conditions, from both younger and older 

participants. We analyzed the data in two frequency bands whose coherence has been shown 

to differ when processing auditory stimuli compared to rest (Weiss and Rappelsberger, 

2000), namely the combined Delta + Theta band and the Beta band. The extracted cortical 

networks using NLGC revealed several striking differences across the frequency bands, age 

groups, and task conditions. In particular, in the Delta + Theta band, the networks were 

dominantly top-down from frontal to temporal and parietal areas during tone processing. 

Previous studies have observed increased coherence between frontal and central and 

temporal electrodes during auditory processing versus rest, potentially indicative of greater 

demands on memory and inhibitory processes that are required for active listening (Weiss 

and Rappelsberger, 2000). Greater anterior to posterior interactivity has particularly been 

observed in the Theta band in support of working memory (Sarnthein et al., 1998) and other 

top-down processes (Sauseng et al., 2008), in line with the functioning of the frontal-parietal 

attention network (Sauseng et al., 2005). However, during resting state, bottom-up links 

towards frontal areas significantly increased. This broadly aligns with a previous Granger 

causality analysis that found evidence of unidirectional parietal to frontal connections during 

resting state fMRI (Duggento et al., 2018). In addition, intra-hemispheric links were more 

dominant during tone processing as compared to inter-hemishpheric links, whereas the inter- 

and intra-hemispheric contributions were nearly balanced during resting state. This may 

align with evidence that even low level auditory stimuli are processed in a lateralized fashion 

(Brown and Nicholls, 1997; Millen et al., 1995). Additionally, in an fMRI study of 100 

adults, Granger causality analyses revealed that parietal-to-frontal connectivity was localized 

to within-hemispheric pathways (Duggento et al., 2018). Cross-hemispheric connectivity 

was largely observed within lobes (e.g., frontal-to-frontal). Although there are a number 

of methodological differences between these studies, together they suggest that NLGC can 

reveal robust differences in the directionality and band specificity of patterns of connectivity 

during task processing and at rest.

In general, greater and/or more extensive fronto-temporal-parietal functional connectivity 

has been observed when processing clearer auditory stimuli (Abrams et al., 2013; Yue et 

al., 2013) and for younger compared to older adults (Andrews-Hanna et al., 2007; Peelle 

et al., 2010). The current results broadly align with these results, but further indicate the 

directionality and frequency band that may drive those observed differences in connectivity. 

While our analysis of the Delta + Theta band did not suggest any age differences across 
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age groups, the networks seen in the Beta band revealed key age-related differences during 

the tone processing task. For younger participants, most of the connections were from 

parietal and temporal to frontal areas, including frontal to frontal connectivity. However, 

in older participants, parietal areas were significantly more engaged in the network with 

notable connections towards frontal areas. Long-range synchrony between frontal and 

parietal cortices in the Beta band has been observed to dominate during top-down attentional 

processing (Buschman and Miller, 2007) and is thought to support the enhancement of task-

relevant information (Antzoulatos and Miller, 2016). There is also some evidence that Beta 

band connectivity increases with aging (Moezzi et al., 2019; Vysata et al., 2014). The results 

did not yield support for previous observations of inter-hemispheric asymmetry reduction 

with age (Dolcos et al., 2002) in terms of increasing inter-hemispheric connectivity (Maurits 

et al., 2006). However, this is likely due to the simplicity of the tone counting and rest 

conditions examined in the present study. Future analyses of speech materials with greater 

task demands may be more sensitive to such differences.

The NLGC framework includes several technical contributions that are unified within the 

same methodology, but may also be of independent interest in neural signal processing. 

These include: 1) a scalable sparse VAR model fitting algorithm based on indirect and 

low-dimensional observations, that leverages steady-state approximations to linear Gaussian 

state-space inference, sparse model selection, and low-rank approximations to the lead field 

matrix; and 2) establishing the asymptotic distributions of the de-biased deviance difference 

statistics from MEG observations, that may be used in more general hypothesis testing 

frameworks.

Along with its several improvements over existing work, NLGC comes with its own 

limitations. First, NLGC requires sufficiently long trial duration, so that the underlying 

network parameters can be estimated reliably. While the sparsity regularization in NLGC 

mitigates this issue to some extent, in general the number of parameters needed to be 

estimated from NT observed MEG sensor data points is in the order of ~ KM2. As an 

example, to ensure that the number of parameters is in the order of the number of data 

points for the sake of estimation accuracy, for the typical configurations in this work (i.e., 

N = 155 sensors, M = 84 sources, 5-fold cross-validation, 10 Hz frequency band, 100 ms 

integration window), trials of at least T = 25 s in duration are needed. While this requirement 

was satisfied by the experimental trials used in our work, as also validated in Section 4.8.3, 

NLGC may not perform well in experiments involving short trials, such as those studying 

sensory evoked field potentials in which a large number of trials, each in the order of 1 s in 

duration, are available (David et al., 2006a; 2006b).

Second, while NLGC maintains a remarkably low false alarm rate in a wide range of 

settings, it is more sensitive to model mismatch in terms of its hit rate performance, 

as compared with existing two-stage approaches, as examined in Fig. 4B. This is due 

to the fact that while integrating source localization and VAR parameter estimation in 

NLGC is advantageous to rejecting spurious GC links, eliminating the first stage of source 

localization makes NLGC more sensitive to the accuracy of the source space used in 

estimating the source time-courses and thereby correctly detecting the true GC links. 

The hit rate performance of NLGC could be improved by using a more refined source 
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space, but this in turn might require a longer observation duration for accurate parameter 

estimation. Finally, our experimental data validation here was limited by the lack of access 

to ground truth source activity. We defer validating the performance of NLGC using invasive 

recordings such as electrocorticography or intracranial EEG, in which the sources are 

directly observable, to future work.

In addition to the aforementioned technical contributions, NLGC also offers several practical 

advantages over existing work. First, due to its scalable design, it can be applied to any 

frequency band of interest to extract the underlying GC networks. Secondly, due to the 

precise statistical characterization of the detected links, the networks can be transformed 

to span ROIs of arbitrary spatial resolution, from cortical dipoles to anatomical ROIs, 

cortical lobes, and hemispheres. Third, unlike most existing connectivity analysis methods 

that require heavy trial averaging to mitigate spurious detection, NLGC exhibits robustness 

to model mismatch and low SNR conditions, even where few trials are available. Finally, 

thanks to the plug-and-play nature of the NLGC building blocks, it can be modified for 

inferring other network-level characterizations, such as cortical transfer entropy (Daube 

et al., 2022). To ease reproducibility, we have made a python implementation of NLGC 

publicly available on Github (Soleimani and Das, 2022). In summary, NLGC can be used as 

a robust and scalable alternative to existing approaches for GC inference from neuroimaging 

data.

4. Theory and methods

Here we lay out in detail the generative framework that entails the computational model 

for relating the neural activity, which produces magnetic fields outside of the brain, to 

the recordings at the highly sensitive MEG sensors. This generative framework deals with 

the unobserved neural activity as latent entities: the notion of Granger causality is defined 

with respect to the latent neural activity. We then propose a novel approach to identify the 

parameters of the generative model from the multi-channel MEG recordings and construct 

Granger causal measures to quantify the detected links. We call this unified framework the 

Network Localized Granger Causality (NLGC) framework.

4.1. Main problem formulation

Recall the observation and state evolution models given in Eqs. (1) and 2:

yt = Cxt + nt, xt = ∑
k = 1

K
Akxt − k + wt, t = 1, …, T , (3)

where T is the observation duration, xt ∈ ℝM and yt ∈ ℝN are, respectively, the cortical 

activity of M distributed sources and the measurements of N sensors at time t. The 

process noise wt and observation noise vt are assumed to be independent of each other 

and are modeled as i.i.d. sequences of zero mean Gaussian random vectors with respective 

covariance matrices Q = diag σ1
2, …, σM

2  and R.
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The lead-field matrix C ∈ ℝN × M can be estimated using a quasi-static solution to the 

Maxwell’s equations using a realistic head model obtained by MR scans (Baillet et al., 2001; 

Mosher et al., 1999; Sarvas, 1987). The measurement noise covariance matrix R is assumed 

to be known, as it can be estimated based on empty room recordings (Engemann and 

Gramfort, 2015). Thus the unknown parameters in these models are: the M × M coefficient 

matrices Ak, that quantify the contribution of the neural activity from time t − k to the 

current activity at time t, for k = 1, …, K, and the process noise covariance matrix Q.

Assuming that the source time-series xt form an underlying network, our main contribution 

is to find the inverse solution to this latent network, in the sense of Granger causality, 

directly from the MEG observations yt. We first give an overview of Granger causality while 

highlighting the challenges in GC inference from MEG data.

4.2. Overview of Granger causality

First, we assume that the sources xt are directly observable. Noting that [Ak]i,j quantifies the 

contribution of source j at time t − k to the present activity of source i at time t, one can 

statistically assess the causal effect of source j on source i via the following hypothesis test:

• H0: [Ak]i,j = 0 for all k = 1, 2, …, K, i.e., there is no causal influence from source 

j to source i.

• H1: [Ak]i,j ≠ 0 for any k = 1, 2, …, K, i.e., there exists a causal influence from 

source j to source i.

Given that the VAR coefficients Ak k = 1
K  are unknown, to test this hypothesis, reliable 

estimates Ak i, j, 1 ≤ i, j ≤ M and 1 ≤ k ≤ K are needed. However, such accurate 

estimates are often elusive due to limited observation horizon T compared to the number 

of parameters. Granger causality (Geweke, 1982; 1984; Granger, 1969) addresses this issue 

by considering the “bulk” effect of the VAR model coefficients through the prediction error 

metric. To this end, in assessing the causal influence of source j on source i two competing 

models are considered:

• Full model, where the activity of source i is modeled via the past activity of all 

the sources:

xi, t = ∑
m = 1

M
∑

k = 1

K
Ak

f
i, mxm, t − k + wi, tf , wi, tf N 0, σi2 , t = 1, …, T . (4)

• Reduced model, where the contribution of the past of source j is removed from 

the full model by enforcing [Ak]i,j = 0, ∀k = 1, 2, …, K:

xi, t = ∑
m = 1,
m ≠ j

M
∑

k = 1

K
Ak

r
i, mxm, t − k + wi, tr , wi, tr N 0, σi\j

2 , t = 1, …, T .
(5)
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Note that we here use the conditional notion of Granger causality (Geweke, 1984), which 

includes all the processes xm,⋅, m ≠ j in both the reduced and full models. The process noise 

variables wi, tf  and wi, tr  have different variances given by σi2 and σi\j
2 , respectively. Define

ℱ(j i) ≔ log
σi\j

2

σi2
. (6)

Clearly, when j has no causal influence on i, ℱ(j↦i) = 0, otherwise ℱ(j↦i) > 0, since 

the reduced model is nested in the full model, i.e., σi\j
2 ≥ σi2 In practice, the VAR model 

coefficients Ak
f  and Ak

r , as well as the prediction variances σi2 and σi\j
2  need to be estimated 

from the data. Let σi
2 and σi\j

2  be the respective estimates of the prediction variances of the 

full and reduced models. Then, the resulting estimate ℱ(j i) ≔ log
σi\j

2

σi2
 is a data-dependent 

random variable. Using ℱ(j i), the previous hypotheses H0 and H1 for causality can be 

replaced by those of Granger causality (Greene, 2003):

• H0′ :ℱ(j i) ≈ 0, or equivalently σi
2 ≈ σi\j

2 . This implies that including the activity 

history of source j does not significantly improve the prediction error of source i, 
i.e., there is no Granger causal link from j to i.

