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ABSTRACT

Box C/D small nucleolar RNAs (snoRNAs) are a con-
served class of RNA known for their role in guiding ri-
bosomal RNA 2′-O-ribose methylation. Recently, C/D
snoRNAs were also implicated in regulating the ex-
pression of non-ribosomal genes through different
modes of binding. Large scale RNA–RNA interaction
datasets detect many snoRNAs binding messenger
RNA, but are limited by specific experimental con-
ditions. To enable a more comprehensive study of
C/D snoRNA interactions, we created snoGloBe, a
human C/D snoRNA interaction predictor based on
a gradient boosting classifier. SnoGloBe considers
the target type, position and sequence of the interac-
tions, enabling it to outperform existing predictors.
Interestingly, for specific snoRNAs, snoGloBe identi-
fies strong enrichment of interactions near gene ex-
pression regulatory elements including splice sites.
Abundance and splicing of predicted targets were
altered upon the knockdown of their associated
snoRNA. Strikingly, the predicted snoRNA interac-
tions often overlap with the binding sites of function-
ally related RNA binding proteins, reinforcing their
role in gene expression regulation. SnoGloBe is also
an excellent tool for discovering viral RNA targets,
as shown by its capacity to identify snoRNAs target-
ing the heavily methylated SARS-CoV-2 RNA. Over-
all, snoGloBe is capable of identifying experimentally
validated binding sites and predicting novel sites
with shared regulatory function.

INTRODUCTION

Small nucleolar RNAs (snoRNAs) are a conserved class
of noncoding RNA required for rRNA modification, pro-

cessing, and assembly (1). In addition, snoRNAs contribute
to spliceosome biogenesis by guiding the modification of
small nuclear RNA (snRNA) (2). To carry out these func-
tions, deemed canonical, they assemble in ribonucleopro-
tein (snoRNP) complexes which provide them stability
and catalytic activity. SnoRNAs are split in two families
based on their structure, conserved motifs, interacting pro-
teins and modification type. Box C/D snoRNAs guide 2′-
O-ribose methylation while box H/ACA snoRNAs guide
pseudouridylation of RNA (3,4). SnoRNAs of both fam-
ilies identify their modification targets through base pair-
ing between the snoRNA guide sequence and the sequence
flanking the modification sites (5).

Box C/D snoRNAs usually range between 50–100 nu-
cleotides in length (6) and are characterized by their con-
served motifs: the boxes C/C’ (RUGAUGA) and D/D’
(CUGA) (Figure 1A). They interact with core binding pro-
teins SNU13, NOP56, NOP58 and the methyltransferase
fibrillarin (FBL) to form the C/D snoRNP. Box C/D snoR-
NAs guide their catalytic partner to the modification site
using sequence complementarity to the region upstream of
the boxes D and D’, called the antisense element (ASE)
(3,7). Box C/D snoRNA ASEs range between 10 and 20
nucleotides in length and are deemed essential for rRNA
modification. However, many C/D snoRNAs have no iden-
tified canonical modification target and are referred to as
orphan snoRNAs. Interestingly, some snoRNAs were also
described as guiding the modification of messenger RNAs
(mRNAs) expanding the confines of potential RNA targets
(8).

In recent years, a wide range of functions have been dis-
covered for box C/D snoRNAs, including the regulation
of chromatin compaction, metabolic stress, cholesterol traf-
ficking, alternative splicing and mRNA levels (reviewed in
(9–11)). These functions are often mediated by noncanon-
ical pairing configurations with the interactions involving
diverse regions of the snoRNA sequence (Figure 1B) (8,12–
20). As such, complementarity to the ASE employed for
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Figure 1. Box C/D snoRNA characteristics and interactions. (A) Box C/D snoRNAs have well conserved patterns, called boxes C/C’ (green) and D/D’
(purple). The canonical interaction with the target (orange) occurs upstream of the boxes D and D’, using a region referred to as the ASE. The fifth
nucleotide upstream of these boxes is methylated by the core C/D snoRNA interactor FBL. (B) Schematic representation of experimentally validated
noncanonical interaction regions. The classical elements are represented: the boxes C and C’ (green), D and D’ (purple) and the ASE (yellow). Bipartite
interactions are represented by a dotted line. The names of the interacting snoRNA and target gene are indicated on the right. The reference for each
interaction is indicated in superscript. The color of the interaction represents its effect, whether regulation of alternative splicing, regulation of RNA level
(either pre-mRNA or mRNA) and RNA modification including methylation of noncanonical targets, acetylation and A to I editing. Combined together,
noncanonical interactions cover the whole snoRNA.

methylation cannot be used as sole indicator of potential
noncanonical targets. In this paper, we define a canonical
interaction as an interaction leading to the methylation of
a rRNA or a snRNA, and all others are defined as non-
canonical, including interactions leading to the methylation
of other types of RNA such as mRNA and transfer RNA
(tRNA).

