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The aim of control strategies for artificial pancreas systems is to calculate the insulin doses
required by a subject with type 1 diabetes to regulate blood glucose levels by reducing
hyperglycemia and avoiding the induction of hypoglycemia. Several control formulations
developed for this end involve a safety constraint given by the insulin on board (IOB)
estimation. This constraint has the purpose of reducing hypoglycemic episodes caused by
insulin stacking. However, intrapatient variability constantly changes the patient’s response
to insulin, and thus, an adaptive method is required to restrict the control action according
to the current situation of the subject. In this work, the control action computed by an
impulsive model predictive controller is modulated with a safety layer to satisfy an adaptive
IOB constraint. This constraint is established with two main steps. First, upper and lower
IOB bounds are generated with an interval model that accounts for parameter uncertainty,
and thus, define the possible system responses. Second, the constraint is selected
according to the current value of glycemia, an estimation of the plant-model mismatch,
and their corresponding first and second time derivatives to anticipate the changes of both
glucose levels and physiological variations. With this strategy satisfactory results were
obtained in an adult cohort where random circadian variability and sensor noise were
considered. A 92% time in normoglycemia was obtained, representing an increase of time
in range compared to previous MPC strategies, and a reduction of time in hypoglycemia to
0% was achieved without dangerously increasing the time in hyperglycemia.

Keywords: artificial pancreas, insulin on board, interval model, model predictive control, safety layer, type 1 diabetes
1 INTRODUCTION

Managing type 1 diabetes (T1D) has proven to be challenging. People with T1D need exogenous
insulin to regulate their blood glucose (BG) levels. The therapy required involves a risk of severe
hypoglycemia, with all its consequences, if the insulin dose is too high. For this reason, the
therapeutic goal is to minimize the number of hypoglycemic episodes and maximize time in the
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healthy glycemic range, known as normoglycemia zone.
Accordingly, automated insulin delivery, also known as the
artificial pancreas (AP), has emerged as the best solution to
automatically modulate insulin and remove the threat posed by
hypoglycemia (1, 2).

The control strategies more extended in the literature for AP
systems are based on model predictive control (MPC) (1),
proportional-integral-derivative (PID) (3), and fuzzy logic (4).
There are several studies evaluating AP performance using
different control strategies that have shown efficiency in clinical
and free-living-condition trials (5–7). However, AP systems with
dedicated safety schemes and/or adaptive laws are preferred over
traditional control systems to reduce the risk of hypoglycemia in
both fully closed-loop or hybrid developments (8–10).

Different adaptive control formulations based on MPC have
been developed either to update the parameters of glycemia-
insulin-carbohydrate models or to directly tune the control
parameters. Strategies as those developed in (11, 12) and
summarized in the review made by (13) consist of identifying the
prediction model at every fixed period or when a condition is
triggered like the detection of variations in glucose behavior. On the
other hand, in (9, 14, 15), adaptive MPC strategies were formulated
to change the penalization matrices of the MPC according to the
current situation of the glycemia. Other works like (16–18) update
other parameters of the strategy as the basal insulin, insulin-
carbohydrate ratio, or the set-point, based on historical data and
risk indexes to improve the controller performance.

In addition, the amount of active insulin that remains in the
body, also known as insulin on board (IOB), has been used in
several closed-loop safety schemes to prevent the insulin overdose,
especially for the postprandial period (19–21). Different IOB
models have been proposed to be part of open- and closed-loop
controls with hypoglycemic prevention strategies (8, 22). In any
case, an accurate value of the patient’s duration of insulin action
(DIA) is required for a good performance.

Insulin pumps used in AP developments work with DIA
values ranged from 2 to 8 hours in order to adjust their
prevention strategies, as well as for the bolus calculators in
hybrid systems (22, 23). A dynamic IOB constraint with
estimated insulin action decay curves was first incorporated
into the MPC problem by (20) and introduced in the safety
module of the strategy proposed in (24). This idea was extended
in (25, 26) where adaptive IOB rules were defined as a function of
BG levels and the insulin delivery history was also considered to
set the IOB boundary. Also (27), proposed an IOB decaying
curve to set the input reference in the MPC cost function. The
direct estimation of the IOB from a minimal physiological model
was used in (28) where a control law was derived to avoid
hypoglycemia. Additionally, a sliding-mode safety layer that runs
outside the main control strategy was developed in (8) where the
control action is modulated according to a surface computed as
the difference between the estimation of the IOB and an IOB
boundary. This strategy has been included in different works. In
(29), the safety layer was coupled with a PID. In (30), the layer
was coupled with a Linear Quadratic Gaussian (LQG) controller,
and the IOB boundary was set as a piece-wise constant limit that
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changes according to a meal classification. In (6), the authors
proposed a dynamic IOB boundary that depended on a factor of
the open-loop IOB profile. In (10), it was shown that a single IOB
boundary does not fit every situation of BG fluctuations as
physiological variations in the subject change insulin
requirements. Thus, a preliminary safety layer with adaptive
IOB boundary was introduced.