• H1′ :ℱ(j i) ≫ 0, or equivalently σi
2 ≪ σi\j

2 . This implies that including the 

activity history of source j significantly improves the prediction accuracy of 

source i, i.e., there is a Granger causal link from j to i.

The test statistic ℱ(j i) is referred to as the GC metric. In order to perform the latter 

hypothesis test, the asymptotic distribution of ℱ(j i) is utilized to obtain p-values (Kim et 

al., 2011). More specifically, under mild conditions, T × ℱ(j i) converges in distribution to 

a chi-square random variable with K degrees of freedom, i.e., χ2 (K) (Davidson and Lever, 

1970; Wald, 1943).

4.3. Challenges of GC analysis for MEG

When it comes to GC analysis of cortical sources using MEG, there are several outstanding 

challenges:

1. Indirect and Low-dimensional Sensor Measurements. The foregoing notion of 

Granger causality assumes that the source time-series xi, t t = 1
T , i = 1, 2, 

…, M are directly observable. However, MEG only provides indirect and 

low-dimensional sensor measurements yt ∈ ℝN, where typically N ≪ M. As 

such, GC analysis of MEG data inherits the ill-posedness of estimating high-

dimensional sources from low-dimensional sensor measurements (Tait et al., 

2021; Wipf et al., 2010).

2. Limited Observation Duration. In order to obtain accurate estimates of the VAR 

model parameters and consequently prediction variances of the full and reduced 

Soleimani et al. Page 17

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models, typically observations with long duration T are required. However, the 

observation length is limited by the typically short duration of cognitive or 

sensory experimental trials. Even if trials with long duration were available, for 

the stationary model of Eq. (2) to be valid (i.e., static VAR parameters), T may 

not be chosen too long.

3. Precise Statistical Characterization of the GC Links. While the asymptotic 

distribution of the null hypothesis in the classical GC setting allows to obtain 

p-values, it is not clear how this asymptotic distribution behaves under the 

indirect and low-dimensional observations given by MEG. Furthermore, p-values 

only control Type I error, and in order to precisely characterize the statistical 

strength of the detected GC links, Type II errors need to also be quantified.

Existing methods aim at addressing the aforementioned challenges separately. In order to 

address challenge 1, source localization is used in a two-stage approach, where the cortical 

sources are first estimated using a source localization method, then followed by GC analysis 

(Cai et al., 2021; 2018; Owen et al., 2012); in order to address challenge 2, regularized 

least squares estimation is used to reduce the variance of the estimated VAR parameters 

(Bolstad et al., 2011; Endemann et al., 2022); and challenge 3 is usually addressed using 

non-parametric statistical testing, which may have limited power due to the large number 

of statistical comparisons involved (Cheung et al., 2010; Manomaisaowapak et al., 2021; 

Sekihara et al., 2010). It is noteworthy that these challenges are highly inter-dependent. For 

instance, the biases incurred by the source localization stage in favor of addressing challenge 

1, may introduce undesired errors in the VAR parameter estimation to address challenge 2 

(Schoffelen and Gross, 2009). Similarly, using regularized estimators to address challenge 2 

introduces biased in the test statistics used in addressing challenge 3.

4.4. Proposed solution: network localized granger causal (NLGC) inference

We propose to address the foregoing challenges simultaneously and within a unified 

inference framework. To this end, we first cast Granger causal inference as an inverse 

problem using the generative models of Eqs. (2) and (1). To address the parameter 

estimation challenge of this inverse problem, we leverage sparse connectivity in cortical 

networks and utilize ℓ1-regularized estimation of the VAR parameters. Finally, to 

characterize the statistical strengths of the identified GC links, we establish the asymptotic 

properties of a test statistic, namely the de-biased deviance difference, which will allow 

us to parametrically quantify both Type I and Type II errors rates and also control the 

false discovery rate. We refer to our proposed method as the Network Localized Granger 

Causality (NLGC) analysis. The main building blocks of NLGC are introduced in the 

remaining part of this subsection.

4.4.1. Efficient parameter estimation and likelihood computation—It is 

straightforward to show that this classical GC metric, i.e., log-ratio of the prediction 

variances of the reduced and full models in Eq. (6) is equivalent to the difference of the 

log-likelihoods of the full and reduced models, for linear Gaussian generative models. 

This correspondence has led to the generalization of the GC metric to non-linear and 

non-Gaussian settings (Kim et al., 2011; Sheikhattar et al., 2018).
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We take a similar approach to generalize the classical notion of GC for direct observations of 

the sources to our indirect observations given by the MEG sensors. Recall that for assessing 

the GC from source j to i, we considered the full and reduced models given by Eqs. (4) 

and (5). Let Af ≔ A1
f , A2

f , …, AK
f  and Ar ≔ A1

r , A2
r , …, AK

r  be the VAR parameters matrices, 

and Qf ≔ diag σ1
f2, σ2

f2, …, σM
f2  and Qr ≔ diag σ1

r2, σ2
r2, …, σM

r2  be the process noise covariance 

matrices of the full and reduced models, respectively. The main difference between these 

sets of parameters is that Ak
r

i, j = 0, ∀k = 1, 2, …, K. Let the log-likelihoods of the MEG 

observations under the full and reduced models be defined as:

ℓi Af, Qf ∣ y1:T ≔ log p y1:T ; Af, Qf ,  full model log‐likelihood

ℓi\j Ar, Qr ∣ y1:T ≔ log p y1:T ; Ar, Qr ,  reduced model log‐likelihood
(7)

Let Af
, Ar

, Qf
, and Qr

 be the regularized maximum likelihood estimates of the corresponding 

parameters. We then define the GC metric from source j to i given the MEG observations as 

Kim et al. (2011); Sheikhattar et al. (2018); Soleimani et al. (2020):

ℱ(j i) ≔ ℓi Af, Qf ∣ y1:T − ℓi\j Ar, Qr ∣ y1:T . (8)

As for the regularization scheme, we consider ℓ1-norm regularized maximum likelihood 

estimation. Let ai be the ith row of A, correspond to all the network interactions towards 

source i. The parameters are estimated as:

Af, Qf = argmax
A, Q

ℓi A, Q ∣ y1:T − λ ∑
m = 1

M
am 1,

Ar, Qr = argmax
A′, Q′

ℓi\j A′, Q′ ∣ y1:T − λ′ ∑
m = 1

M
am′ 1,

(9)

where λ, λ′ are regularization parameters that are tuned in a data-driven fashion using 

cross-validation (See Remark 3 below for details). Since the source activity xt t = 1
T  is not 

directly observable, we employ an instance of Expectation-Maximization (EM) algorithm 

(Dempster et al., 1977; Shumway and Stoffer, 1982) to solve the regularized maximum 

likelihood problem. The EM algorithm is an iterative procedure which maximizes a lower 

bound on the log-likelihood function and provides a sequence of improving solutions. The 

EM algorithm has two steps: 1) The Expectation step (E-step) where we calculate the 

expectation of the log-likelihood of both the observed and unobserved variables given 

the observations and a current estimate of the parameters to construct a lower bound 

on the actual observation log-likelihood, and 2) The Maximization step (M-step) where 

we maximize the surrogate function obtained in the E-step to update the estimate of the 

unknown parameters.

More specifically, we illustrate these two steps for estimating the parameters of the full 

model; the case of reduced model is treated in a similar fashion. Let the unknown 
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parameters be denoted by θ ≔ (θ1, …, θM), where θi ≔ σif2, aif  is the corresponding 

unknown parameters of the ith source with aif ≔ Ak
f

i, j, ∀j, k . The EM algorithm in this 

case comprises the following steps:

The E-step We start from the joint distribution of xt t = 1
T  and yt t = 1

T . From the Bayes’ rule 

we have

log p y1:T , x1:T ; θ = log p y1:T ∣ x1:T ; θ + log p x1:T ; θ . (10)

The conditional distribution can be directly written from observation model in Eq. (1) as

log p y1:T ∣ x1:T ; θ = ∑
t = 1

T
log p yt ∣ xt; θ

= − T
2 log (2π R ) − 1

2 ∑
t = 1

T
yt − Cxt R−1,

(11)

where ∥a∥B ≔ a⊤Ba is utilized for notational convenience.

Using the fact that Q = diag σ1
2, …, σM

2  along with the source dynamic model in Eq. (2), one 

can write down

log p x1:T ; θ = − T
2 log 2π ∏

i = 1

M
σi2 − ∑

i = 1

M 1
2σi2

xi − Xai 2
2, (12)

where xi ≔ xi, K + 1:T
⊤, ai = [[Ak]i,j, ∀k, j]⊤, and

X ≔ x1, K:T − 1
⊤, …, x1, 1:T − K

⊤, …, xM, 1:T − K
⊤ . (13)

Now, substituting Eqs. (11) and (12) into Eq. (10) along with taking the expectation yields

Q θ ∣ θ(l) = E log p x1:T , y1:T ; θ ∣ y1:T , θ(l)

= K θ(l) − T
2 ∑

i = 1

M
log σi2 − ∑

i = 1

M 1
2σi2

ai⊤G(l)ai − 2hi
(l)⊤ai + fi

(l) ,

where K θ(l)
 represents the constant terms with respect to θ

K θ(l) = − T
2 log(2π R ) − T

2 log(2π) − 1
2 ∑

t = 1

T
E yt − Cxt R−1 ∣ y1:T ; θ(l) ,

and
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G(l) = E X⊤X ∣ y1:T ; θ (l) ,

hi
(l) = E X⊤xi ∣ y1:T ; θ(l) ,

fi
(l) = E xi⊤xi ∣ y1:T ; θ(l) (∀i) .

(14)

It is noteworthy to mention that the variables G(l), hi
(l), and fi

(l) can be written as a 

function of first- and second-order moments of the conditional density p x1:T ∣ y1:T ; θ(l)
. 