Genome wide methods for detecting RNA–RNA inter-
actions identified a large number of noncanonical snoRNA
interactions. These methods, including PARIS (21), LIGR-
seq (14) and SPLASH (22), have been devised to survey all
RNA duplexes in cells, both intra- and intermolecular. They
have enabled the detection of known and novel snoRNA
interactions. For example, LIGR-seq identified functional
interactions between orphan snoRNA SNORD83B and
three different mRNAs affecting their stability (14). In-
deed, these large-scale experimental approaches play an im-
portant role in uncovering noncanonical snoRNA targets.
However, these methods are limited by cell type, growth
conditions and cross-linking approach used to produce the
data. In addition, they often suffer from low proportion of
intermolecular duplex reads (23) and consequently reduced
coverage of snoRNA interactions, which form a relatively
small proportion of all possible interactions in the human
transcriptome, suggesting that there are probably plenty of
snoRNA–RNA interactions yet to uncover.

In silico prediction of snoRNA interactions has the po-
tential to uncover all possible transcriptome-wide snoRNA
interactions since they are not restricted by experimen-
tal constraints. However, available RNA–RNA interaction
prediction tools are often built on known mechanisms
of function and interaction rules. For example, the C/D

snoRNA interaction predictors, PLEXY (24) and snoscan
(25), were developed to predict potential targets that in-
teract with the canonical ASE sequence commonly used
for rRNA modification. Indeed, PLEXY improves the ef-
ficiency of detecting canonical binding modes by only con-
sidering the 20 nucleotides upstream of the boxes D and D’
of the snoRNA, corresponding to the ASE, and filters the
interactions using previously identified pairing constraints
(7). Snoscan takes into account snoRNA features such as
the boxes, the ASE, and the position between each element,
but only considers the pairing in the 25 nucleotides up-
stream the boxes D and D’. Accordingly, while PLEXY and
snoscan are efficient in identifying methylation targets, they
have a limited use for identifying new forms of snoRNA–
RNA interactions, especially those using an ASE indepen-
dent homing sequence.

To help uncover a broader regulatory spectrum of box
C/D snoRNAs and identify noncanonical interactions we
developed snoGloBe, a C/D snoRNA interaction predictor
based on a gradient boosting classifier. SnoGloBe considers
all possible interactions between the snoRNA and targets
regardless of the position within the snoRNA sequence. The
predictor was trained and tested using known canonical
interactions, experimentally detected large-scale snoRNA–
RNA interaction datasets and validated noncanonical in-
teractions from the human transcriptome. The accuracy
and breadth of snoGloBe are evident from its capacity
to recover most known snoRNA–RNA interactions, both
canonical and noncanonical. Applying snoGloBe to the hu-
man coding transcriptome revealed positional enrichment
of C/D snoRNA interactions in targets and functional en-
richment for specific snoRNAs. The depletion of a model
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snoRNA altered the RNA level and splicing of a subset of
the predicted targets. Notably, snoGloBe was also able to
identify targets in a viral genome including a known interac-
tion in the SARS-CoV-2 transcriptome. Overall snoGloBe
provides a flexible discovery tool for box C/D snoRNA in-
teractions that transcends pre-established binding rules.

