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Flash glucose monitoring – an alternative to traditional self-monitoring of blood glucose (SMBG) – prevents hypoglycaemic events 
without impacting glycated haemoglobin (HbA1c).21 Given the potential benefits, this study assessed the cost-effectiveness of 
using flash monitoring versus SMBG alone in patients with type 1 diabetes (T1D) receiving intensive insulin treatment in Sweden. 

Methods: This study used the IQVIA CORE Diabetes Model (IQVIA CDM, v9.0) to simulate the impact of flash monitoring versus SMBG over 
50 years from the Swedish societal perspective. Trial data informed cohort data, intervention effects, and resource utilisation; literature 
and Tandvårds-Läkemedelförmånsverket (TLV) sources informed utilities and costs. Scenario analyses explored the effect of key base case 
assumptions. Results: In base case analysis, direct medical costs for flash monitor use were SEK1,222,333 versus SEK989,051 for SMBG use. 
Flash monitoring led to 0.80 additional quality-adjusted life years (QALYs; 13.26 versus 12.46 SMBG) for an incremental cost effectiveness ratio 
(ICER) of SEK291,130/QALY. ICERs for all scenarios remained under SEK400,000/QALY. Conclusion: Hypoglycaemia and health utility benefits 
due to flash glucose monitoring may translate into economic value compared to SMBG. With robust results across scenario analyses, flash 
monitoring may be considered cost-effective in a Swedish population of T1D intensive insulin users.
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The prevalence of diabetes continues to increase globally,1 and is projected to remain of 

importance to Sweden’s public health,2 given the higher risk people with diabetes face regarding 

disabling and/or life-threatening health problems and mortality.1,3 A recent estimate puts national 

prevalence at 7.0% (type 1 diabetes [T1D] and type 2 diabetes [T2D]); approximately 10% have 

T1D.1,4 Sweden is currently ranked number two internationally for incidence of T1D among 

children at 43.2 cases/100,000 in the population.1

Sweden faces a growing burden in diabetes treatment and management. Although this figure 

is for T1D and T2D combined, Sweden spends nearly US$8,000 per patient annually.1 A recent 

projection indicates that 940,000 patients will be affected by the year 2050.2 In addition to the 

direct costs of managing diabetes, healthcare costs are incurred in the management of short-

term hypoglycaemic events and longer-term macro- and microvascular complications associated 

with poor glycaemic control.5,6 Indirect costs associated with lost productivity likewise impact the 

overall cost burden.1,7

All patients with T1D require daily insulin,1 yet while insulin usage helps reduce glycated 

haemoglobin (HbA1c), it is associated with complications such as increased hypoglycaemic 

events.8 Frequent glucose monitoring allows patients to manage their blood glucose levels,1,9 

with self-monitoring of blood glucose (SMBG) as the current standard of care. However, many 

people fail to adhere to recommended testing.10–13 Impediments to SMBG adherence include 

discomfort associated with obtaining a blood sample, inconvenience of carrying testing kits, 

perceived social stigma, needle phobia and difficulty interpreting results.14–18 Additionally, SMBG 

provides limited data on glucose levels and variability, as it measures a single time point.19 This 

can create difficulties for clinicians to recommend changes to therapy. Although continuous 

monitoring may provide additional information, it is expensive and therefore not universally 

reimbursed and utilised.18,20

Flash glucose monitoring is an alternative to traditional blood glucose monitoring. In this approach, 

a sensor worn by the patient permits continuous monitoring of interstitial glucose. A reader can 

then be passed over the sensor at any time to obtain a current reading, trend arrow and data from 

the past 8 hours. FreeStyle Libre (Abbott Diabetes Care, Witney, UK), a flash glucose monitoring 

system, was recently tested in intensively insulin-treated T1D population in the IMPACT trial.



Original Research  Diabetes

74 EUROPEAN ENDOCRINOLOGY

The IMPACT trial21 was a 6-month, multicentre randomised controlled 

trial of the flash monitoring system versus SMBG in adults with well-

controlled T1D (HbA1c ≤7.5% [58 mmol/mol]) using multiple daily 

injection insulin therapy or continuous subcutaneous insulin infusion and 

testing glucose levels at least 10 times/week. The study found a 25.8% 

reduction in favour of flash monitoring in number of hypoglycaemic 

events (<70 mg/dL [3.9 mmol/L]) without changing HbA1c.21 Given 

potential clinical benefits of intervention, this study sought to assess 

the value of using flash monitoring instead of SMBG alone through 

cost-effectiveness evaluation in patients with T1D receiving intensive 

insulin treatment in Sweden.