It can be shown that the conditional density p x1:T ∣ y1:T ; θ(l)
 is Gaussian due to the 

underlying Gaussian assumptions on wt and nt. Thus, the mean and covariance matrices 

can be efficiently computed via the Fixed Interval Smoothing (FIS) algorithm (Anderson and 

Moore, 2005). The details are presented in A.1.

The M-step To mitigate the ill-posedness caused by the low dimensionality of MEG 

measurements, we leverage the sparse connectivity feature of cortical sources and add a 

regularization term in the M-step as follows:

θ(l + 1) = argmax
θ

Q θ ∣ θ(l) + Rp(λ, θ) , (15)

where Rp(λ, θ) ≔ − 2∑i = 1
M λi ai pp is the regularization function and λ = λ1, …, λM

⊤ ∈ ℝM

is the regularization coefficients vector. The closed-form solution for p = 2 can be obtained 

as

ai
(l + 1) = G(l) + λiI

−1hi
(l), ∀i (16)

σi
2(l + 1)

= 1
T ai

(l + 1)⊤G(l)ai
(l + 1) − 2hi

(l)⊤ai
(l + 1) + fi

(l) , ∀i . (17)

To enforce sparsity, we use p = 1. However, the closed-form solution does not exist. We 

use the well-known Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) to find the 

ℓ1-norm regularized solution to Eq. (15) (Goldstein et al., 2014).

Fig. 8 gives an overview of the EM algorithm, which is also summarized in Algorithm 

1. These steps continue until convergence of the iterates θ(l)
. To assess convergence, the 

log-likelihood of the MEG observations is calculated (Gupta and Mehra, 1974) at each 

iteration, to check whether the successive improvements of the log-likelihood fall below a 

specified threshold.
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Employing the foregoing EM procedure, one can reliably estimate the set of parameters θ 
corresponding to the full model and the M (M − 1) reduced models for all possible links (j 
↦ i) and evaluate the log-likelihoods to form the GC metric ℱ(j i) of Eq. (8), for all i, j = 

1, 2, …, M, i ≠ j. Given the large number of EM runs, it is crucial to have computationally 

efficient solutions to carry out the computations in the E-step. Before presenting these 

solutions and their computational savings, some remarks regarding the initialization of the 

EM algorithm, estimating the reduced models, and choosing the regularization parameters λ 
are in order:

Remark 1 (Initialization). Due to the biconvex nature of the problem in Eq. (15), the 

problem may have several saddle points. As a result, choosing a proper initial point for the 

EM algorithm is crucial and helps the algorithm to converge faster as well. We first obtain 

the minimum norm source estimates as follows

X = C⊤C −1C⊤Y, (18)

where Y = y1
⊤, …, yT

⊤ ⊤
 is the MEG measurement matrix and X = x1

⊤, …, xT
⊤ ⊤

 is the source 

estimates matrix. Given the source estimates, we initialize all coefficients A k = 1
K  with zero 

and variances matching the average power of each source, i.e., ai
(0) = 0, σi

2(0) = 1
T ∑t = 1

T xi, t
2 , 

∀i. In this way, the algorithm is initialized with an unbiased solution (Gorodnitsky et al., 

1995).

Remark 2 (Reduced Models). Algorithm 1 represents the full model parameter estimation. 

With some minor modification, one can find the reduced model estimation in a similar way. 

Let us assume we want to estimate the reduced model parameters corresponding to the link 

(j ↦ i) ∈ I. We can use Algorithm 1 by enforcing ai,j,k = 0, ∀k at the M-step in each 

iteration. The output of the Algorithm 1 in this case is the estimated parameters for the 

reduced model corresponding to the link (j ↦ i).

Remark 3 (Regularization Parameters). To obtain the regularization parameters λ, we 

utilize the standard K-fold cross-validation. To save the computational complexity and to 

speed up the tuning process, we assume λ = λ1 where 1 is the all-one vector. As for the 

cross-validation metric, we use the estimation stability criterion presented in Lim and Yu 
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(2016). Given a set of candidates for λ, this criterion constructs estimated versions of the 

MEG measurements based on the underlying parameters of the VAR model and returns the 

model with the lowest variance across the folds. In this way, the chosen λ gives a stable 

solution across the folds. Moreover, once the optimal regularization parameter λ is chosen 

for the full model, we use the same regularization parameter for all the subsequent reduced 

models (Das and Babadi, 2021). This way, the cross-validation only needs to be carried out 

for the full model.

4.4.2. Computational complexity of the parameter estimation procedure—
Applied to MEG, off-the-shelf solvers do not scale well with the dimensions of the source 

space M, sensor space N, and observation length T. We employ several solutions to address 

this need for scalability of the parameter estimation procedure:

1. First, we use a low-rank approximation to the lead-field matrix that reduces the 

effective dimensionality of the source space. This approach is explained in detail 

in Section 4.5.1.

2. We use the steady-state solution to the smoothing covariance matrices involved 

in FIS that notably speed up the computations. This approach is explained in 

detail in Appendix A.1.

3. We use the Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) algorithm 

to efficiently solve the ℓ1-regularized optimization in the M-step. This approach 

was explained in Section 4.4.1.

4. We efficiently evaluate the various log-likelihood functions, which are key for 

cross-validation and the EM stopping criterion, using the innovation form of the 

smoothed states (Gupta and Mehra, 1974).

In what follows, we discuss the implications of these algorithmic solutions in reducing the 

computational complexity of our EM-based parameter estimation procedure used for solving 

Eq. (9), in comparison to existing work.

Complexity of the E-step As it will be shown in Section 4.5.1, Solution (1) results in an 

effective lead-field matrix with rM columns, where M is the number of cortical patches 

used and r ≥ 1 is the number eigenmodes retained in the low-rank representation of 

the lead-fields in each patch. Also, Solution (2), using the steady-stake Kalman filtering/

smoothing, reduces the total number of state covariance matrix inversions in the FIS 

procedure from T to 2, by only adding (((rM)2K)3) multiplications required to find the 

steady-state covariance matrices (Malik et al., 2010). Considering the cubic dependence 

of matrix inversion to the matrix dimension, each instance of FIS requires (((rM)2K)3) + 

(T((rM)2K)2) multiplications, which can then be used to form the elements of the Q-function 

in the E-step.

Complexity of the M-step At the M-step, Solution (3) uses FASTA to update the parameters. 

As a gradient-based method, for an optimality gap of ε > 0, it requires O 1
ε  iterations, and 
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each iteration requires (((rM)2K)2) multiplications (Beck and Teboulle, 2009; Goldstein et 

al., 2014). Here, we denote the complexity of FASTA by LFASTA = O 1
ε (rM)2K 2

.

Complexity of log-likelihood computation Solution (4) provides an efficient method to 

compute the log-likelihood of the MEG observations (Gupta and Mehra, 1974), which 

only includes matrix additions and matrix by vector multiplications based on the quantities 

already calculated at the FIS procedure, adding up to (T((rM)2K)2) multiplications.

Finally, letting LEM be the number of EM iterations, each application of the EM algorithm 

requires (((rM)2K)3LEM) + (T((rM)2K)2LEM) + (LFASTA LEM) multiplications. The 

problems in Eq. (9) need to be solved for both the full and reduced models. The only 

difference between the full model and reduced model corresponding to the link (j ↦ i) is 

the fact that in the reduced model, one set of the cross-coupling coefficients ai,j,k (k = 1, 

…, K) are constrained to be zero during the EM procedure (See Remark 2 in Section 4.4.1). 

The total number of such estimation problems to be solved is M(M − 1) + 1 = (M2). 

Thus, the overall computational complexity of our parameter estimation procedure is given 

by (r6M8K3LEM) + (Tr4M6K2LEM) + (M2LFASTALEM). In the applications of interest in 

this work, typically the convergence criteria is satisfied with a choice of LFASTA ≈ 100 and 

LEM ≈ 1000, which mitigates the dependence of the overall computational complexity on 

these parameters.

The improvements achieved by Solutions (1) and (2) provide notable computational savings 

over existing work (Cheung et al., 2010; Lamus et al., 2012; Long et al., 2011; Nalatore et 

al., 2009; Sekihara et al., 2010):

1. If the low-rank approximation to the lead-field matrix is not used, the term r is 

replaced by 61 (see Section 4.5.1 for details). Given that we use a value of r = 

4 in our work, this amounts to a ~ 107-fold reduction in the complexity of the 

leading term that is (r6M8K3LEM).

2. If the steady-state filtering/smoothing is not used, the first term in the 

computational complexity of the EM procedure would be increased to 

(Tr6M8K3LEM). Our approach reduces this term by a factor of T, which in 

the applications of interest in this paper amounts to a ~ 103 -fold reduction in 

complexity.

4.4.3. Statistical test strength characterization—The next component of NLGC is 

the characterization of the statistical significance of the obtained GC metrics. Let I ≔ {(j 
↦ i)|1 ≤ i, j ≤ M, i ≠ j} be the set of all possible GC links among M sources. Consider the 

link (j ↦ i) ∈ I and let us represent the corresponding parameters of the full and reduced 

models of the link as θf and θr, respectively, where for θr we have ai, j, k
r = 0, ∀k. It is worth 

noting that the number of parameters to be estimated in the full and reduced models are Mf 

≔ K(rM)2 and Mr ≔ K(rM)2 − Kr2, respectively. We define the null hypothesis H(j↦i),0 : θ = 

θr for the case that no GC link exists, and the alternative H(j↦i),1 : θ = θf for the existence of 

a GC link from source j to source i. A conventional statistic for testing the alternative against 
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the null hypothesis is the deviance difference between the estimated full and reduced models 

defined as

D(j i) ≔ 2 ℓ θf − ℓ θr = 2ℱ(j i), (19)

where ℓ(θ) ≔ log p(y1:T; θ) is the log-likelihood of the observations. Large values of (j↦i) 

≫ 0 indicate a large improvement in the log-likelihood of the full model compared to that of 

the reduced model, which implies the existence of a GC link. Similarly, (j↦i) ≈ 0 can be 

interpreted as the absence of a GC link from source j to source i (Kim et al., 2011).

Conventionally, the asymptotic distribution of the deviance difference is derived as a chi-

square distribution, thanks to the asymptotic normality of maximum likelihood estimators 

(Davidson and Lever, 1970; Wald, 1943). However, due to the biases incurred by ℓ1-norm 

regularization, the estimates are no longer asymptotically normal. To remove the bias and 

obtain a statistic with well-defined asymptotic behavior, we use the de-biased version of the 

deviance difference introduced in Sheikhattar et al. (2018); Soleimani et al. (2020):

D(j i)
db ≔ D(j i) − ℬ θr + ℬ θf , (20)

where ℬ(θ) ≔ − ℓ
.