MATERIALS AND METHODS

High-throughput RNA–RNA interaction analysis

The high-throughput RNA–RNA interaction (HTRRI)
datasets from PARIS (21) (SRR2814761, SRR2814762,
SRR2814763, SRR2814764 and SRR2814765), LIGR-
seq (14) (SRR3361013 and SRR3361017) and SPLASH
(22) (SRR3404924, SRR3404925, SRR3404936 and
SRR3404937) were obtained from the short read archive
SRA (26) using fastq-dump from the SRA toolkit (v2.8.2).
The PARIS datasets were trimmed using the icSHAPE
pipeline available at https://github.com/qczhang/icSHAPE.
PCR duplicates were removed from LIGR-seq datasets
using the script readCollapse.pl from the icSHAPE
pipeline and the reads were trimmed using Trimmomatic
version 0.35 with the following options: HEADCROP:5
ILLUMINACLIP:TruSeq3-SE.fa:2:30:4 TRAILING:20
MINLEN:25 (27). The quality of the reads was assessed
using FastQC (v0.11.15) before and after the pre-processing
steps (28). All the samples were analyzed using the PARIS
pipeline as described in sections 3.7 and 3.8 from (29).
Some modifications were made to the duplex identification
and annotation scripts. The modified scripts are available
at github.com/Gabrielle-DF/paris.

The RNA duplexes were assigned to genes using the an-
notation file described in (30) to which missing rRNA an-
notations from RefSeq (31) were added. The annotation file
was modified using CoCo correct annotation (32) to ensure
the correct identification of snoRNA interactions.

Only the interactions between a box C/D snoRNA and
a known gene were kept. To avoid intramolecular interac-
tions, we removed interactions between a snoRNA and its
50 flanking nucleotides and interactions between two snoR-
NAs from the same Rfam family (33). To limit the num-
ber of false positives, we filtered the interactions based on
their pairing using RNAplex (34). Only paired regions of
the interactions were kept to get rid of unpaired flanking
regions. The interactions were split at each bulge to en-
sure the correct alignment of the snoRNA and target se-
quences. The interactions shorter than 13 nucleotides were
removed to match the length of the windows (see Input fea-
tures section). We finally removed interactions that were al-
ready known and present in our positive set described in
the next section. We obtained 445 box C/D snoRNA inter-
actions (Supplemental Figure S1).

Positive set composition

The positive set is composed of the previously de-
tected snoRNA interactions from PARIS, LIGR-seq and
SPLASH filtered as described above, as well as interac-
tions obtained from snoRNABase (35) and manually cu-
rated interactions from the literature (Supplemental Table
S1) (Figure 2A, B). Interactions from snoRNABase and

from the literature that were shorter than 13 nucleotides
were padded by adding their flanking sequence to respect
the length threshold.

Negative set composition

The negative set is composed of random negatives and
matched negatives (Figure 2C). The random negative
examples are the combination of random sequences from
any box C/D snoRNA and any gene, whereas the matched
negative examples are random sequences coming from a
positive snoRNA–target gene combination (Figure 2D).
We created 21 negative examples per positive example to
reflect the fact that the majority of the transcriptome is not
bound by snoRNAs. This negative set was split in three for
hyperparameter tuning, training and testing as described in
the following Redundancy removal for tuning, training and
test sets section. As an additional validation step, we added
seven negative windows for each positive window of the test
set obtained from dinucleotide shuffle using the algorithm
from Altschul and Erikson (36) implemented by P. Clote
(http://clavius.bc.edu/~clotelab/RNAdinucleotideShuffle/
ShuffleCodeParts/altschulEriksonDinuclShuffle.txt). We
also added random negative windows to obtain a 1000
random negative examples for each positive example, am-
plifying the class imbalance to simulate the transcriptome.

Input features

The interactions obtained from snoRNABase, the literature
and HTRRI methodologies as described in the positive set
composition section were split in 13 nucleotide sliding win-
dows, with a step of 1 nucleotide. The 13 nucleotide win-
dow length was chosen to limit the chance of finding this
sequence randomly in the genome, and most of the known
interactions meet this length criteria (Figure 2B). Indeed,
13 nucleotides is rather small considering the size of the
transcriptome, but the majority of known canonical inter-
actions are longer or equal to this length (Figure 2B) and
using a longer window would result in the loss of many val-
idated windows or in the addition of flanking nucleotides,
adding noise to the validated interaction set. Also, the se-
quence is only one part of the features used by the model to
classify the interactions, so the small window size is com-
pensated by the complementary information, such as the
position in the snoRNA. The position of the interaction
in the snoRNA varies depending on the interaction type.
The canonical interactions are located in the ASE, whereas
other interactions are distributed throughout the snoRNA
(Figure 1B). We thus included the relative position in the
snoRNA as an input feature. The information relative to
the target biotype and the interaction position in the tar-
get were also used as input to account for the vast diversity
of snoRNA interactors (Figure 2A) and gain insight into
potential snoRNA function. In summary, each interaction
window is composed of 13 nucleotides of the snoRNA and
the corresponding 13 nucleotides of the target. The input
features used are the window sequences in one-hot encod-
ing, the relative position in the snoRNA between 0 and 1,
the location in the target gene (intron, exon, 3’UTR and/or
5′UTR) and the target biotype (Figure 2E). The biotypes