Indeed, it has been shown that the range of insulin decay
curves encompasses a variety of sources of uncertainty affecting
the patient’s DIA, modifying the pharmacokinetics of the rapid-
acting insulin analogues used in AP systems, whose value is
usually between 3 and 5 hours (31). Common sources of
uncertainty affecting how long it takes to absorb insulin, and
thus an accurate estimate of IOB, are the patient’s insulin
sensitivity, exercise, or heat.

Studies have revealed that insulin absorption can vary 10-30% in
an individual and 20-50% between individuals (22). This can lead to
overdoses of insulin when a shorter DIA value than actual is used in
safety schemes based on the IOB, triggering episodes of
hypoglycemia since the algorithm assumes there is less IOB than
there actually is. In addition, it has been proved that selecting an
inappropriate DIA setting is a common deficiency among clinicians
and insulin pump users due to widespread misunderstanding of its
concept (23).

Uncertainty associated to DIA setting, and therefore to the
IOB estimation, has been addressed previously for AP designs
through a method known as modal interval analysis (MIA) (32),
where it is possible to consider a parametric uncertainty present
in a dynamic model to be mathematically rewritten as an interval
model (33). MIA allows to obtain a feasible simulation of the
interval model providing an envelope of all the possible
responses according to the percentage of parametric
uncertainty established, avoiding under- and overestimation.

So far, only one AP design proposal implementing a safety
scheme with MIA has been made (32) which was coupled with a
PID-type controller. Although an IOB interval estimate was
used, it was not implemented to generate the IOB boundaries
required in the safety layer, and instead, the boundaries were
chosen to be constant and to act like additional tuning
parameters. Thus, there is no adaptation in this approach. In
fact, when there are physiological variations towards
hyperglycemia, the upper IOB limit (which is constant) could
not be enough to allow the required insulin doses, and then
prolonged hyperglycemia occurs.

This paper addresses the limitation found in previous works
(referred to as the lack of consideration of the uncertainty in the
IOB boundary selection) to obtain a control strategy that
includes an adaptive safety module. To that end, the
impulsive offset-free zone MPC (iZMPC) developed in (34)
was used as the main controller, and concepts from the safety
layer (6), and the uncertainty captured with the interval model
in (32) were considered to build a new scheme. Now, the main
features of the overall strategy are: (i) the safety layer uses the
IOB interval model to generate upper and lower IOB
boundaries that act as envelopes of the possible IOB
trajectories; (ii) an auxiliary signal is generated to estimate
February 2022 | Volume 13 | Article 796521

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Villa-Tamayo et al. Interval-Layer MPC for Artificial Pancreas
the plant-model mismatch mainly given by physiological
variations; (iii) with the information of the current glycemia,
the estimated mismatch, and their corresponding trends and
second derivatives, adaptive rules are developed to select the
IOB boundary that is more appropriate for the current situation
of the subject; (iv) with the selected IOB boundary at each time
step, a gain is computed to modulate the control action of the
MPC when required, and thus, to switch between aggressive
and conservative control actions. To the best of the authors’
knowledge, this is the first time that the estimation of the plant-
model mismatch, its derivatives, and the derivatives of the
glycemia are used to adapt the safety layer.

A demanding assessment scenario with circadian variations
in insulin sensitivity, the hepatic autoregulation, and endogenous
glucose production, as well as comparisons with previous MPC
designs, were considered in order to highlight the main
improvements achieved. With the strategy in here formulated,
a 92.7% of time in normoglycemia was obtained in comparison
to the 83.8% resulting with the baseline iZMPC strategy and the
82.8% obtained with the preliminary strategy with safety layer
developed in eViLeoGarRiv2021. In addition, the time in
hypoglycemia was reduced to 0% in comparison to the 2.1%
and 1.5% obtained with the previous strategies.
2 METHODS

2.1 Glucose-Insulin-Carbohydrates
System Dynamics
2.1.1 Impulsive System Dynamics for
Glucose Control
The impulsive scheme for glucose control is selected to emulate
the natural treatment of T1D. This because insulin doses are
administered as small, spaced pulses rather than a continuous or
a discrete input. Here, the impulsive discretization of a minimal
physiological model based on five compartments to represent
glucose dynamics, insulin absorption and action, and meal
absorption dynamics is used. It is a linear model that satisfy
global structural identifiability (35). The state-space
representation of the model is given by
Frontiers in Endocrinology | www.frontiersin.org 3
x(k + 1) = Ax(k) + Buu(k) + Brr(k) + E,

y(k) = Cx(k),
(1)

where matrices are related with their continuous counterpart
considering a fixed sampling time T as A = eAcT , Bu = eAcTBuc,

Br =
Z T

0
eAcsdsBrc, E = eAcTEc, with:

Ac =

−p0 −p1 0 p2 0

0 −1=p4 1=p4 0 0

0 0 −1=p4 0 0

0 0 0 −1=p5 1=p5

0 0 0 0 −1=p5

2
666666664

3
777777775
,

Buc = ½ 0 0 1 0 0 � 0, Brc = 0 0 0 0 1
p5

h i0
,

(2)

Ec = [p3 0 0 0 0]', and C = [1 0 0 0 0]. All model variables and
parameters have physiological interpretation as seen in Table 1.
The model parameters have been identified for the 10-adult
virtual subjects available in the commercial version of the UVA/
Padova simulator (36). The identification process is detailed in
(37), and the resulting parameters, personalized for each subject,
can be seen in Table 2. In addition, an analysis of the properties
of the impulse model can be found in the Appendix.