Research design and methods
The present study was performed using the IQVIA Core Diabetes Model 

v9.0 (IQVIA CDM).

IQVIA Core Diabetes Model
The IQVIA CDM is a non-product specific internet application to assess 

long-term health outcomes and economic consequences of interventions 

for T1D or T2D. The underlying mathematical engine consists of a series 

of diabetes-complication sub-modules that combine Markov techniques 

with Monte Carlo simulation and run simultaneously to capture 

comorbidities and outcomes associated with treatments of interest. 

These submodules are permitted to interact and each patient profile is 

updated at the end of each 1-year cycle to account for events across all 

submodules. The model captures differences in life expectancy, quality 

adjusted life years (QALYs), costs, cumulative incidences of complications 

due to adverse event-related intervention effects as well as HbA1c levels 

and other physiological parameters that affect risks of major diabetes 

complications. The model has been published previously in detail and has 

been extensively validated against clinical and epidemiological studies.22,23

In the model, changes in physiological parameters (e.g. HbA1c, blood 

pressure, weight, lipid parameters) are entered and translated into 

long-term microvascular and macrovascular complications based on 

specific risk equations derived from landmark studies like the Diabetes 

Control and Complications Trial and its extension Epidemiology of 

Diabetes Interventions and Complications in T1D.24–32 Most important 

for this analysis, however, is the hypoglycaemia module that considers 

three severity levels as well as diurnal versus nocturnal status. Severe 

hypoglycaemic events may require third-party medical assistance 

(SHE2s) or third-party non-medical assistance (SHE1s). The model also 

considers non-severe hypoglycaemic events (NSHEs).

Analyses took a Swedish payer perspective, evaluating costs and effects 

over a 50-year horizon, intended to capture a lifetime (e.g. <1% of the 

full cohort will remain alive) from the age at model entry (approximately 

43.7 years). Swedish non-specific mortality information derived from 

WHO was included.33 Costs and effects were discounted at 3%. All 

analyses were run with 1,000 patients for 1,000 iterations.

Model inputs
Baseline characteristics
The model cohort was designed to represent the IMPACT trial population 

(Table 1).24,34–40 Some cohort characteristics were unavailable from 

IMPACT; published sources were used to supplement IMPACT cohort 

data with T1D population estimates.

Intervention effects
Intervention effects for T1D were based on data from IMPACT and captured 

in Table 2.21,36,41,42 No significant differences were seen in the evolution of 

HbA1c between the two treatment arms in the IMPACT study, so an HbA1c 

increase of 0.12% (standard deviation [SD] 0.45%); 1.32 mmol/mol [SD 4.95]) 

compared to baseline was included for both flash monitoring and SMBG.

NSHEs were populated using data from the IMPACT trial.36 The NSHE 

rate for the SMBG treatment arm was based on baseline symptomatic 

hypoglycaemia event data as a proxy for events below 70 mg/dL.43 

The NSHE rate for the flash monitor arm was calculated by adjusting 

the baseline rate by percentage difference in events between SMBG 

and flash glucose monitoring over the study period (25.5% decrease in 

daytime and 33.2% decrease in nocturnal events).

Table 1: Cohort characteristics

Default value Source

Demographics

Start age (years, mean [SD]) 43.7 (13.9) Abbotts Diabetes Care, 
201636

Duration of diabetes (years, 
mean [SD])

22.0 (12.0) Hayes et al., 201337

Male (%) 56.9% Hayes et al., 201337

Baseline risk factors

HbA1c (%, mean [SD]) 6.78 (0.58) Hayes et al., 201337

Systolic blood pressure (mmHg, mean 
[SD])