https://github.com/qczhang/icSHAPE
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Figure 2. Composition of the dataset used to build snoGloBe. (A) Diverse RNAs have been shown to bind box C/D snoRNAs. Interactions involving box
C/D snoRNAs were collected and assembled including known canonical interactions with rRNA and snRNA from snoRNABase, known noncanonical
interactions curated from the literature and interactions extracted from HTRRI datasets. The proportion of interactions involving different RNAs of each
biotype is shown for each interaction source. The color legend for RNA biotypes is shown on the right. (B) Distribution of the length of interactions from
each data source. (C) Distribution of the datasets used to build snoGloBe. The dataset consists of positive, matched negatives and random negatives in a
proportion of 21 negatives (10 matched and 11 random) for 1 positive window. The positive windows are composed of HTRRI (86.3%), known canonical
(8.5%) and noncanonical (5.2%) interactions. (D) Generation of matched negative windows. 10 matched negative windows are generated for each positive
one. The matched negative windows originate from the same snoRNA–target gene pair as the positive window. One has the same position in the snoRNA
and a different position in the same target, one has a different position in the snoRNA and the same position in the target, and 8 windows have random
positions in the same snoRNA–target pair. (E) SnoRNA–RNA pairs are encoded for presentation to the predictor. Features considered include the 13
nucleotide sequence of the snoRNA and the 13 nucleotide sequence of the target, the relative position of the window in the snoRNA, the target biotype and
the position in the target. (F) The dataset is split in non-overlapping sets for hyperparameter tuning (10% of the windows), training (72% of the windows)
and testing (18% of the windows). The hyperparameter tuning was done using a random search with 3-fold cross-validation. The model was trained and
evaluated using stratified 5-fold cross-validation to ensure the correct representation of each category of positive windows in each subset. The known
noncanonical windows were all kept for the validation set.

considered are listed in snoGloBe’s manual. Protein cod-
ing, pseudogene and long noncoding RNA biotypes were
grouped according to http://vega.archive.ensembl.org/info/
about/gene and transcript types.html and http://ensembl.
org/Help/Faq?id=468.

Redundancy removal for tuning, training and test sets

The positive and negative examples were split into hyperpa-
rameter tuning, training and test sets. First, to remove re-

dundancy from the sets, the snoRNAs were grouped based
on their Rfam identifier (33). To ensure that the model is not
trained and tested on similar snoRNAs, the Rfam families
and clans were distributed in order to assign 18% of all ex-
amples in the test sets, with similar proportion of the initial
HTRRI and known canonical interactions. We ensured that
all members of a clan (or a family if the family is not part
of a clan) are entirely included either in the training or the
test set, but not both. All the known noncanonical interac-
tions were kept for the test sets since there are very few such

http://vega.archive.ensembl.org/info/about/gene_and_transcript_types.html
http://ensembl.org/Help/Faq?id=468
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examples. The remaining examples were split between the
hyperparameter tuning and training sets to consist respec-
tively of 10% and 72% of initial data (Figure 2F). The inter-
actions were split only based on the snoRNA space, and not
the target. Since most snoRNAs target rRNA, it would be
near impossible to form sets with interactions from distinct
snoRNA families and clans, distinct targets, and having a
representative mix of canonical and noncanonical interac-
tions in all sets.

Building the model

The model used is a gradient boosting classifier from scikit-
learn (v0.21.3) (37). We selected the hyperparameters us-
ing a random search with 3-fold cross-validation due to the
small number of interaction windows in the tuning set. The
hyperparameters that were tuned are the number of trees
(n estimator), the minimum number of samples in a node
to be split into two branches (min samples split), the mini-
mum number of samples in a leaf (min samples leaf), the
maximum depth of each tree (max depth) and the value
by which the contribution of each tree is decreased (learn-
ing rate). The hyperparameter values selected by random
search are: n estimators = 371, min samples split = 76,
min samples leaf = 49, max depth = 2 and learn-
ing rate = 0.43, others are kept to default.