2.1.2 Insulin-On-Board Model
An IOB model allows to estimate how much insulin is still to act
in the body, which depends on the pharmacokinetics of the
insulin analogue used and the patient’s glucose-insulin
dynamics. To perform an IOB estimation, it is necessary to
know the corresponding duration of insulin action (DIA)
of the patient. In practice, there is no agreed-on standard
for DIA. Many patients and clinicians enter inappropriately
short DIA times into insulin pumps even though practical
recommendations have been suggested for a proper choice (23).

In this work, the IOB model is obtained from subsystem (x2,
x3) of model (1) using the IOB mathematical definition:

IOB(k) = x2(k) + x3(k), (3)
TABLE 1 | Description of variables and parameters of the model.

Variable Description Units

x1 Glycemia mg/dl
x2, x3 Insulin in the blood and subcutaneous space compartments, respectively U
x4, x5 Delivery rates of carbohydrates in the stomach and gut, respectively g/min
u Exogenous insulin U/min
r Carbohydrates intake g/min

Parameter Description Units
p0 Hepatic autoregulation. 1/min
p1 Insulin sensitivity rate. mg/dl/U/min
p2 Carbohydrate bioavailability. mg/dl/g
p3 Endogenous glucose production at zero-insulin level. mg/dl/min
p4 Time-to-maximum of effective insulin concentration. min
p5 Time-to-maximum appearance rate of glucose. min
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representing the amount of insulin in the subcutaneous and
plasma compartments from previous boluses. This model is
consistent with IOB models where the corresponding DIA
time is implemented through KDIA, a parameter that has been
characterized to emulate typical DIA times (8). In model (3),
KDIA ≡1/p4, and its value has been previously identified for each
virtual subject considered here, see Table 2.

The Euler discrete time approximation of x2 and x3 of model
(3), is given by

x3(k + 1) = Tu(k) − TKDIAx3(k) + x3(k),

x2(k + 1) = TKDIA(x3(k) − x2(k)) + x2(k),
(4)

where u(k) is the insulin dose. This representation is used to
obtain the IOB interval model considered in this work.

2.1.3 Insulin-On-Board Interval Model
One of the main challenges in AP control is the intra-patient
variability that has to be taken into account. In different works as
(38, 39), a variability of 30% has been observed and used to
evaluate control performance. This uncertainty is represented
here by an interval model in which the parameters, inputs, and/
or initial states take interval values (33).

The simulation of a model with particular real values for the
parameters, starting from any initial state, yields trajectories of the
output variables across time. When the quantities involved in
the simulation take values inside the intervals of variation, the set
of trajectories determines a plane band bounded by an envelope, as
depicted in Figure 1. At each time step of the simulation, the
envelope, i.e., the possible maximum and minimum values of the
variable, must be determined. This is a range computation problem.
The function whose range must be determined is defined by the
interval model of the system, and the parameter space is determined
by the interval values of the parameters, the input, and the initial
state. The simulation of an interval model provides intervals
(ranges) that can be estimates of the envelopes. These envelopes
can be obtained by numerical integration, qualitative reasoning,
fuzzy logic, etc. A way to compute these estimates is by interval
arithmetic. However, the exact range of a function is not always
computable. Therefore, the results are often very over bounded, and
if tighter results are needed, high computational efforts are required.

To consider uncertainty in the IOB model (3), a modal
interval analysis (MIA) is applied here to get an interval
Frontiers in Endocrinology | www.frontiersin.org 4
representation. MIA provides a strong theoretical background
for dealing with problems involving uncertainty and logical
quantifiers. In contrast to techniques such as Monte Carlo
Simulation (MCS), MIA computational time is independent of
the number of uncertain parameter. Thus, worst-case analysis
can be performed efficiently, which is extremely important in the
context of diabetes. A comparison between MCS and MIA was
presented in (33). For further information on MIA, the reader
can consult the appendix presented in (40).

MIA allows to obtain the whole range of possible responses of
the model with uncertainty but avoiding, or minimizing under
some conditions, the overestimation of interval computations.
Overestimation is one of the main problems that arises from the
existence of multiple instances of the same variable (multi-
incident variable) with uncertainty. In model (4), uncertainty is
considered through the patient’s KDIA parameter, implementing
it as KDIAi

= ½0:7KDIA, 1:3KDIA�.
To achieve an optimal computation, the IOB model (4) was

initially analyzed to try to obtain its optimal form (the expression
is rewritten in such a way that the exact range is obtained) to
avoid multi-incident interval variables. This was possible for x3
but not for x2 of model (4), and therefore the theorem of coercion
to optimality from MIA was also applied. To do this, the
monotonic behaviour of x2 was studied with respect to the
uncertain variable KDIA, leading to create a new interval state
to obtain an optimal rational computation for the IOB model (3)
as follows:
FIGURE 1 | Envelopes obtained from the interval IOB model: Upper and
lower bounds that define the possible system responses (shaded area).
TABLE 2 | Model parameters identified from the 10-adult cohort of the UVA/Padova simulator.