126.0 (15.0) Hayes et al., 201337

Total cholesterol (mg/dL, mean [SD]) 193.0 (38.0) Hayes et al., 201337

HDL (mg/dL, mean [SD]) 72.0 (20.0) Hayes et al., 201337

LDL (mg/dL, mean [SD]) 106.0 (33.0) Hayes et al., 201337

Triglycerides (mg/dL, mean [SD]) 76.0 (45.0) Hayes et al., 201337

BMI (mean [SD]) 25.0 (3.6) Hayes et al., 201337

eGFR (mean [SD]) 91.7 (20.1) Nathan et al., 201424

Haemoglobin (mean, [SD]) 14.5 (0.0) Hayes et al., 201337

WBC (mean [SD]) 6.8 (0.0) Paterson et al., 200738

Heart rate (bpm, mean [SD]) 68.0 (11.0) Paterson et al., 200738

Proportion smoker (%) 14.0% Hayes et al., 201337

Cigarettes/day 1 Hayes et al., 201337

Alcohol consumption (oz/week) 1.58 Hayes et al., 201337

Racial characteristics (%)

White 99.60% Hayes et al., 201337

Black 0.40% Hayes et al., 201337

Hispanic 0.00% Hayes et al., 201337

Native American 0.00% Hayes et al., 201337

Asian/Pacific Islander 0.00% Hayes et al., 201337

Utilities

Baseline 0.7850 Clarke et al., 200234

SHE2 (daytime) -0.055 Evans et al., 201339

SHE2 (nocturnal) -0.057 Evans et al., 201339

SHE1 -0.0183 Marrett et al., 201040

NSHE (calculated using flash 
monitoring event rate)

-0.002 Lauridsen et al., 201435

NSHE (calculated using SMBG event 
rate)

-0.00163 Lauridsen et al., 201435

 
BMI = body mass index; bpm = beats per minute; eGFR = estimated glomerular filtration 
rate; HbA1c = glycated haemoglobin; HDL = high-density lipoprotein; LDL = low-density 
lipoprotein; NSHE = non-severe hypoglycaemic event; SD = standard deviation; 
SHE1 = severe hypoglycaemic event that may require third-party non-medical 
assistance; SHE2 = severe hypoglycaemic event that maybe require third-party medical 
assistance; SMBG = self-monitored blood glucose; WBC = white blood cells.
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Few SHEs were observed in IMPACT as the trial was not designed 

to assess severe events. Therefore, data from the UK Hypoglycaemia 

Study Group41 was used to inform the total rate of severe events 

(320/100 patient-years [PYs]); these were used as a proxy to align 

with ‘significant’ hypoglycaemic events as noted in current guidance 

(<55mg/dL).43 The proportion of severe events that are SHE2s 

was derived from the literature (11.8%),27 resulting in 282.24 SHE1 

events/100 PYs and 37.76 SHE2 events/100 PYs. These values were 

assumed equivalent across both treatment arms.

Intervention-related resource utilisation
Intervention-related resource use was based on reported values from 

IMPACT. Patients using flash monitoring required 182.5 test strips/year, 

267.4 lancets/year and 45.8 units of insulin/day. It was also assumed 

that flash monitoring patients require 26 sensors/year and an extra 

physician visit in year 1. Patients with SMBG used 1,971 test strips/year, 

657.6 lancets/year and 38.4 units of insulin/day.

Unit costs
Table 344–48 shows key cost inputs for the analyses, including intervention-

related unit costs, total intervention costs, and costs for key acute 

events; Appendix 1 shows the full list of costs used in the analyses. 

Intervention-specific consumables reflect lowest-cost items available 

from Tandvårds-Läkemedelförmånsverket (TLV).44 Costs were inflated as 

needed to 2016 using the consumer price index for Sweden from the 

Organization for Economic Co-operation and Development.49

Utilities
Utilities and disutilities (Table 1;24,34–40 Appendix 2) are derived from 

published literature, with the baseline diabetes utility34 and complication-

related values obtained from T2D populations,50 as it is not expected 

that quality of life for complications would differ based on diabetes 

type. For hypoglycaemia, literature shows that patients experience 

relatively high disutilities for initial non-severe events; yet, the disutility 

per event diminishes as frequency increases.35 Therefore, the IQVIA CDM 

automated incorporation of the Lauridsen approach to estimate NSHE 

disutility was utilised. A treatment-related utility benefit of 0.030 was 

applied to the flash monitor arm based on a recent time trade off (TTO) 

study.27 We explored this concept further with sensitivity analyses.