(θ)⊤ ℓ
..

(θ)−1 ℓ
.

(θ) is the empirical bias incurred by ℓ1-norm regularization 

(van de Geer et al., 2014), with ℓ̇ ( . ) and ℓ
..

( . ) denoting the gradient vector and Hessian 

matrix of the log-likelihood function ℓ(.), respectively. Removal of the bias allows to recover 

the well-known asymptotic behavior of the deviance difference. We characterize these 

distributions using the following theorem:

Theorem 1. The de-biased deviance difference defined in Eq. (20) converge weakly to the 
following distributions, under the null and alternative hypotheses (as T → ∞):

D(j i)
db ∣ H(j i), 0

d χ2 Md , (21)

D(j i)
db ∣ H(j i), 1

d χ2 Md, v(j i) , (22)

where χ2(q) denotes the central chi-square distribution with q degrees of freedom, and 
χ2(q, ν) represents the non-central chi-square distribution with q degrees of freedom and 
non-centrality parameter ν, with Md ≔ Mf − Mr = Kr2.

Proof. See Appendix B. ■

In words, Theorem 1 states that the asymptotic distribution of the de-biased deviance 

difference in the absence and presence of a GC link is distributed according to central and 

non-central χ2 distributions, both with degree of freedom Kr2, i.e., the number of VAR 

parameters from patch j to i, respectively. The non-centrality parameter in Eq. (22) can be 

estimated as v(j i) = max ∑l = 1
L D(j i)

db, (l) /L − Md, 0  where D(j i)
db, (l)  is the lth sample of 

the de-biased deviance computed from L ≥ 1 independent trials (Saxena and Alam, 1982). 
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We will next show how the result of Theorem 1 can be used for FDR control as well as 

characterizing the test strength.

FDR control Recall that rejection of the null hypothesis for a given source and target pair 

implies the existence of a GC link. As a consequence, determining GC links among the 

source and target pairs requires preforming M (M − 1) multiple comparisons, which may 

result in high false discovery. To address this issue, we employ the Benjamini-Yekutieli 

(BY) FDR control procedure (Benjamini and Yekutieli, 2001). Consider the link (j ↦ i) 
∈ I. According to the first part of Theorem 1, if the null hypothesis is true, i.e., the GC 

link does not exist, the corresponding de-biased deviance difference is central chi-square 

distributed. Thus, at a confidence level 1 − α, the null hypothesis H(j↦i),0 is rejected if 

D(j i)
db > Fχ2 Md

−1 (1 − α) where Fχ2 Md
−1 ( . ) is the inverse cumulative distribution function 

(CDF) of the central χ2 distribution with Md degrees of freedom. Using the BY procedure, 

the average FDR can be controlled at a rate of α ≔ ( I + 1)α
2 I log I  where |I| = M(M − 1) 

represents the cardinality of the set I.

Test strength characterization To determine the test strength, we use the second part 

of Theorem 1 as well to quantify Type II errors. To this end, the false negative 

rate at the given confidence level 1 − α for a source-target pair (j ↦ i) is given 

by η(j i) α ≔ Fχ2 Md, v(j i) Fχ2 Md
−1 (1 − α)  where Fχ2 Md, v(j i) ( . ) denotes the non-

central χ2 distribution with Md degrees of freedom and non-centrality parameter ν(j i). 

Given the false negative rate, we use the Youden’s J-statistic (Youden, 1950) to summarize 

the strength of the test as:

J(j i) ≔ 1 − α − η(j i)(α), (23)

for the given confidence level 1 − α. The J-statistic has a value in the interval [0,1] 

summarizing the performance of a diagnostic test. When J(j↦i) ≈ 0, the evidence to choose 

the alternative over the null hypothesis is weak, i.e., the GC link is likely to be missing. On 

the other hand, when J(j↦i) ≈ 1, both the false positive and negative rates are close to zero, 

implying high test strength, i.e., strong evidence in support of the GC link.

The overall statistical inference framework is summarized in Algorithm 2. Finally, obtaining 

the J-statistics for all links, we can construct the GC map Φ as follows

[Φ]i, j ≔
J(j i), (j i) ∈ I
0,  otherwise 

. (24)

It is worth noting that to repeatedly evaluate the de-biased deviance difference statistic, 

one needs to efficiently calculate the log-likelihood function ℓ(.), which is done using the 

innovation form described in Gupta and Mehra (1974). In the spirit of easing reproducibility, 

a python implementation of the NLGC is available on the open source repository Github 

(Soleimani and Das, 2022).
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4.5. Dimensionality reduction and VAR model order selection

There are two remaining ingredients of NLGC which are key to ensure its scalability, 

namely, reducing the dimensionality of the source space and VAR model order selection.

4.5.1. Source space construction and eigenmode decomposition—In practice, 

using MR scans of the participants, individual head models can be numerically computed 

and co-registered to each individual’s head using the digitized head shapes. We first define 

a cortical surface mesh-based source space for the ‘fsaverage’ head model (Dale et al., 

1999), named ico-4, with average spacing of ~ 6 mm between any two neighboring sources, 

which is then morphed to each participant’s head model. The lead-field matrix is obtained 

by placing 3 virtual dipoles at each of the 5124 vertices of ico-4 source space and solving 

Maxwell’s equations. We further restrict the dipoles to be normal to the cortical surface, so 

that the resulting lead-field matrix C has M = 5124 columns of length N each (Gramfort 

et al., 2013a; 2014). Solving the NLGC inverse problem over this source space is quite 

computationally demanding, as the computational time of FIS scales as (((rM)2K)3) (See 

Section 4.4.2). We thus need to reduce the dimension of the lead-field matrix to control the 

computational complexity.

To this end, we summarize the contribution of the dipoles placed on the ico-4 source 

space vertices within a given region using their principal components (Cheung et al., 2010; 

Limpiti et al., 2006). We start from a coarse surface mesh-based source space, namely ico-1, 

with 84 vertices (42 vertices per hemisphere). We consider the Voronoi regions based on 

the geodesic distance between these vertices induced by ico-1 vertices over the original 

ico-4 vertices, so that all the ico-4 vertices are partitioned into 84 non-overlapping patches 

(Babadi et al., 2014). The Voronoi regions around each of the ico-1 vertices are referred to as 

cortical patches in this work. We then approximate the contribution of the dipoles placed on 

the ico-4 vertices within each cortical patch by the first r leading eigenvectors of the partial 

lead-field matrix following singular value decomposition (SVD). We refer to these leading 

eigenvectors as eigenmodes. As such, the number of columns in the effective lead-field 

matrix is reduced to r × 84, as opposed to original 5124, which significantly reduces the 

computational complexity. In addition to providing computational savings, dimensionality 

reduction through retaining the leading eigenmodes of the lead-field sub-matrices serves as 

denoising by suppressing the effect of small lead-field errors (which are expected to appear 

in eigenmodes with small singular values).
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Fig. 9 shows a schematic depiction of the eigenmode decomposition for a given patch with 

r = 2 eigenmodes. For this example, the 10 × 7 lead-field matrix of the cortical patch is 

reduced to a 10 × 2 matrix, for which the two eigenmodes capture the main contributions 

of the patch to the MEG sensors. In other words, we summarize all the dipoles placed on 

ico-4 vertices within each cortical patch by the best r effective dipoles, which explain most 

of the lead-field variance within that cortical patch. With increasing r, the approximation 

gets better in a similar way that a finer cortical mesh improves cortical current density 

approximation. The parameter r can be chosen by controlling the reconstruction error at a 

desired level. We will provide an example of this choice in the following subsection.

4.5.2. VAR model order selection—In Section 4.4, the VAR model order K is 

assumed to be known. To estimate K in a data-driven fashion, we utilize the Akaike 
Information Criterion (AIC) to determine which model order best fits the MEG observations 

(Ding et al., 2018). Given a set of candidate model orders  for K, the optimal model order 

can be chosen as:

KAIC = argmin
K ∈ K

− 2 ℓ θ[K] + 2df, (25)

where df is the degrees of freedom of the ℓ1-norm regularized maximum likelihood problem 

(Zou et al., 2007) and θ[K]
 denotes the estimated parameters corresponding to a VAR(K) 

model.

Ideally, one can search within a large set of candidate values for K and r (number of 

eigenmodes) and choose the optimal pair according to an information criterion (Ding et 

al., 2018). However, due to high computational complexity of the estimation procedure in 

NLGC, especially for higher values of K and r, we first pick a suitable value for the number 

of eigenmodes r, followed by choosing the VAR model order K via AIC.

To choose r, we require that at least 85% of the variance within each ROI can be explained 

using r eigenmodes. Depending on the subject’s head model and also the location of the 

dipoles, the choice of r may vary. For the MEG data in this study, r = 4 eigenmodes sufficed 

to capture at least 85% of the variance. Fig. 10A shows the histogram of explained variance 

ratio for all ROIs using r = 2, 3, 4 eigenmodes corresponding to 3 representative subjects.

Once r = 4 is fixed, we use AIC to pick the optimal value of K. For the MEG data in this 

study, K = 2 was the optimal choice according to AIC for all subjects. Fig. 10B shows the 

AIC curves of the same 3 subjects as in panel A. Even though in some cases (e.g. subject 2), 

a choice of K = 3 results in a slight improvement compared to K = 2, to reduce the overall 

run-time of our inference framework, we picked K = 2 for all cases.

4.6. MEG experiments: procedures and recordings

The data analyzed in this study was a part of a larger experiment whose results will be 

reported separately. Out of 36 total participants who completed the MEG experiment, 24 

participants completed the structural MRI scans. Additionally, 2 subjects were excluded due 

to bad fiducials measurements. Ultimately, 22 subjects, 13 younger adults (5 males; mean 
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age 21.1 years, range 17–26 years) and 9 older adults (3 males; mean age 69.6 years, range 

66–78 years) were included in the analysis. All participants had clinically normal hearing 

(125–4000 Hz, hearing level ≤ 25 dB) and no history of neurological disorder.

The study was approved by the University of Maryland’s Institutional Review Board. All 

participants gave written informed consent and were compensated for their time. Subjects 

came in on two different days. MEG auditory task recording was performed on the first 

day and structural MRIs were scanned on the second day. Neural magnetic signals were 

recorded in a dimly lit, magnetically shielded room with 160 axial gradiometer whole head 

MEG system (KIT, Kanazawa, Japan) at the Maryland Neuroimaging Center. The MEG data 

were sampled at 2 kHz, low pass filtered at 200 Hz and notch filtered at 60 Hz. Participants 

laid supine position during the MEG experiment while their head was in the helmet and as 

close as possible to the sensors. The head position was tracked at the start and end of the 

experiment with 5 fiducial coils. During the task subjects were asked to stare at the center of 

the screen and minimize the body movements as much as possible.