Subject p0 p1 p2 p3 p4 p5

Adult 1 0.0034 0.7896 2.3080 1.3270 56.001 21.840
Adult 2 0.0063 1.3544 2.4100 2.0110 40.004 14.624
Adult 3 0.0010 0.4841 1.7370 0.7570 52.202 21.516
Adult 4 0.0027 0.9806 2.9610 1.2520 59.502 25.429
Adult 5 0.0022 1.0654 3.8710 1.0360 46.782 28.638
Adult 6 0.0081 0.7140 4.1730 2.1810 52.503 23.511
Adult 7 0.0018 1.6722 4.3790 1.9010 47.505 22.023
Adult 8 0.0028 0.7683 4.3700 1.0570 50.007 26.854
Adult 9 0.0058 1.7445 4.4590 2.0730 50.505 24.461
Adult 10 0.0032 0.6849 2.5100 1.0740 50.503 23.317
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x3i (k + 1) = x3i (k)(1 − DtKDIAi
) + Dtu(k),

x23i (k + 1) = x23i (k)(1 − DtKDIAi
) + Dtu(k) + DtDual(KDIAi

)x3i (k)

x2i (k + 1) = x23i (k + 1) − Dual(x3i (k + 1)),

IOBi(k) = x3i (k) + x2i (k),

(5)

where the time step Dt, used for the interval model simulation,
is defined so that constraint Dt < 1=x23i holds according to the
theorem of coercion to optimality from MIA. x3i and x2i are
interval representations of x3 and x2 in (1), respectively, and x23i
is the new interval state created to avoid under- and
overestimation of the model. Note that, x3i ,x2i ,x23i , and IOBi
are 2-dimension vectors containing lower and upper values. The
dual operator is defined as Dual ([a1, a2]) = [a2, a1], according
to MIA.

The output of this interval model corresponds to an upper
(IOBiu) and a lower (IOBil) bound, that delimit an IOB envelope,
see Figure 1. The envelope formed by these bounds is
determined by the set of IOB trajectories involved in the
simulation from all the possible responses taking values inside
the interval of variation of the parameters with uncertainty (33).
It is noteworthy that the output of the model is not simply the
nominal response of the IOB in (3)by a factor of ±30%, in which
case the envelope would be the same width all the time. On the
contrary, as seen in Figure fig:IOBint, the width of the envelope,
representing the range of possible instances, is also dynamic.

2.2 Control Strategy With Interval Safety
Layer
2.2.1 Impulsive Model Predictive Control
In T1D treatment, the control objective is to maintain the
system’s state within a safety zone XTar selected inside the
desired range 70 mg/dl ≤ BG ≤ 140mg/dl. Bearing the above in
mind, the MPC formulation to be used here is the impulsive
offset-free zone MPC (denoted as iZMPC for simplicity). This
formulation was developed in (34) and used in T1D context in
(15, 41). The optimization problem solved by the iZMPC at every
time step k is

min
u,xa ,ua

VN (x,X
Tar
s ,UTar

s ; u, xa, ua)

s : t : x (0) = x̂ (k), d(0) = d̂ (k),

x(j + 1) = Ax(j) + Buu(j) + Brr(j) + Bdd(j) + E,

d(j + 1) = d(j),

u(j) ∈ U , x (j) ∈ X,

x(Hp) = xa,

ya = Cxa + Cdd(j),

xa = Axa + Buua + Bdd + E :

(6)

with cost function stated as

V(x,XTar
s ,UTar

s ; u, ua, xa ) = o
Hp−1

j=0
∥ x(j) − xa ∥

2
Q + o

Hu−1

j=0
∥ u(j) − ua ∥

2
R

+ P distXTar
s
(xa) + distUTar

s
(ua)

� �
:

(7)

From this iZMPC problem, it i s to remark the
following features:
Frontiers in Endocrinology | www.frontiersin.org 5
1. The decision variables are u, which represents the control
policy, and (xa,ua) ϵ (Xs, Us), which are artificial equilibrium
variables to be reached in the prediction horizon Hp, where
the sets Xs, Us denote the equilibrium sets for system (1). The
control horizon is denoted by Hu.

2. The last term of the cost function ensures that the final point
reached in the prediction remains within the target zone,
where distXTar

s
(xa) denotes the distance of xa to set XTar

s , and

XTar
s , UTar

s are generalized equilibrium sets for the target (42).
3. The state is augmented with a disturbance d(k + 1) = d(k) to

handle a constant plant-model mismatch and avoid offset
error. Thus, the model is extended as x(k + 1)=Ax(k)+Bu u(k)
+Brr(k)+Bdd(k) + E, y(k) = Cx(k) + Cdd(k), with Bd = eAcTBdc

and Bdc selected such that the augmented model be
observable. In (34) it was shown that Bdc = [100 0 0 0 0]'
satisfies this condition. Then, the augmented state is
estimated with a state estimator to capture both the system

state x̂ (k) and the mismatch d̂ (k) and it is used to initialize
the optimization problem. In this work, the Kalman Filter is
implemented.