Analyses
The base case analysis compared flash monitor use against SMBG 

use, reflecting the intervention effects summarised in Table 2.21,36,41,42 

In addition to the base case, scenario analyses (summarised in Table 4) 

explored the impact of key model assumptions. Note that due to the 

comprehensive nature of the IQVIA CDM, parameters are too numerous 

to perform systematic univariate sensitivity analyses; however, scenarios 

tested key inputs, assumptions, and alternate data sources to provide 

evidence-based clarity on sensitivity to each of these components.

Two scenarios test the impact of incorporating resource utilisation 

observed in the trials. In these scenarios, trial-based use of resources 

such as ambulances, emergency room visits and hospitalisation 

were implemented. Based on the hypothesis that some of these 

differences may have been driven by hypoglycaemic events, assigned 

Table 2: Treatment effects

Flash 

monitoring

SMBG Source

Physiological parameters

Change from baseline HbA1c 

(mean [SD])

0.12% (0.45%) 0.12% 

(0.45%)

Bolinder et al., 

201621

Hypoglycaemic events – T1D

NSHEs (/100 PYs) 4897.10 6760.00 Abbott Diabetes 

Care, 201636

SHE1 events (/100 PYs) 282.24 282.24 UK Hypoglycaemia 

Study Group, 200741

SHE2 events (/100 PYs) 37.76 37.76 UK Hypoglycaemia 

Study Group, 200741

Proportion of events that are 

nocturnal

25.00% 27.00% Abbott Diabetes 

Care, 201636

Other

Utility increment related to 

flash monitoring (mean [95% 

CI])

0.03 (0.023, 

0.038)

0.00 Matza et al.42

CI = confidence interval; HbA1c = glycated haemoglobin; NSHE = non-severe 
hypoglycaemic event; PY = patient-year; SD = standard deviation; SHE1 = severe 
hypoglycaemic event that may require third-party non-medical assistance; 
SHE2 = severe hypoglycaemic event that maybe require third-party medical assistance; 
SMBG = self-monitored blood glucose; T1D = type 1 diabetes.

Table 3: Key cost inputs

Default value 

(SEK)

Source

Intervention: Unit Costs

Sensor 526.78 Abbott Diabetes Care

Reader (reimbursed every 2 

years)

599.00 Abbott Diabetes Care

Flash monitoring test strip 3.22 Abbott Diabetes Care

Test strip 2.34 Tandvårds-Och 

Läkemedelsförmånsverket, 

201744

Lancet 0.30 Tandvårds-Och 

Läkemedelsförmånsverket, 

201744

Insulin (per unit) 0.36 Tandvårds-Och 

Läkemedelsförmånsverket, 

201744

Physician visit 1,426.59 Skåne, Södra 

regionvårdnämnden, 201445

T1D Intervention costs

Annual flash monitoring cost 

(year 1)

22,142.7 Calculated

Annual flash monitoring cost 

(year 2+)

20,716.1 Calculated

Annual SMBG cost (year 1+) 9,891.46 Calculated

Direct costs for key acute events

SHE2 5,036.14 Jonsson et al., 200646 

Anderson et al., 200247 

The Diabetes Control and 

Complications Trial Research 

Group, 199148 

SHE1 0.00 Assumption

NSHE 0.00 Assumption

NSHE = non-severe hypoglycaemic event; SHE1 = severe hypoglycaemic event that 
may require third-party non-medical assistance; SHE2 = severe hypoglycaemic event 
that maybe require third-party medical assistance; SMBG = self-monitored blood 
glucose; T1D = type 1 diabetes.
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hypoglycaemic event costs were removed from the model. In the first 

scenario, these resources were assumed to apply in year 1 only (as in 

the trial), and the second analysis explored continued differences over 

the model horizon.

Another scenario explored the potential impact on cost-effectiveness 

due to real-world intervention effect, rather than trial-based values. 

Specifically, cross-sectional data from over 50,000 flash monitoring 

readers shows an average of 16 scans/day,51 which can be compared 

to a population average for patients with T1D of 5–6 tests/day.52 Miller et 

al. have shown an association in patients with T1D between number of 

daily blood glucose tests and HbA1c levels,52 which is replicated in flash 

monitor user data. Therefore, exploratory analysis, based on assuming 

that high scan frequency leads to HbA1c improvements, evaluated 

the potential impact of a higher scan rate on cost-effectiveness. Data 

revealed that patients who scan 16 times/day versus those who only 

scan 5–6 times/day have 0.58% lower HbA1c. For the purposes of this 

exploration, this value was applied as a potential decrease in HbA1c due 

to flash monitoring, compared to 0% decrease for SMBG.