The resting state data were recorded before and after the main auditory task, each 90 s long 

in duration. During the resting state subjects fixated at a red cross at the center of grey 

screen. 100 repetitions of 500 Hz tone pips were presented at the end. During the tone pips 

task, subjects were staring at a face image at the center of screen and were asked to silently 

count the number of tone pips. The tones were presented at a duration of 400 ms with a 

variable interstimulus interval (1400 ms, 1200 ms, 1000 ms). The tone pip task was around 

150 s long and was divided into two trials, 40 s after the beginning of the first tone pip 

onset resulting in two trials. In summary, we analyzed the GC link counts in resting state and 

listening to tone pips task, each consisted of two trials.

4.7. Pre-processing and data cleaning

All the pre-processing procedures have been carried out using MNE-python 0.21.0 

(Gramfort et al., 2013a; 2014). After removing the noisy channels, temporal signal space 

separation (tsss) was used to remove the artifacts (Taulu and Simola, 2006). The data were 

filtered between 0.1 Hz and 100 Hz using a causal FIR filter (with phase = ‘minimum’ 

setting). Independent component analysis (extended Infomax algorithm, with method = 

‘infomax’ and fit_params = dict(extended = True) settings) was applied to 

extract and remove cardiac and muscle artifacts (Bell and Sejnowski, 1995; Lee et al., 1999). 

The initial 5 s of the data were removed and the subsequent 40 s were extracted. Finally, 

the data were filtered to the desired frequency bands using causal FIR filters followed by 

downsampling to 50 Hz.

4.8. NLGC parameter settings

As mentioned in Section 4.5.2, the VAR model order K is selected via AIC over a set of 

candidates  = {1, 2, 3, 4, 5}. The regularization parameter for the ℓ1-norm are chosen using 

a standard 5-fold cross-validation over the range [10−15, 1] spanned by 25 logarithmically-

spaced points (Section 4.4.1, Remark 3). As for the convergence of the EM algorithm, we 

used a normalized error tolerance of tol = 10−5, with a maximum number of 1000 iterations 
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(Algorithm 1). For all simulation studies as well as real data analysis FDR was controlled at 

0.1% using the BY procedure.

4.8.1. Parameters for the illustrative example—We considered M = 84 cortical 

patches, whose activities are projected onto the MEG sensor space with N = 155 sensors. We 

simulated 3 different realizations (with T = 1000 samples each) for each run. To simplify the 

projection onto the MEG sensors, we considered a single lead-field vector for each cortical 

patch, generated via drawing 155 independent samples from a standard normal distribution. 

This simplification using a single lead-field vector per patch could be thought of as taking 

a random linear combination of all the lead-field vectors within a cortical patch as the 

representative of its activity. The noise measurement covariance matrix was assumed to be 

diagonal R = σ2I where σ2 was chosen to set the SNR at 0 dB. The cortical patch activities 

were simulated as a VAR(5) process. Among them, 8 patches were randomly selected to 

carry the dominant activities, i.e., explaining 90% of the total signal power. To compare the 

performance of NLGC with a two-stage method using MNE, we first obtained the source 

estimates for the first stage as:

x1:T = min
x1:T

∑
t = 1

T
xt 2

2 s . t .   ∑
t = 1

T
yt − Cxt 2 ≤ ζ, (26)

for some ζ > 0. Given the source estimates, we then fit the VAR models to obtain the 

network parameters (Appendix A.2). Then, the same statistical inference framework used in 

NLGC was applied to extract the GC links in the second stage.

4.8.2. Parameters for the simulated MEG data using a head-based model
—We computed the forward solution for ico-4 source space from a representative 

younger subject’s head model via MNE-python 0.21.0 and then obtained the low-rank 

lead-field matrix approximation over ico-1 source space using the previously mentioned 

dimensionality reduction strategy (see Section 4.5.1 for details). Each of the cortical patches 

corresponding to ico-1 vertices had rgen. eigenmodes, resulting in 84 × rgen. lead-field 

columns, which are summarizing the contribution of 5124 ico-4 sources, partitioned into 84 

groups according to the Voronoi regions formed over the cortical manifold. As a result, in 

the generative model, the lead-field matrix has M = 84 × rgen. columns and N = 155 rows. 

The dipole activities xt t = 1
T  were generated using VAR(3) processes with T = 3000 time 

points (3 segments, 1000 samples each). With gik denoting the kth eigenmode of the ith 

cortical patch, the MEG observation at time t is generated as

yt = ∑
i = 1

84
∑

k = 1

rgen .
γikgik x(i − 1)rgen.  + k, t + nt, t = 1, 2, …, T , (27)

where γik are drawn uniformly in the interval [−1, 1] and nt is a zero mean Gaussian random 

vector with a diagonal covariance matrix R = σ2I. The value of σ2 is determined according 

to the desired SNR level which is set to 0 dB, unless otherwise stated.
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We considered varying numbers of dominant cortical patches, m = 2, 4, …, 20 that explain 

90% of the total signal power. The remaining 10% of the signal power was uniformly 

distributed as white noise among the rest of cortical patches. The true underlying GC 

network structure among the dominant cortical patches was assumed to have 20% sparsity, 

i.e., with m active cortical patches, there are ⌈0.2m(m − 1)⌉ true GC links where ⌈z⌉ denotes 

the smallest integer greater than or equal to z. For each m, we generated 10 different trials of 

the VAR processes, while randomly selecting cortical patches from the temporal and frontal 

lobes for each trial.

In all the four cases considered to assess the robustness of the algorithms, we used rest. = 2. 

To induce source model mismatch, we simply used rgen. = 10 (> rest.) eigenmodes for the 

data generation process. We also considered a relaxed link localization criterion in addition 

to the exact link localization criterion. The rationale behind the relaxed link localization 

criterion is as follows: Let (j ↦ i) be a true GC link, and let N(i) denote the 6 nearest 

cortical patches to cortical patch i over the ico-1 source space. If instead the link (j′ ↦ i′) 

is detected, we consider it a hit if i′ ∈ N(i) and j′ ∈ N(j). This way, we account for minor 

spatial localization errors. Note that in the exact link localization criterion, the link (j ↦ i) is 

considered a hit only if it is exactly detected by NLGC.

The NLGC settings were the same in all the aforementioned cases. For the two-stage 

methods, we used the standard MNE and dSPM methods as well as the Champagne 

algorithm implemented in MNE-python 0.21.0 using their default settings to localize the 

simulated MEG data into cortical time-courses. For each value of m, we ran NLGC and the 

three two-stage procedures and evaluated the performance of each method by calculating the 

hit rate (number of true detected links normalized by the total number of true links) and false 

alarm rate (number of spurious links normalized by the total number of non-GC links), both 

averaged over the 10 trials.

4.8.3. Parameters in the analysis of experimentally recorded MEG data—For 

the MEG data that were recorded during an auditory task, we analyzed the connectivity 

between ROIs in frontal, temporal, and parietal lobes (in both hemispheres) that broadly 

comprise the auditory cortex, the fronto-parietal network, the cingulo-opercular network, the 

ventral attention network, and the default mode network, which are known to fluctuate with 

task versus rest conditions (Fox et al., 2005) and with aging (Kuchinsky and Vaden, 2020). 

The included ROIs are selected from the 68 anatomical ROIs in the Desikan-Killiany atlas 

(Desikan et al., 2006):

• Frontal: ‘rostralmiddlefrontal’, ‘caudalmiddlefrontal’, ‘parsopercularis’, 

‘parstriangularis’.

• Temporal: ‘superiortemporal’, ‘middletemporal’, ‘transversetemporal’.

• Parietal: ‘inferiorparietal’, ‘posteriorcingulate’.

We then mapped the 84 cortical patches onto these 68 anatomical ROIs. To illustrate this 

procedure, consider the example given in Fig. 11. There are three representative cortical 

patches, denoted by dk, k = 1, 2, 3 with corresponding vertices in ico-1 (crosses) and ico-4 

(arrows) mesh are shown with the same color. The goal is to allocate the representative 
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cortical patches between the two ROIs marked by R1 and R2. For each representative cortical 

patch, we compare the ratio of the number of ico-4 vertices that lie within each ROI and use 

it as an association weight between the representative cortical patch and the ROI. For the 

given example in Fig. 11, the association weights to R1 and R2 for the three representative 

cortical patches d1, d2, d3 are given by (0, 1), (0.2, 0.8), and (0.67, 0.33), respectively. 

Using this many-to-one mapping, the obtained NLGC map Φ, which represents the GC links 

among the ico-1 cortical patches, can be translated into a connectivity map among the 68 

ROIs as follows. Let W ∈ ℝ84 × 68 denote the aforementioned association weight matrix, 

where [W]i,j is the association weight of the ith representative cortical patch to the jth ROI. 

The transformed connectivity map Φ is then defined as Φ = W⊤ΦW.

As an example of this transformation, consider the setting of Fig. 11 and suppose that NLGC 

only detects one GC link (d2 ↦ d2). Assuming that there are only 3 patches d1, d2, and d3 in 

the model, we have:

Φ =
0 0 0
0 1 0
0 0 0

, W =
0 1

0.2 0.8
0.67 0.33

, (28)

where the weight matrix W contains the association weights of the setting in Fig. 11. The 

transformed connectivity matrix is thus given by:

Φ = W⊤ΦW = 0.04 0.16
0.16 0.64 . (29)

We can then interpret Φ as follows: the captured link (d2 ↦ d2) is decomposed into several 

possible links between the 2 anatomical ROIs R1 and R2, namely (R1 ↦ R1) with a weight 

of 0.04, (R1 ↦ R2) with a weight of 0.16, (R2 ↦ R1) with a weight of 0.16, and (R2 ↦ R2) 

with a weight of 0.64. Notably, the elements of Φ add up to one, which guarantees that the 

link (d2 ↦ d2) is not double-counted under the many-to-one mapping from the patches to 

anatomical ROIs, and thus the total number of GC links is preserved.

The VAR model order and the number of eigenmodes are chosen as K = 2 and r = 4 using 

AIC criterion. The details of the model selection is described in Section 4.5.2. To obtain 

the directed networks between frontal, temporal, and parietal areas, for each of the Delta 

+ Theta and Beta frequency bands of interest, we encoded the inferred connectivity maps 

for each subject in each trial and condition using a 9-dimensional vector, where each entry 

represented the number of detected GC links corresponding to the connectivity types A ↦ B 
where A, B ∈ {Frontal, Temporal, Parietal}. For the inter- vs. intra-hemispheric refinement 

of our analysis, encoded the GC maps using a 36-dimensional vector in which the entries 

also distinguished between the connectivity across and within hemispheres, i.e., A(ℎ) ↦ 
B(ℎ) where ℎ ∈ {left hemisphere, right hemisphere} and A, B ∈ {Frontal, Temporal, 

Parietal}.