4. In the MPC problem (6), the prediction model and
equilibrium constraints are corrected to consider the
disturbance effect, i.e., to consider d.

5. In this work, the control strategy has been designed as hybrid,
in which meal announcement is provided to the controller by
using the term Brr(·) in the prediction model. In addition,
sensing and actuation delays are not considered in the design
of the control strategy, thus, the strategy should be able to
compensate for these additional challenges despite the lack of
information about it.

6. To solve the optimization problem at each time step, the
quadprog solver of Matlab was used with the interior-point-
convex algorithm and with tolerances TolPGG= 1×10-5,
Tolcon=1×10-4, TolX= 1×10-4, and Tolfun=1×10-4 (see (43)
for more details on the selection of the solver for quadratic
programming in artificial pancreas context).
2.2.2 Interval Safety Layer
The main idea of the interval safety layer is to modulate the
control action computed by the iZMPC to avoid hypoglycemia
events. To this end, a gain g ϵ [0 1] is calculated, such that the
final command to the insulin pump uf (k)=g(k)u(k) satisfies an
imposed constraint on the IOB. As shown in Figure 2, the layer
consists of 6 blocks, from which the IOB is estimated and
compared to a boundary selected to be safe in the current
situation of the system.

First, the interval IOB is performed to obtain the upper
(IOBiu) and lower bound (IOBil). In addition, a middle band
(IOBim) is obtained as the middle point between IOBiu and IOBil.
These values are obtained with model (4) and the input uOL
corresponding to the open-loop insulin dose that should be
administered to the subject, i.e., uOL = ubasal for fasting
periods, and uOL = CHO/CR when a meal is announced. CHO
corresponds to the carbohydrates ingested, and CR is the insulin-
to-CHO ratio (35).
February 2022 | Volume 13 | Article 796521
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Next, from the three values calculated (IOBiu, IOBil and IOBim),
the IOB constraint IOB has to be selected. From previous works as
(15), it was shown that the sign of the estimated plant-model
mismatch provides information about the direction of the
physiological variations occurring in the patient. For instance, a
negative d̂ suggests variations inducing hypoglycemia, and a
positive d̂ suggests variations towards hyperglycemia. To
prevent measurement noise from affecting the information
provided by d and to smooth the effect of food intake ton d, a
moving horizon filter is used as d*(k) = Sk

k−Np
d(k)=Np, where Np

is the postprandial window usually between 1-2 hours (15). Here,
the idea is to select the IOB constraint of the safety layer by using
the information of the plant-model mismatch, but in addition, by
including the rate of change of d* (or its first time derivative, md),
and its acceleration (or second time derivative, ad), as well as
information of the BG value, and its first m and second time
derivatives a. All these values are obtained from the signal
generator block that receives information from the augmented
state estimator and produces the derivatives by numerically
computation using backward differentiation. The information
obtained from these six signals helps to anticipate the variations
and glucose behavior, and thus, to take action accordingly. The
following rules have been posed to commute between aggressive
and conservative control actions:
Frontiers in Endocrinology | www.frontiersin.org 6
2.2.2.1 Case 1
The BG value is in the zone of imminent hyperglycemia, and it is
detected that its value and rate of change are increasing (140 ≤
BG ≤ 180, m ≥ 0, and a ≥ 0):

• If in addition the sign of the estimated mismatch has an
increasing tendency (md ≥ 0), then a risk of variations
inducing hyperglycemia are considered too. Therefore, an
aggressive response is established by allowing the delivery of
the complete control action u computed by the iZMPC, i.e.
the IOB constraint is released (uf = u).

• If the variations are not increasing, then a less aggressive
action is posed, but still allowing high doses of insulin. In this
case, the IOB constraint is set as IOB = IOBiu.

2.2.2.2 Case 2
The BG value is not in the zone of imminent hyperglycemia,
thus, the control action changes according to the information
provided by the estimated mismatch:

• If either d ≤ –ϵ, or md < 0 and d ≤ ϵ, then a risk of variations
inducing hypoglycemia is detected, and thus, the lower band
is established as the IOB constraint to obtain conservative
control actions (IOB = IOBil).
FIGURE 2 | Block diagram of the iZMPC strategy with the interval layer coupling.
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• If d >–ϵ and md ≥0 and ad ≥0, then a risk of variations towards
hyperglycemia is detected, thus, aggressive actions are allowed
by changing the IOB constraint to the upper band IOB =
IOBiu.