Additional scenarios explored the impact of varying the flash monitoring 

utility benefit (95% confidence interval [CI] 0.023, 0.038), an alternate set 

Table 4: Summary of modelled scenarios and results

Analysis  Description Flash monitoring SMBG Incremental ICER/LY 

(SEK)

ICER/QALY 

(SEK)

Costs (SEK) LYs QALYs Costs (SEK) LYs QALYs Costs (SEK) LYs QALYs

Base 

case

Flash monitoring versus SMBG, 

using default inputs and 

assumptions

1,222,333 21.10 13.26 989,051 21.10 12.46 233,283 0.000 0.801 NA 291,130

SA 1 Alternate SMBG resource use 

assumption, year 1: for SMBG, 

incorporate extra observed resource 

use from the clinical trial. Remove the 

cost of severe hypoglycaemic events to 

avoid double counting 

1,181,555 21.10 13.26 948,907 21.10 12.46 232,648 0.000 0.801 NA 290,338

SA 2 Alternate SMBG resource use 

assumption, all years: for SMBG, 

incorporate extra observed resource 

use from the clinical trial. Remove the 

cost of severe hypoglycaemic events to 

avoid double counting 

1,141,246 21.10 13.26 962,283 21.10 12.46 178,963 0.000 0.801 NA 273,644

SA 3 Real world scan frequency with 

flash monitoring (-0.58% impact on 

HbA1c, versus 0% impact for SMBG)

1,112,006 21.39 13.60 970,024 21.16 12.53 141,982 0.229 1.071 620,009 132,557

SA 4 Reduction in SHEs: 55% reduction 

in SHEs based on sensor data for 

<40mg/dL 

1,195,837 21.10 14.12 989,051 21.10 12.46 206,786 0.000 1.660 NA 124,705

SA5 Alternate NSHE data source: UK 

Hypo Study Group (2,900/100 patient-

years for SMBG; 2,100/100 patient-years 

for flash monitoring)

1,222,333 21.10 13.58 989,051 21.10 12.82 233,283 0.000 0.760 NA 305,784

SA 6 Flash monitoring treatment utility: 

vary treatment-related utility benefit 

of flash monitoring using the 95% CI 

(lower value 0.023)

1,222,333 21.10 13.11 989,051 21.10 12.46 233,283 0.000 0.65 NA 358,180

  Flash monitoring treatment utility: 

vary treatment-related utility benefit 

of flash monitoring using the 95% CI 

(upper value 0.038)

1,222,333 21.10 13.44 989,051 21.10 12.46 233,283 0.000 0.977 NA 239,830

SA 7 Discount rate: investigate the impact 

of 0% discounting in lieu of base 

case 3%

2,476,061 36.02 22.29 2,075,401 36.02 20.91 400,661 0.000 1.38 NA 290,439

Discount rate: investigate the 

impact of 5% discounting in lieu of 

base case 3%

832,167 15.88 10.06 656,947 15.88 9.46 175,220 0.000 0.60 NA 291,644

SA 8
Time horizon: explore shorter time 

horizon, 5 years

151,249 4.56 2.97 100,443 4.56 2.80 50,806 0.000 0.17 NA 297,460

Time horizon: explore shorter time 

horizon, 10 years

301,242 8.43 5.49 208,352 8.43 5.49 92,890 0.000 0.32 NA 293,770

CI = confidence interval; HbA1c = glycated haemoglobin; ICER = incremental cost effectiveness ratio; LY = life year; NSHE = non-severe hypoglycaemic event; QALY = quality-
adjusted life years; SA = sensitivity analysis; SEK = Swedish kroner; SHE = severe hypoglycaemic event; SMBG = self-monitored blood glucose. 
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of data (UK Hypo Study Group)41 to inform NSHE rates (2,900/100 PYs for 

SBMG; 2,100/100 PYs for flash monitoring when applying the IMPACT-

based reduction due to flash monitoring), 50% decrease in SHEs based 

on observed decrease in sensor measurements under 40 mg/dL, and 

varied discount rates and time horizons.