The model was trained on the whole training set and val-
idated with 5-fold stratified cross-validation, to keep sim-
ilar proportions of HTRRI and known canonical interac-
tions in each subset. A 5-fold cross-validation was used in
the training validation instead of 3-fold cross-validation as
the hyperparameter tuning step. The greater number of ex-
amples in the training set allowed to create more subsets
having a good representation of each interaction category,
and more validation steps increasing the confidence in the
resulting model, called snoGloBe.

The model performance was evaluated on the test set and
compared to PLEXY (24), snoscan (25), RNAplex (34),
RIsearch2 (38), IntaRNA (39) and RNAup (34). To com-
pare their performance on a similar basis, we selected a
threshold (either a score for snoGloBe and snoscan, or an
energetic cut-off for the other tools) resulting in 95% preci-
sion on the test set. The details are available in Supplemen-
tal Figure S2. PLEXY was only used for snoRNAs with
non-degenerated boxes D and D’ to avoid bias caused by
misidentified boxes.

Prediction against protein coding genes

SnoGloBe was used to predict box C/D snoRNA inter-
actions with protein coding transcripts. For this analy-
sis, only box C/D snoRNAs expressed at 1 transcript per
million (TPM) or more in at least one of the RNA-seq
datasets from seven different healthy human tissues (3 sam-
ples from different individuals for each of the following
tissues: brain, breast, liver, ovary, prostate, skeletal muscle
and testis) from a previous study (40) (available from GEO
(41): GSE126797, GSE157846) were considered, totaling
312 snoRNAs. We predicted the interactions of these snoR-
NAs against all protein coding genes, split in 13-nucleotide
windows with a step of two. We took whole gene sequences

to predict interactions with any intron and exon. To narrow
the number of predictions obtained, we kept the interac-
tions having at least three consecutive windows with a score
≥0.98 for further analysis. The gene ontology enrichment
analysis of the predicted targets was done using g:Profiler
with all protein coding genes used for the interaction pre-
diction as background (42).

Overlap between predicted snoRNA interactions and eCLIP
regions

All the eCLIP datasets (43,44) were downloaded from the
ENCODE portal (45), totaling 225 samples considering 150
proteins. The complete list of the datasets is available in Sup-
plemental Table S2. Only the eCLIP regions having a P-
value ≤0.01 were kept. Datasets from the same protein were
merged using BEDTools merge -s (v2.26.0) (46). The num-
ber of overlaps between the predicted interactions and the
eCLIP regions was computed using BEDTools intersect -s.

SNORD126 knockdown

HepG2 cells were cultured in complete Eagle’s Minimum
Essential Medium (EMEM from Wisent) and passaged
twice a week, according to ATCC guidelines. Trypsinized
cells were then seeded at 350 000 cells/well in six-well
plates in 1ml EMEM. Cells were transfected 24 h later
with two different antisense oligonucleotides (ASOs) target-
ing SNORD126 (30 or 40 nM) using Lipofectamine 2000
(LIFE technologies) and optiMEM (Wisent). A scrambled
ASO was used as a negative control. The sequence of the
ASOs are listed in Supplemental Figure S3.

Cells were harvested 48 h post transfection, washed and
pelleted, then resuspended in 1ml Trizol and stored at
−80◦C until RNA extraction. This was repeated 3 times to
obtain biological triplicates.

RNA extraction

Total RNA extraction from transfected HepG2 cells was
performed using RNeasy mini kit (Qiagen) as recom-
mended by the manufacturer including on-column DNase
digestion with RNase-Free DNase Set (Qiagen). However,
1.5 volumes Ethanol 100% was used instead of the recom-
mended 1 volume ethanol 70% in order to retain smaller
RNA. RNA integrity of each sample was assessed with
an Agilent 2100 Bioanalyzer. RNA was reversed tran-
scribed using Transcriptor reverse transcriptase (Roche)
and knockdown levels were evaluated by qPCR.