Another key parameter that may affect the performance of NLGC is the choice of the trial 

duration T. To investigate the effect of the trial duration on the performance of NLGC, we 
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repeated NLGC analysis using different values of T corresponding to the first 20, 25, …, 40 

s of the data. The results corresponding to the younger participants under the tone processing 

condition over the Delta + Theta band is shown are Fig. 12. As it can be observed from the 

figure, for small values of T the detected networks are quite sparse, as the algorithm does 

not have enough statistical power to detect all relevant links. It is worth noting that NLGC 

did not capture any GC links using only the first 10 s of the data. For ~30 s and higher, 

the captured GC network stabilizes and converges. Therefore, the choice of 40 s used in our 

analysis is taken conservatively to make sure that enough data points are available for GC 

link detection.

4.8.4. Statistical testing—We used generalized linear mixed effect models (GLMM) 

to analyze the effects of age, condition, connectivity type and hemisphere on the GC link 

counts for each frequency band. The statistical analysis was conducted via R version 4.0.5 

(R core Team 2021) using glmmTMB (Brooks et al., 2017) with zero-inflated generalized 

Poisson distributions to model the link counts. Based on a full model accounting for all 

the variables, the best fit model was selected by stepwise elimination, implemented in 

buildglmmTMB Voeten (2021) based on the likelihood ratio test (LRT). Model assumptions 

for dispersion, heteroskedasticity and zero-inflation were examined and verified using the 

DHARMa package (Hartig, 2021). The post-hoc differences among the levels of the effects 

were tested using pairwise comparisons based on estimated marginal means, with Holm 

corrections using the package emmeans Lenth (2021). The summary of the statistical models 

is given in Appendix C.
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Appendix A.: Parameter estimation

This appendix provides some technical details of the EM algorithm used in NLGC as well as 

the VAR fitting used by the two-stage approaches. In Appendix A.1, we present the filtering 

and smoothing procedures to obtain the conditional distribution p(x1:T|y1:T; θ), followed by 

the VAR fitting procedure used in two-stage approaches that are derived in Appendix A.2.

A1. Fixed interval smoothing

As mentioned earlier, under Gaussian assumptions on nt and wt, the conditional density of 

p(x1:T|y1:T; θ) is also Gaussian (Anderson and Moore, 2005). As a result, we just need to 

find the conditional mean and covariance matrix of the random vector x1:T given y1:T and θ.
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Using the Kalman filter, we can compute the filtered densities p(xt|y1:t; θ) for t = 1, 2, 

…, T. Using the filtered densities, the FIS procedure allows us to also find p (xt|y1:T; 

θ) for t = 1, 2, …, T. To this end, we first perform state augmentation to transform 

VAR(K) models to equivalent VAR(1) models. The augmented state vector is defined as 

xt = xt⊤, xt − 1
⊤ , …, xt − K + 1

⊤ ⊤ ∈ ℝKM. The VAR(K) model in Eq. (2) can thus be rewritten as 

a VAR(1) model given by:

xt = Axt − 1 + wt, t = 1, 2, …, T (A.1)

where

A ≔

A1 A2 ⋯ AK − 1 AK
IM 0 ⋯ 0 0
0 IM ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ IM 0

∈ ℝKM × KM, (A.2)

and wt ∈ ℝKM is the augmented state noise vector with covariance matrix 

Q ≔ diag σ1
2, …, σM

2 , 0, 0, …, 0 . Similarly, we can modify the measurement model in Eq. (1) 

as follows

yt = Cxt + nt, t = 1, 2, …, T (A.3)

with C = [C, 0, …, 0] ∈ ℝN × KM.

Let us define the conditional mean, covariance, and cross-variance of the 

sources as xt1 ∣ t2 ≔ E xt1 ∣ y1: t2 , Σt1 ∣ t2 ≔ Cov xt1 ∣ y1: t2 , and Pt1, t2 ∣ T ≔ Cov xt1, xt2 ∣ y1:T , 

respectively, for two given time-points 1 ≤ t1, t2 ≤ T. Assuming that matrices A, B, C, Q, R, 

and yt t = 1
T  are given, we can utilize the Kalman filter to obtain p xt ∣ y1: t N xt ∣ t, Σt ∣ t , t = 

1, …, T. Next, we use FIS to also find p xt ∣ y1:T N xt ∣ T , Σt ∣ T , t = 1, …, T.

According to Jong and Mackinnon (1988), for the conditional cross-covariance, we have the 

following recursive relationship:

Pt1, t2 ∣ T =
Pt2, t1 ∣ T

T , t1 > t2,
Σt1 ∣ T , t1 = t2,

St1Pt1 + 1, t2 ∣ T , t1 < t2,

(A.4)

where St1 = Σt1 ∣ t1A⊤Σt1 + 1 ∣ t1
−1 .

Finally, to extract the first- and second-order moments of the sources from the augmented 

model, we define xt ∣ T ≔ E xt ∣ y1:T  and Pt1, t2 ∣ T ≔ cov xt1, xt2 ∣ y1:T . From the definition 

of the augmented model, we have
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xt ∣ T = xt ∣ T 1:M, t = 1, …, T ,
Pt1, t2 ∣ T = Pt1, t2 ∣ T 1:M, 1:M, t1, t2 = 1, …, T . (A.5)

Algorithm 3 summarizes the overall procedure for finding the smoothed means and 

covariance matrices. A costly computational step in Algorithm 3 is the inversion of 

Σt + 1 ∣ t ∈ ℝKM × KM that needs to be performed in each iteration. In order to mitigate this 

source of computational complexity, we use the steady-state filtering approach of Pirondini 

et al. (2018). Let us define the steady-state covariance matrices Σ(+) and Σ(−) as follows

Σ( + ) ≔ limt ∞Σt ∣ t, Σ( − ) ≔ limt ∞Σt + 1 ∣ t . (A.6)

Replacing these steady-state values into the forward filter yields

Σ( − ) = AΣ( + )A⊤ + Q,
Σ( + ) = Σ( − ) − Σ( − )C⊤ CΣ( − )C⊤ + R

−1
CΣ( − ),

(A.7)

which is known as the discrete-time algebraic Riccati (DARE) equation with respect to 

Σ(+). The DARE equation can be solved efficiently using the MacFarlane–Potter–Fath eigen-

structure method (Malik et al., 2011). Solving the Riccati equation gives the steady-state 

covariance matrices and from there, we can compute the Kalman gain (Kt) and smoothing 

gain (St) independent of t:

Kt + 1 ≈ K ≔ Σ( − )C⊤ CΣ( − )C⊤ + R
−1

, ∀t,
St + 1 ≈ S ≔ Σ( + )A⊤ Σ( − ) − 1, ∀t .

(A.8)

As a result, only two matrix inversions are required at the beginning of the FIS, thereby 

providing significant computational savings.
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A2. VAR model fitting in the two-stage methods

In the two-stage approaches, the source estimates are first computed using a source 

localization procedure, followed by VAR model fitting. Let us denote the source estimates 

by xt t = 1
T . The VAR(K) model fitting can be performed in various ways, among which 

maximum likelihood estimation is a popular method (Haykin, 2013). To this end, one needs 

to compute θMLE ≔ argmax
θ

log p x1:T ; θ , where

log p x1:T ; θ = − T
2 log 2π ∏

i = 1

M
σi2 − ∑

i = 1

M 1
2σi2

xi − Xai 2
2, (A.9)

with xi ≔ xi, K + 1:T
⊤, and X ≔ x1, K:T − 1

⊤, …, x1, 1:T − K
⊤, … xM, 1:T − K

⊤ . Setting 

the derivative of the log-likelihood with respect to the parameters to zero gives the following 

closed-form solution

ai = X⊤X
−1

X⊤xi, σi
2 = 1

T xi − Xai 2
2, ∀i . (A.10)

Similar to NLGC, we can enforce sparsity by considering an ℓ1-norm regularized maximum 

likelihood problem. To this end, we need to find θSMLE ≔ argmax
θ

log p x1:T ; θ + R(λ, θ), 

where R(λ, θ) ≔ − ∑i = 1
M λi ai 1 is the ℓ1-norm penalty and λ ≔ λ1, …, λM

⊤ ∈ ℝM is the 

regularization vector. As mentioned in Section 4.4.1, this problem does not have a closed-

form solution. However, we can use iterative methods such as FASTA (Goldstein et al., 

2014) or Iteratively Re-weighted Least Squares (IRLS) (Ba et al., 2014) to obtain the 
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ℓ1-norm regularized estimates. The regularization parameters λ can be tuned using standard 

cross-validation techniques, as mentioned in Section 4.4.1 (Remark 3).

Appendix B.: Proof of Theorem 1

The proof of Theorem 1 follows that of the main theorem in Sheikhattar et al. (2018). First, 

we define the following notations for a given log-likelihood function ℓ(θ) with parameter θ:

ℓ̇ (θ) ≔ ∇θ ℓ (θ),
ℓ̈ (θ) ≔ ∇θ

2 ℓ (θ),
I(θ) ≔ E ℓ̇ (θ) ℓ̇ (θ)⊤ ,

(B.1)

where ℓ̇ ( . ) denotes the gradient vector of the likelihood with respect to θ, also referred to 

as the score statistics, ℓ̈ ( . ) denotes the Hessian matrix of the log-likelihood, and I(.) is 

the Fisher information matrix. We define the de-biased deviance difference between the true 

value of θ and its estimate θ  as (Sheikhattar et al., 2018):

D(θ; θ) ≔ 2( ℓ (θ) − ℓ (θ)) − ℓ̇ (θ)⊤ ℓ̈ (θ)−1 ℓ̇ (θ) . (B.2)

Starting from the definition of the log-likelihood function, we can decompose ℓ(θ) as

ℓ (θ) = ∑
t = 1

T
ℓt (θ) . (B.3)

where ℓt(θ) = log p(yt|y1:t−1; θ) for t = 2, …, T with the convention ℓ1(θ) = log p(y1; θ). 

Using the second-order Taylor expansion of ℓ(θ) around θ  along with the intermediate value 

theorem, we have

ℓ (θ) = ℓ (θ) + (θ − θ)⊤ ℓ
.

(θ) + 1
2(θ − θ)⊤ ℓ

..
(θ)(θ − θ), (B.4)

where θ ≔ βθ + (1 − β)θ for some β ∈ (0, 1) such that θ − θ 2 < θ − θ 2. Substituting ℓ(θ) 

from Eq. (B.4) into Eq. (B.2) gives

D(θ; θ) = − 2(θ − θ)⊤ ℓ
.