Results
Disaggregated results, including total costs and QALYs per strategy, are 

reported in Table 4. In the base case analysis, total direct medical costs 

for flash monitor use were SEK1,222,333 compared to SEK989,051 for 

SMBG use in T1D. These costs aligned with an equivalent life expectancy 

of 21.1 life-years (LYs) due to non-differential survival effect, but with a 

total of 0.80 additional QALYs for flash monitor patients (13.26 versus 

12.46 SMBG). The corresponding incremental cost-effectiveness ratio 

(ICER) is SEK291,130/QALY. Patients with T1D with flash monitoring 

experience 687 fewer NSHEs than those with SMBG; the cost per NSHE 

averted was SEK339.56.

Key scenarios evaluated to test the impact of assumptions or input 

values are reported in Table 4 and Figure 1. The most favourable 

ICERs – more than 50% lower than base case – reflect improved 

intervention effects. In the first case, reducing severe hypoglycaemia 

by 55% according to sensor-based reductions in 40 mg/dL events 

led to an ICER ofSEK124,705/QALY. Potential HbA1c improvement 

led to another similarly low ICER (SEK132,557/QALY); this ICER was 

based on exploring the potential relationship between high daily 

scan frequency found to occur in real-world use of the flash monitor 

and HbA1c level. Conversely, the highest ICER was associated with 

the lower 95% CI for health state utility benefit due to flash monitor 

use, which impacts quality-adjusted survival. Although the model is 

thus shown to be most sensitive to intervention effects on HbA1c, 

severe hypoglycaemia and monitoring-related health utility, all ICERs 

remained under SEK400,000/QALY.

Discussion
This is the first cost-effectiveness analysis to evaluate a flash 

monitoring system. Results demonstrate that use of flash monitoring 

is associated with a modest impact on diabetes-related costs and can 

be considered cost-effective compared to current standard of care 

(SMBG) in intensive insulin users with T1D. In clinical trials, use of the 

system has been shown to reduce the number of hypoglycaemic 

events without raising HbA1c across populations and may increase 

awareness of a patient’s glucose profile, potentially improving 

management of their condition. Although no survival difference is 

expected based on default intervention effects, meaningful QALY 

differences accrue over a lifetime horizon. These differences are due 

to offsetting hypoglycaemic events, and to a greater extent, to nearly 

eliminating the finger-pricking associated with SMBG, which has been 

shown to translate to a health utility improvement.51

When exploring additional scenarios, results are generally robust to 

evidence-based alternate assumptions. Model results may be sensitive 

to additional clinical benefits (e.g. HbA1c improvement or reduction in 

SHEs) as well as decrease in health utility associated with flash monitoring 

(which impacts QALY outcomes). However, ICERs remaining under 

willingness-to-pay ranges for Sweden for all scenarios. Although Sweden 

does not publish an explicit cost-effectiveness threshold, interventions 

have been accepted with an average ICER of €36,000/QALY (which is 

approximately SEK400,000/QALY) and publications note an ‘informal 

threshold’ of SEK500,000.53,54 Treatments for more severe conditions have 

been considered acceptable up to the much higher amount of €90,000/

QALY (SEK827,000 /QALY).54,55

A number of limitations for this study must be acknowledged. The 

analysis assumes that NSHEs are not associated with the occurrence 

of other more severe events like severe hypoglycaemia, myocardial 

infarction and mortality. However, in the Predictable Results and 

Base case analysis

Trial-based SMBG resource use assump�on, year 1

Trial-based SMBG resource use assump�on, all years

HbA1c benefit associated with real-world flash monitoring scan frequency

55% reduc�on in SHEs (<40 mg/dL)

Lower 95% CI flash monitoring treatment u�lity (0.023)

Upper 95% CI flash monitoring treatment u�lity (0.038)

0% discount rate (costs and effects)

5% discount rate (costs and effects)

5-year �me horizon

10-year �me horizon

Figure 1: Scenario analyses: ICER (SEK/QALY)

CI = confidence interval; HbA1c = glycated haemoglobin; ICER = incremental cost effectiveness ratio; QALY = quality-adjusted life years; SEK = Swedish kroner; SHE = severe 
hypoglycaemic event; SMBG = self monitoring of blood glucose.
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