RNA-seq library preparation and sequencing

RNAseq libraries were generated from 1ug DNA-free to-
tal RNA/condition using the NEBNext® Ultra™ II Di-
rectional RNA Library Prep Kit for Illumina (E7760S)
and following the Protocol for use with NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB #E7490). The re-
sulting libraries were submitted to a total of 10 cycles of
amplification then purified using 0.9× Ampure XP beads.
Quality and size was assessed with an Agilent 2100 Bio-
analyser. Libraries were then quantified using a Qubit flu-
orometer, pooled at equimolar concentration and 1.8pM
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was sequenced on Illumina’s NextSeq 500 using a NextSeq
500/550 High Output Kit v2.5 (150 cycles) paired-end
2 × 75 bp.

RNA-seq analysis

The resulting base calls were converted to fastq files
using bcl2fastq v2.20 (Illumina) with the following
options: –minimum-trimmed-read-length 13, –mask-
short-adapter-reads 13, –no-lane-splitting. The fastq
files were trimmed for quality and to remove remaining
adapters using Trimmomatic v0.36 (27) with ILLUMI-
NACLIP:{adapter fasta}:2:12:10:8:true, TRAILING:30,
LEADING:30, MINLEN:3. The sequence quality was
assessed using FastQC v0.11.5 (28) before and after
the trimming. The trimmed sequences were aligned
to the human genome (hg38) using STAR v2.6.1a
(47) with the options –outFilterScoreMinOverLread
0.3, –outFilterMatchNminOverLread
0.3, –outFilterMultimapNmax 100, –
winAnchorMultimapNmax 10, –alignEndsProtrude 5
ConcordantPair. Only primary alignments were kept using
samtools view -F 256 (v1.5) (48). The gene quantification
was done using CoCo correct count -s 2 -p (v0.2.5p1)
(32). DESeq2 was used for the differential expression
analysis (49). Genes having a corrected P-value ≤0.01
were considered significantly differentially expressed. The
alternative splicing analysis was done using MAJIQ v2.2
and VOILA with the option –threshold 0.1 (50).

Empirical P-value calculation

To evaluate the significance of the overlaps between each
snoRNA predicted interaction and eCLIP binding sites, al-
ternative splicing events and differentially expressed genes,
we computed an empirical P-value using BEDTools shuf-
fle 10–100 000 times for each combination followed by
BEDTools intersect -s through pybedtools (46,51). BED-
Tools shuffle was used with an appropriate background
for each analysis: all protein coding genes for eCLIP bind-
ing sites and protein coding genes having an average of
1 TPM across all sequencing datasets for differential ex-
pression and alternative splicing analyses. We counted the
number of distinct events, or genes in the case of differen-
tial expression analysis, having an overlap with at least one
shuffled interaction for each iteration. P-values were calcu-
lated as the proportion of iterations in which the shuffled
dataset overlap was at least as extreme as the true dataset
overlap.

Prediction of human snoRNA interaction with SARS-CoV-2
transcriptome

We predicted the interactions between the expressed hu-
man snoRNAs against SARS-CoV-2 transcriptome, us-
ing SARS-CoV-2 ASM985889v3 genome assembly and the
annotation file Sars cov 2.ASM985889v3.101.gtf obtained
from Ensembl COVID-19 (52). We used thresholds of a
minimum of three consecutive windows having a probabil-
ity greater or equal to 0.85.

Reagents

The following reagents were used in this study. Eagle’s
Minimum Essential Medium (purchased from Wisent lo-
cated at St-Bruno, Québec, Canada, catalog number 320–
005-CL) and optiMEM (purchased from Wisent located
at St-Bruno, Québec, Canada, catalog number 31985-070)
were used for tissue culture, lipofectamine 2000 (LIFE
technologies, Burlington, Ontario, Canada, catalog num-
ber 11668019) for transfection, RNEasy mini kit (Qia-
gen, Mississauga, Ontario, Canada, Catalog number 74106)
and RNase-Free DNase set (Qiagen, Mississauga, On-
tario,Canada, catalog number 79254) both for RNA ex-
traction, Transcriptor reverse transcriptase (Roche, Laval,
Québec, Canada, catalog number 3531287001) for RNA
reverse transcription for RT-PCR, NEBNext® Ultra™ II
Directional RNA library Prep Kit (New England Bio-
labs, Pickering, Ontario, Canada, catalog number E7760S)
and NEBNext Poly(A) mRNA Magnetic Isolation Module
(New England Biolabs, Pickering, Ontario, Canada, catalog
number E7490) for library preparation, NextSeq 500/550
High Output Kit v2.5 150 cycles (Illumina, Vancouver,
British Columbia, Canada, catalog number 20024907) for
sequencing.