• In any other cases, in which it is detected that the variations
are near to a change of direction, then softer control actions
than rule 2.2 are allowed by using the middle band IOB =
IOBim

A better visualization of the IOB constraint selection, using
the cases described, can be seen in Figure 3. It is to clarify that
the value of ϵ is set to consider the moments in which the
physiological variations reach the higher andlower values. For
the results here presented, a population value of ϵ = 0.005 was set
from previous analysis on the behavior of d among the virtual
subjects. Nevertheless, this parameter could be personalized by
running the estimator in an open-loop treatment period to
evaluate the magnitude of d. This implies that for the
application of this control strategy, the collection of data prior
to the activation of the control is a requirement. This practice is
common in clinical studies, where data of each patient is
collected prior to the clinical study to identify the prediction
model, tune the estimator and controller matrices, and other
parameters specific of the strategy (7).

After selecting the IOB constraint, the IOB of the subject is
estimated using model (3) and a shorter sampling time Dt than
the one of the insulin pump T. At each time Dt, the IOB is
compared to the selected constraint, constructing the function
s (Dt) = IOB − IOB(Dt). According to the sign of s, the switching
signal w is determined:

w(Dt) =
1 if s (Dt) ≥ 0

0 otherwise
:

(
(8)
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Given the high frequency commutation between the values of
w, a chattering effect is obtained. To avoid it, the signal w is
smoothed by computed the gain g(k) as the average of w:

g (k) =
1
no

n

t=1
w(t),

With n = T/Dt the number of samples of w obtained during
the pump updating period T. Finally, this gain is the one used to
modulate the control action of the iZMPC.
3 RESULTS

To evaluate the control strategy, 10 virtual adult subjects were
simulated by identifying the model parameters from the
commercially available version of the UVA-Padova T1DM
Simulator (36). A 36-hour scenario was selected, the sampling
time T was set as 5 minutes, and the daily pattern of
carbohydrate intake was 7:00h (55g), 10:00h (20g), 13:00h
(90g), and 19:00h (70g). Intra-day variability was introduced in
the simulation scenario by modifying three of the model
parameters. This was done by considering circadian variability
with 30% amplitude of the form:

pi(t) = p*i 1 + 0:3 sin
2p
1440

� �
t + 2pRND

� �
,

where p*i , with i = 0,1,3, is the nominal value of the parameters
identified for each virtual subject and associated to the hepatic
autoregulation, the insulin sensitivity, and the endogenous
glucose production, and RND is a randomly uniformly
generated number between 0 and 1 (38, 39). It should be noted
that the parameter p3 is 180° out of phase with respect to p0 and
FIGURE 3 | Illustrative scenario for the IOB constraint selection according to signals of glycemia, the estimated mismatch, and their first and second time derivatives.
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p1 such that the three parameters induce hypoglycemia or
hyperglycemia at the same time and thus prevent the effect of
the variations of each parameter from compensating each other.

The iZMPC controller with interval safety layer (iZMPC-ISL)
is compared with the iZMPC without the layer, and the iZMPC
with a safety layer (iZMPC-SL) that uses the constraint IOB =
IOBim all the time. This with the purpose of putting in evidence
the benefits of adapting the IOB constraint to avoid
hypoglycemia and react against hyperglycemia episodes.

In Figure 4, an illustrative example of virtual subject #10 is
depicted. The Figure shows the glycemia, IOB, insulin, the
estimated plant-model mismatch (d), and the gain g that
modulates the control action of the iZMPC. As shown, when
using the iZMPC (blue lines) the system presents hypoglycemia
episodes because of the delivery of insulin doses higher than the
required for the situation of the subject (see that at 7:00h,
the variations in the subject induce hypoglycemia). Next,
the iZMPC-SL (red lines) is tested, but it can be seen the
difficulties of setting one single constraint. If the constraint is
too high to counteract variations inducing hypoglycemia, then
the insulin doses are higher than the required, and if the
constraint is lower than the required to compensate for
variations inducing hyperglycemia (see the range between
15:00h and 25:00h) the controller is constrained and thus the
insulin doses are not enough to low BG levels. To solve these
issues, it can be seen that the iZMPC-ISL (black lines) uses the
lower bound IOBil as IOB constraint when detecting variations
towards hypoglycemia, changes to the middle or upper band
when detecting variations towards hyperglycemia and release the
constraint when the BG levels and its tendency allow to do it (see
that the IOB constraint is exceeded at 19:00h). It is also
noteworthy that the safety layer seems to almost override the
controller during the night, as the control action generated by the
Frontiers in Endocrinology | www.frontiersin.org 8
iZMPC is highly attenuated. This shows that the safety layer can
be decisive at the expense of the iZMPC. However, this situation
is desired in diabetes treatment since the control action is
precisely canceled when a risk of hypoglycemia is predicted,
and therefore, insulin administration must be reduced or
suspended. In addition, by using the interval model, the IOB
boundary is established at the limit that is actually needed to
compensate for current patient BG levels, trend, and detected
physiological variations.

Next, by considering the same simulation scenario, the sensor
noise was added to obtain the population outcomes. To that end,
the CGM signal based on DexcomG5mobile devices was used. Its
model and parameters can be seen in detail in (44). For each
virtual subject, 10 simulations were performed, thus, 100 different
cases were generated. The reported metrics of the population with
each evaluated controller can be seen in Table 3. These consist of
the mean BG (mg/dl), standard deviation (SD) of BG (mg/dl),
coefficient of variation (CV) of BG (%), time percentage of BG in
each range (%), and number of events in range. The outcome
indexes are reported as mean ± SD for normally distributed data
and as median (interquartile range) otherwise (45).