(θ) + (θ − θ)⊤ ℓ
..

(θ)(θ − θ) + ℓ
.

(θ)⊤Θ ℓ
.

(θ),

where Θ ≔ ℓ
..

(θ)−1. Using an auxiliary vector ϑ ≔ θ − Θ ℓ̇ (θ) and after rearrangement, the 

de-biased deviance can be rewritten as

D(θ; θ) = − (ϑ − θ)⊤ ℓ
..

(θ)(ϑ − θ) + Δ, (B.5)

with
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Δ = 2(θ − θ)⊤(I − ℓ
..

(θ)Θ) ℓ
.

(θ) + ℓ
.

(θ)⊤Θ(I − ℓ
..

(θ)Θ) ℓ
.
i (θ) + (θ − θ)⊤

( ℓ
..

(θ) − ℓ
..
(θ))(θ − θ) .

(B.6)

Employing the consistency of the estimation, i.e., θ p θ and the Lipschitz property of the 

second-order derivative of the Gaussian log-likelihood function, one can show that the term 

Δ asymptotically goes to zero as T → ∞ with a rate of θ − θ 3 = o(ℙ) 1/T 3/2  (van de Geer 

et al., 2014; Sheikhattar et al., 2018).

Let us now consider the link (j ↦ i) ∈ I. In what follows, we prove the first and second 

assertions of the theorem regarding the null and alternative hypotheses separately.

B1. Null hypothesis

The Taylor expansion of the score statistics can be expressed as

ℓ̇ (θ) = ℓ̇ (θ) + ℓ
..

(θ)(θ − θ), (B.7)

where θ = βθ + (1 − β)θ for some β ∈ (0, 1). Combining the Taylor expansion in Eq. (B.7) 

along with the definition ϑ = θ − Θ ℓ̇ (θ), we have

ϑ − θ = − Θ ℓ̇ (θ) + Δ, (B.8)

with Δ ≔ (I − Θ ℓ
..

(θ))(θ − θ). Following the same argument for Δ in Eq. (B.6), one can show 

that Δ = oℙ(1/T ) is asymptotically negligible as T → ∞ (van de Geer et al., 2014). In order 

to obtain the asymptotics of the score statistic and the Hessian matrix of the log-likelihood 

function ℓ(θ), the conventional law of large numbers (LLN) and the central limit theorem 

(CLT) can be used, since the process realizations in the log-likelihood decomposition of Eq. 

(B.3) (yt|y1:t−1, ∀t > 1) are independent across time. This is due to the fact that the noise 

processes wt and nt in our generative model are i.i.d. Gaussian noise sequences and are 

independent of each other (Anderson and Moore, 2005).

Using the LLN for the Hessian matrix of ℓ(.) yields

1
T ℓ

..
(θ) ∣ H(j i), 0

p E ℓ
..

t (θ) = − I(θ) . (B.9)

Moreover, the CLT for the score statistics gives

1
T ℓ

.
(θ) ∣ H(j i), 0

d N(0, I(θ)) . (B.10)

Using Slutsky’s theorem along with Eqs. (B.7), (B.9), and (B.10), asymptotic normality of ϑ 
under the null hypothesis can be obtained as
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T(ϑ − θ) ∣ H(j i), 0
d N 0, I(θ)−1 , (B.11)

as T → ∞. Following the definition of the deviance in Eq. (B.5) along with Eq. (B.9), we 

have

D(θ; θ) ∣ H(j i), 0
d χ2(M), (B.12)

as T → ∞, where M is the dimension of the parameter θ. Following 

the results in Wald (1943) and (Wilks, 1938) along with the fact that 

D(j i)
db = D θ f; θf − D θ r; θr ∣ H(j i), 0 , it can be shown that the debiased deviance 

difference converges to a central χ2 distribution with Md degrees of freedom

D(j i)
db ∣ H(j i), 0

d χ2 Md , (B.13)

where Md = Mf − Mr is the difference between dimensions of the two nested models. This 

proves the first assertion of Theorem 1. ■

Fig. B1. 
Histograms of the debiased deviance differences corresponding to non-GC links for younger 

and older representative subjects in tone and rest conditions from Section 2.4. The 

histograms closely match the prediction of Theorem 1.
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B2. Alternative hypothesis

Following the development in Davidson and Lever (1970), we define a non-decreasing 

sequence Tn n = 1
∞  such that limn→∞ Tn = T. Instead of defining a fixed alternative against 

the null hypothesis H(j↦i),0 : θ = (θ0, 0), we instead define a sequence of local alternatives

H(j i), n
Tn

n = 1

∞
= H(j i), 1

Tn :θ Tn = θ0*, θ1
Tn

n = 1

∞
, (B.14)

where θ1
Tn = 1

Tn
 δ is an unspecified sub-vector excluded from the reduced model with 

dimension Md = Mf − Mr and δ is a constant vector. According to Davidson and Lever 

(1970), we test for the departure of the sequence of local alternatives from the null 

hypothesis at the true parameter θ* = θ0*, θ1*  with θ1* = limn ∞θ1
Tn .

For notational convenience, we hereafter drop the subscript n in Tn, noting that 

the equations involving limits of T denote sequential limits. Defining the de-biased 

vector ϑ T ≔ θ T − Θ* ℓ̇ θ T
 corresponding to the local alternative H(j i), 1

T  with 

Θ* ≔ ℓ
..

θ* −1 and utilizing the following expansions

ℓ
.

θ T = ℓ
.

θ* + ℓ
..

θ* θ T − θ* + oℙ(1/T ),

ℓ
.

θ T = ℓ
.

θ* + ℓ
..

θ* θ T − θ* + oℙ(1/T ),

we have

ϑ T − θ* = θ T − θ* − Θ* ℓ
.

θ T + oℙ(1/T ) . (B.16)

Using LLN and CLT similar to the case of the null hypothesis, we conclude

1
T ℓ

..
θ T ∣ H(j i), 1

T p − I θ* ,
1
T ℓ

.
θ T ∣ H(j i), 1

T d N 0, I θ* ,
(B.17)

and the asymptotic normality of ϑ follows as

T ϑ T − θ* ∣ H(j i), 1
T d N δ, I θ* −1 , (B.18)

where δ ≔ 0⊤, δ⊤ ⊤
 is the asymptotic mean. It is noteworthy that the non-zero asymptotic 

mean is obtained from the Pitman drift rate where the sequence of true local parameters θ{T} 

tends to its limit θ* at a rate θ T − θ* = O(1/ T) (Davidson and MacKinnon, 1987).

Next, using an extension of Cochran’s theorem to non-central chi-square distribution (Tan, 

1977) and using the asymptotic normality of ϑ{T} in Eq. (B.18), it follows that under the 
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sequence of local alternatives H(j i), 1
T , the de-biased deviance difference of the two nested 

full and reduced models converges to a non-central chi-squared distribution as T → ∞:

D(j i)
db ∣ H(j i), 1

T d χ2 Md, v(j i) , (B.19)

where Md is the difference between the dimensions of the two nested models and ν(j↦i) 

presents the non-centrality parameter. To identify the non-centrality parameter, let us 

consider the block decomposition of (θ*) corresponding to θ0* and θ1* as

I θ* =
I0, 0 θ* I0, 1 θ*
I1, 0 θ* I1, 1 θ* . (B.20)

Then, v(j i) ≔ δ⊤I1, 1 θ* δ with I1, 1 θ* ≔ I1, 1 θ* − I1, 0 θ* I0, 0
−1 θ* I0, 1 θ* . This 

proves the second assertion of the theorem. ■

Finally, to test whether the theoretical prediction of Theorem 1 regarding the null 

distribution is valid for our analysis of experimental MEG data, we chose 4 representative 

trials (one older and one younger participant in each condition) and plotted the histogram 

of the debiased deviance differences of all the tested GC links that were not significant. 

According to Theorem 1, the debiased deviance differences of such non-GC links should 

follow a chi-square distribution with degree of freedom 2 × 42 = 32 (r = 4 eigenmodes 

and VAR(2) model). Fig. B.1 shows the corresponding chi-square density and the empirical 

histograms. As it can be seen, the empirical histograms closely match the theoretical chi-

square density.

Appendix C.: Mixed-effects model

Full models for the mixed effect models included interactions among the fixed effects of 

age, condition, connectivity type and hemisphere, and random slopes and intercepts for 

within-subject factors of condition, connectivity type and hemisphere per subject. Summary 

tables are given in Table C.1.

Table C1

Statistical model summary table corresponding to Section 2.4.

Parameter Delta + Theta Band Beta Band

Count model: (Intercept) 3.06(0.07)*** 2.24(0.10)***

Count model: connectivityF->P −0.84(0.11)*** −0.10(0.14)

Count model: connectivityF->T −1.29(0.13)*** 0.29(0.12)*

Count model: connectivityP->F 0.13(0.08) 0.96(0.11)***

Count model: connectivityP->P −0.79(0.12)*** 1.03(0.11)***

Count model: connectivityP->T −0.84(0.11)*** 0.86(0.11)***

Count model: connectivityT->F −0.29(0.09)** 0.66(0.12)***

Count model: connectivityT->P −1.10(0.12)*** −0.02(0.13)
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Parameter Delta + Theta Band Beta Band

Count model: connectivityT->T −0.97(0.12)*** −0.13(0.14)

Count model: AgeOlder −0.16(0.11) −0.05(0.16)

Count model: Conditiontone −0.93(0.12)*** 0.96(0.11)***

Count model: hemi2inter −0.01(0.04)

Count model: connectivityF->P:AgeOlder −0.18(0.18) −0.10(0.23)

Count model: connectivityF->T:AgeOlder 0.25(0.21) −0.30(0.22)

Count model: connectivityP->F:AgeOlder 0.05(0.13) −0.07(0.19)

Count model: connectivityP->P:AgeOlder 0.26(0.17) −0.29(0.19)

Count model: connectivityP->T:AgeOlder −0.46(0.21)* 0.24(0.18)

Count model: connectivityT->F:AgeOlder 0.12(0.15) −0.42(0.20)*

Count model: connectivityT->P:AgeOlder 0.26(0.19) −0.25(0.23)

Count model: connectivityT->T:AgeOlder 0.14(0.18) −0.03(0.23)