Figure 5 shows the comparison of the iZMPC and iZMPC-ISL.
It is evident how the iZMPC-ISL significantly reduces hypoglycemia
events without dangerously increasing BG levels. This is mainly
achieved by reducing the insulin doses when required. The iZMPC-
ISL vs. iZMPC improves the system performance in terms of time
percentage in normoglycemia (92.7 ± 5.8 vs. 83.8 ± 6.7), reduces the
time in hypoglycemia (0 ± 2.9 vs. 13.7 ± 6.5), the time in
hyperglycemia increases (6.3 pm 5.5 vs. 2.4 ± 3.7) without
obtaining events of severe hyperglycemia (BG > 250mg/dl). The
complete outcomes can be seen in Table 3.

In addition, Figure 6 shows the comparison of the iZMPC-ISL
with two other strategies. First, the population results obtained
FIGURE 4 | Comparison of the system evolution with the iZMPC and iZMPC-ISL.
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with the iZMPC-SL are depicted. It can be seen how this strategy is
harmful to compensate for hyperglycemia episodes. In fact, the
time in hyperglycemia corresponds to 32.5% (see Table 3). As
explained before, this behavior occurs because the IOB is
constrained with the same boundary all the time, and thus,
when the variations towards hyperglycemia occur(which have a
time-random component), the control action is restricted, and the
insulin doses delivered are not enough to counteract the variations.

Secondly, the strategy is compared with the one developed in
(10), which uses an open-loop SL (here denoted as iZMPC-OLSL).
This strategy was a first attempt of using information of the plant-
model mismatch to change the IOB constraint. However, two
limitations were detected: (i) the IOB constraint is computed as b
Frontiers in Endocrinology | www.frontiersin.org 9
times the IOB evolution considering the open-loop treatment, where
the b factor is empirically established, and (ii) the rules for adapting
the constraint dependedonly on the sign of d, and thus, there is not
prediction regarding the changes in the variations (as in the iZMPC-
ISL where the first and second time derivatives are used), leading to
cases in which aggressive insulin doses are allowed precisely in the
moments in which the variations start to decrease, which can cause
hypoglycemia. As seen in Figure 6, the iZMPC-OLSL manages to
avoid high BG levels and the hypoglycemia episodes in the first
meals, nevertheless, for large meals late hypoglycemia occurs.
Meanwhile, with the iZMPC-ISL, these events are avoided by
using the first and second time derivatives of glycemia and the
estimated mismatch to adapt the IOB constraint.
FIGURE 5 | Comparison of the system evolution with the iZMPC and iZMPC-ISL.
TABLE 3 | Performance comparison of the iZMPC, iZMPC-SL, iZMPC-OLSL, and iZMPC-ISL.

Strategy iZMPC iZMPC-SL iZMPC-OLSL iZMPC-ISL

Mean BG (mg/dl) 99.4 ± 5.6 148.3 ± 18.9 112.2 ± 6.0 120.0 ± 7.6
SD (mg/dl) 29.8 ± 5.7 65.1 (21.0) 41.0 (14.2) 32.9 ± 7.1
CV (%) 30.0 ± 8.0 44.5 ± 8.3 37.5 ± 7.4 27.4 ± 5.6
Time percentage of BG (%)
<54 mg/dl 2.1 ± 4.2 0 (2.8) 1.5 (5.9) 0 ± 0
<70 mg/dl 13.7 ± 6.5 5.8 (6.3) 9.9 (8.3) 0 ± 2.9
70–140 mg/dl 77.1 ± 7.4 48.6 ± 11.7 68.0 ± 9.5 76.3 ± 16.0
70–180 mg/dl 83.8 ± 6.7 61.9 (18.0) 82.8 ± 12.1 92.7 ± 5.8
>180 mg/dl 2.4 ± 3.7 32.5 (14.0) 7.1 (7.2) 6.3 ± 5.5
>250 mg/dl 0 ± 0 7.6 (11.9) 0 ± 1.8 0 ± 0
Number of events of BG
<54 mg/dl 1 (2) 0 (1) 1 (1) 0 (0)
<70 mg/dl 3.5 (2) 1 (1) 2 (1) 0 (1)
>180 mg/dl 1 (2) 3 (3) 2 (1) 2 (1)
>250 mg/dl 0 (0) 1 (1) 0 (1) 0 (0)
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4 CONCLUSIONS

A control strategy for the artificial pancreas was introduced using
an impulsive offset-free MPC coupled with an interval safety
layer. The approach is intended to steer glycemia to the target
zone while reducing the risk of hypoglycemia events. To that end,
information of the parameter uncertainty is considered by means
of an interval IOB model and the estimation of the plant-model
mismatch with an augmented state estimator. The interval model
establishes possible IOB boundaries to constraint the control
action. While the current estimated mismatch, combined with
the estimation of glycemia and their first and second time
derivatives help to select the most suitable constraint for the
current situation of the subject. In this regard, the controller
changes between aggressive and conservative control actions to
counteract hyperglycemia and hypoglycemia induced variations.
This formulation achieved satisfactory results in an adult cohort
and was compared with 3 different control approaches that vary
the use of the safety layer. Future research includes the use of
personalized information of the subject to establish some
parameters, and/or the formulation of a function that explicitly
relates the IOB constraint selection with the magnitude of the
estimated variations.
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32. León-Vargas F, Garcıá-Jaramillo M, Molano A, De Battista H, Garelli F.
Glucose Control for T1d Patients Based on Interval Models. Lect Notes Elec
Eng (2021) 685:336–44. doi: 10.1007/978-3-030-53021-14
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This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
February 2022 | Volume 13 | Article 796521

https://doi.org/10.1109/TAC.2017.2776598
https://doi.org/10.3389/fendo.2021.662348
https://doi.org/10.1109/TBME.2017.2746340
https://doi.org/10.1109/TBME.2017.2746340
https://doi.org/10.2337/dc15-2716
https://doi.org/10.1016/j.automatica.2015.02.042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Villa-Tamayo et al. Interval-Layer MPC for Artificial Pancreas
APPENDIX A1

In this Appendix, the stability, observability, and controllability
of the discretized model (1) are analyzed. Furthermore, an
analysis on the stability of the interval model is presented.

A1.1 Stability
The discretized system (1) maintains the stability of the original
impulsive system (determined by the eigenvalues of Ac), as the
discretization is a mapping with the exponential function (A =
eAcT). Since the eigenvalues of Ac are real and negative, then the
eigenvalues of the discrete system go to unit circle of the complex
plane. Thus, maintaining the property of stability. It is
noteworthy that this property does not depend on the value of
T, as for all real and negative eigenvalues of Ac the exponential
function maps them between 0 and 1.

A1.2 Observability
To implement the Kalman Filter, model (1) has to be observable.
For impulsive systems, the observability criterion has been established
in (46), where it is proved that a linear impulsive system is observable
on some finite time interval if Rank[CT ATCT …(An-1 )T CT] = n.

The symbolic observability matrix for model (2) is:

Obs

=

1 −po p20 −p30 p40

0 −p1 pop1 +
p1
p4

− (p0p1+p1=p4)
p4

− p20p1 p20(p0p1 +
p1
p4
) + (p0p1+p1=p4)

p24

0 0 − p1
p4

(p0p1+p1=p4)
p4

+ p1
p24

−2 (p0p1+p1=p4)
p24

− p1
p34
− (p20p1)

p4

0 p2 −pop2 −
p2
p5

(p0p2+p2=p5)
p5

+ p20p2 −p20(p0p2 +
p2
p5
) − (p0p2+p2=p5)

p25

0 0 p2
p5

− (p0p2+p2=p5)
p5

− p2
p25

(2(p0p2 +
p2
p5
))=p25 +

p2
p35
+ (p20(p2)

p5

2
6666666666664

3
7777777777775
,

with determinant given by det = p21p
2
2
p44+p

4
5−4p4p

3
5−4p

3
4p5+6p

2
4p

2
5

p54p
5
5

. The

determinant satisfies det ≠ 0 except for p1 = p2 =0, which never
occurs due to the physiological meaning of the parameters.

A1.3 Controllability
To implement the MPC, model (1) has to be controllable. The
controllability criterion for impulsive control systems has been
Frontiers in Endocrinology | www.frontiersin.org 13
discussed in (1), where it is established that a system is
impulsively controllable if and only if rank[B AB A2B …An-1B]
= n. For the diabetes application, it is to clarify that, the state
variables x4. x5 only depend on the meal disturbance r, and thus,
they are not controllable (they are not affected by insulin).
Therefore, the controllability of the model is evaluated without
considering these states. The symbolic controllability matrix of
the model is:

Co =

0 0 −p2=p
2
4

0 1=p24 −2=p34

1=p4 −1=p24 1=p34

2
664

3
775,

which has full rank for all values of the parameters except for p4 =
0 or p2 = 0. However, as p4 represents the time-to-maximum of
effective insulin concentration, and p2 is the carbohydrate bio-
availability, their values are never zero.

A1.4 Stability of the Interval Model
The model in (5) can be rewritten in the form x (k + 1) = Ax(k) +
Bu(k) when considering a system of 6 state variables ([x3low
x3upper x23low x23upper x2low x2upper]). The resulting matrix A of the
interval systemis:

A =

1 − 1
p1

0 0 0 0 0

1
p2

1 − 1
p1

0 0 0 0

0 1 0 −1 0 0

0 0 0 1 − 1
p2

0 0

0 0 0 1
p1

1 − 1
p2

0

−1 0 0 0 1 0

2
6666666666664

3
7777777777775

with eigenvalues [0 0 (p1–1)/p1 (p1–1)/p1 (p2–1)/p2 (p2–1)/p2]'.
These eigenvalues are always within the unit circle of
the complex plane. Therefore, the interval model is
asymptotically stable.
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