Count model: connectivityF->P:Conditiontone 1.86(0.16)*** −0.99(0.19)***

Count model: connectivityF->T:Conditiontone 2.61(0.17)*** −0.88(0.16)***

Count model: connectivityP->F:Conditiontone −0.07(0.16) −1.31(0.15)***

Count model: connectivityP->P:Conditiontone 1.39(0.17)*** −1.65(0.15)***

Count model: connectivityP->T:Conditiontone 1.47(0.16)*** −1.60(0.16)***

Count model: connectivityT->F:Conditiontone −0.07(0.17) −1.07(0.15)***

Count model: connectivityT->P:Conditiontone 1.13(0.18)*** −0.82(0.17)***

Count model: connectivityT->T:Conditiontone 0.91(0.19)*** −0.82(0.18)***

Count model: AgeOlder:Conditiontone −0.50(0.22)* −0.57(0.19)**

Count model: Conditiontone:hemi2inter −0.32(0.06)***

Count model: connectivityF->P:AgeOlder:Conditiontone 0.51(0.29) 1.57(0.29)***

Count model: connectivityF->T:AgeOlder:Conditiontone 0.30(0.30) 0.46(0.33)

Count model: connectivityP->F:AgeOlder:Conditiontone 0.72(0.28)* 0.22(0.26)

Count model: connectivityP->P:AgeOlder:Conditiontone 0.64(0.28)* 0.90(0.26)***

Count model: connectivityP->T:AgeOlder:Conditiontone 1.20(0.31)*** 0.43(0.26)

Count model: connectivityT->F:AgeOlder:Conditiontone 1.02(0.29)*** 0.77(0.26)**

Count model: connectivityT->P:AgeOlder:Conditiontone 0.40(0.32) 0.26(0.32)

Count model: connectivityT->T:AgeOlder:Conditiontone 0.67(0.32)* 1.03(0.29)***

Zero model: (Intercept) −3.49(0.22)*** −3.31(0.18)***

AIC 10122.64 10803.40

Log Likelihood −5020.32 −5362.70

Num. obs. 1584 1584

Num. groups: MEG_ID 22 22

Var (count model): MEG_ID (Intercept) 0.01 0.01

***
p < 0.001;

**
p < 0.01;

*
p < 0.05.
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Fig. 1. 
A schematic depiction of the proposed NLGC inference. For cortical sources that form 

an underlying network, our contribution is to directly infer this network, using the 

framework of Granger, from the MEG measurements. NLGC is composed of network 

parameter estimation (blue block) and statistical inference (green blocks) modules. Unlike 

the conventional two-stage methods, NLGC extracts the GC links without an intermediate 

source localization step.
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Fig. 2. 
An illustrative simulated example. A. The underlying true GC network between the active 

sources indexed by 1, 2, …, 8 (explaining 90% of the power of the 84 sources). The 

remaining 76 sources are silent and are modeled as independent white noises accounting 

for the remaining 10% of the source power. B. The ground truth and estimated GC maps 

using NLGC and MNE (with and without accounting for sparsity). Only a subset of sources 

indexed by 1, 2, …, 15 are shown for visual convenience. NLGC fully captures the true 

links with only a few false detection; on the other hand, the two-stage approaches using 

MNE, capture around half of the true links, but also detect numerous spurious links. While 

enforcing sparsity mildly mitigates the false alarm performance of the two-stage approach, 

it is unable to resolve it. C. Estimated activity time-courses of the patches with index 1, 3, 

6, and 10 based on full models and the reduced models corresponding to the GC link (1 ↦ 
3) and non-GC links (1 ↦ 6) and (1 ↦ 10) as examples. As expected, since the GC link 

(1 ↦ 3) exists, removing the 1st patch contribution from the VAR model of the 3rd patch 

dramatically changes the predicted activity of patch 3 (second line). However, this is not the 

case for the other two examples, since the links (1 ↦ 6) and (1 ↦ 10) do not exist (third 

and fourth lines).
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Fig. 3. 
Empirical validation of Theorem 1. A. Theoretical and empirical distributions of the de-

biased deviance differences corresponding to the GC link (7 ↦ 1) and non-GC link (7 

↦ 4) from the setting of Fig. 2. The empirical distributions closely match the theoretical 

predictions of Theorem 1. B. Histogram of the de-biased deviance differences of all possible 

links between the first 15 sources for three different realizations of the VAR processes with 

the same parameters and for two significance levels α = 0.01 and 0.0001. The de-biased 

deviance differences show a clear delineation of the significant GC links (to the right of the 

dashed vertical lines) and insignificant ones (to the left of the dashed vertical lines), while 

exhibiting robustness to the choice of the significance level.
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Fig. 4. 
Comparison of NLGC with two-stage procedures using a realistic simulation setting. A. 
Example of the ground truth GC network, and estimates obtained by NLGC and two-stage 

approaches based on MNE, dSPM, and Champagne overlaid on dorsal and lateral brain 

plots, with m = 10 active patches. NLGC captures nearly all the existing GC links with no 

spurious detection, whereas the other three methods suffer from significant false detection. 

B. ROC curves (hit rate vs. false alarm) corresponding to NLGC, and two-stage approaches 

based on MNE, dSPM, and Champagne for exact/relaxed link localization and in the 

presence/absence of model mismatch. Each point corresponds to simulating data based 

on m active patches averaged over 10 different realization with randomly assigned source 

locations, for m = 2, 4, …, 20. NLGC provides equal or better hit rate, while consistently 

maintaining low false alarm rate. C. Evaluating the effect of SNR for an example setting of 

m = 12 active patches in presence/absence of model mismatch. While the hit rate of NLGC 

is comparable or better than the other algorithms, it consistently maintains low false alarm 

rates across a wide range of SNR settings.
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Fig. 5. 
NLGC analysis of experimentally recorded MEG data in the Delta + Theta band (0.1–8 Hz). 

A. Extracted GC links between frontal and temporal areas overlaid on dorsal brain plots for 

younger (top row) and older (bottom row) participants. The first two columns correspond 

to the group averages and the last two correspond to two representative participants, for the 

two task conditions of tone processing (first and third columns) and resting state (second 

and fourth columns). For the group average plots, only J-statistic values greater than 0.75 

are shown for visual convenience. There is a notable increase of top-down links from frontal 

to temporal areas during tone processing (red arrows, first and third columns) as compared 
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to the resting state in which bottom-up links from temporal to frontal areas dominate (green 

arrows, second and fourth columns). B. Normalized J-statistics, averaged over subjects 

within each age group, between frontal, temporal, and parietal areas for tone processing vs. 

resting state conditions and younger vs. older participants. The dashed ovals indicate the 

normalized average number of links shown in panel A. There are notable changes across 

task conditions, including dominantly top-down frontal to temporal/parietal connections 

during tone processing, in contrast to dominantly bottom-up temporal/parietal to frontal 

connections during resting state. C. Statistical testing results showing several significant 

differences across conditions. No significant age difference is detected in the Delta + Theta 

band (*** p < 0.001; ** p < 0.01; * p < 0.05).
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Fig. 6. 
Inter- vs. intra-hemispheric refinement of the analysis of experimentally recorded MEG 

data in the Delta + Theta band (0.1–8 Hz). A. Normalized J-statistics, averaged over 

all subject, between frontal, temporal, and parietal areas for inter-hemispheric and intra-

hemispheric connectivity types. Given that no significant age difference was detected, the 

two age groups are pooled together. While the inter- vs. intra-hemispheric contributions to 

the detect networks are highly similar under resting state, there notable differences under 

tone processing, including higher number of intra-hemispheric connections from frontal to 

parietal and from parietal to temporal areas. C. Statistical testing results showing several 

significant differences across conditions and inter- vs. intra-hemispheric contributions (*** p 
< 0.001; ** p < 0.01; * p < 0.05).
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Fig. 7. 
NLGC analysis of experimentally recorded MEG data in the Beta band (13–25 Hz). A. 
Extracted GC links between frontal and parietal areas overlaid on dorsal brain plots for 

younger (top row) and older (bottom row) participants. The first two columns correspond 

to the group averages and the last two correspond to two representative participants, for the 

two task conditions of tone processing (first and third columns) and resting state (second 

and fourth columns). For the group average plots, only J-statistic values greater than 0.75 

are shown for visual convenience. There is a notable increase of frontal to parietal links 

under tone processing for older adults (blue arrows, first and third columns, bottom row), 

Soleimani et al. Page 57

Neuroimage. Author manuscript; available in PMC 2022 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas in all the other cases parietal to frontal links (green arrows) are dominant. B. 
Normalized J-statistics, averaged over subjects within each age group, between frontal, 

temporal, and parietal areas for tone processing vs. resting state conditions and younger 

vs. older participants. The dashed ovals indicate the normalized average number of links 

shown in panel A. There are notable changes across both task conditions and age groups, 

including the higher involvement of parietal areas during resting state, increase of frontal to 

frontal connections for younger participants and top-down links from frontal to parietal areas 

for older participants, during tone processing. C. Statistical testing results showing several 

significant differences across task conditions and age groups (*** p < 0.001; ** p < 0.01; * 

p < 0.05).
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Fig. 8. 
Block diagram of the EM algorithm for sparse VAR parameter estimation.
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Fig. 9. 
An illustration of low-rank approximation to the lead-field matrix using eigenmode 

decomposition using r = 2 eigenmodes. The contribution of the 7 dipoles to 10 MEG sensors 

is originally captured by a 10 × 7 sub-matrix of the lead-field matrix (left), whereas using 

the eigenmode decomposition, it can be approximated by two 10-dimensional eigenmodes 

(right), resulting in a 10 × 2 effect sub-matrix.
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Fig. 10. 
Model selection curves. A. Histogram of the ratio of the explained variance to total variance 

for all ROIs using r = 2, 3, 4 eigenmodes for head models of three representative subjects. 

With r = 4 eigenmodes, at least 85% of the variance can be explained for all ROIs. B. AIC 

curve for r = 4 egienmodes, suggesting a choice of K = 2 for the VAR model order for the 

three representative subjects.
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Fig. 11. 
Illustration of anatomical ROI to cortical patch assignment. Three ico-1 vertices shown as 

d1 (red ×), d2 (green ×) and d3 (blue ×) as well as the corresponding ico-4 vertices (colored 

arrows) in the respective patches are shown with the same color coding. Two anatomical 

ROIs R1 (dark grey) and R2 (light gray) are also highlighted. Using the proposed association 

scheme, each cortical patch is assigned a pair of weights indicating its relative overlap with 

the two ROIs. Here, the association weights of d1, d2 and d3 are given by (0,1), (0.2, 0.8) and 

(0.67, 0.33), respectively.
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Fig. 12. 
Evaluating the effect of trial duration on the NLGC performance. The group average GC 

links from frontal to temporal areas for younger participants during tone processing are 

overlaid on the dorsal brain plot in the top tow. The corresponding directed graphs indicating 

the normalized J-statistics of the links between frontal, temporal, and parietal areas are 

shown in the bottom row. Columns correspond to different choices of T corresponding to 

the first 20, 25, 30, 35 and 40 s of the data. While for smaller values of T, several links are 

missing, by increasing T beyond 30 s the detected networks stabilize and converge.
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