Biological resources

The HepG2 cell line used for SNORD126 knockdown was
obtained from ATCC (HB-8065). The antisense oligonu-
cleotides used for the knockdown were purchased from IDT
and their sequences are listed in Supplemental Figure S3.

Statistical Analyses

The empirical P-values were calculated as described above.
The P-values of the overlap between eCLIP binding sites
and snoRNA interaction predictions were adjusted accord-
ing to Bonferroni correction by multiplying the empiri-
cal P-value obtained by 150, the number of RBP tested
for each snoRNA. SNORD126 knockdown was done us-
ing 2 ASOs and 1 control ASO, each having four biologi-
cal replicates. The adjusted P-values for the differential ex-
pression analysis were obtained by DESeq2, which applies
the Benjamini–Hochberg correction. The equations used to
evaluate the precision, recall, false positive rate, accuracy, F1
score and Matthews correlation coefficient shown in Figure
3 are listed below. For snoGloBe, RNAup, RNAplex, In-
taRNA and RIsearch2, an interaction window was deemed
positive if the score between the two 13-nucleotide windows
was greater than the threshold specified in Supplemental
Figure S2A in absolute terms. For PLEXY and snoscan,
the full snoRNA must be given as input, so, to ensure fair-
ness when comparing to other tools, the interaction win-
dows were considered positive if the predicted interaction
occurred inside the 13-nucleotide region of the snoRNA
that was considered for this target window and the score
was greater than the threshold in absolute terms, the in-
teractions predicted outside this region were ignored (Sup-
plemental Figure S2B). The interaction windows were then
classified as true positive (TP), true negative (TN), false pos-
itive (FP) or false negative (FN) depending their predicted
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status described above and to which set (positive or nega-
tive) they belonged.

Precision = T P
T P + F P

Recall = True posi tive rate = T P
T P + F N

False posi tive rate = F P
TN + F P

Accuracy = T P + TN
T P + TN + F P + F N

Matthews correlation coe f f icient

= T P × TN − F P × F N
√

(T P + F P) (T P + F N) (TN + F P) (TN + F N)

F1 score = 2 × Precision × Recall
Precision + Recall

Data availability/sequence data resources

All raw and processed sequencing data generated in this
study have been submitted to GEO (41) under acces-
sion number GSE184173. The datasets used to evalu-
ate snoRNA expression are available under the accession
numbers GSE126797 and GSE157846. HTRRI datasets
used for building snoGloBe are available from SRA (26)
under the following accession numbers : SRR2814761,
SRR2814762, SRR2814763, SRR2814764, SRR2814765,
SRR3361013, SRR3361017, SRR3404924, SRR3404925,
SRR3404936 and SRR3404937.

Data availability/novel programs, software, algorithms

The snoGloBe interaction predictor described in this paper
is available from https://github.com/scottgroup/snoGloBe.
The modified PARIS (29) scripts for the analysis of high-
throughput RNA–RNA interaction datasets are available
at github.com/Gabrielle-DF/paris.

Web sites/data base referencing

The following tools and websites were used in this study:
bcl2fastq v2.20 (https://support.illumina.com/sequencing/
sequencing software/bcl2fastq-conversion-software.html),
FastQC v0.11.5 (28), Trimmomatic v0.36 (27), STAR
v2.6.1a (47), CoCo v0.2.5p1 (32), SAMtools v1.5 (48),
BEDTools v2.26.0 (46), pybedtools v0.8.1 (51), MAJIQ
v2.2 (50), VOILA v2.2.0-e25c4ac (50), DESeq2 (49), scikit-
learn v0.21.3 (37), PLEXY (24), RNAplex v2.4.14 (34),
RIsearch2 v2.1 (38), IntaRNA v3.1.1 (39), RNAup v2.4.14
(34), RefSeq (https://www.ncbi.nlm.nih.gov/refseq/)
(31), Ensembl (https://www.ensembl.org/) (52), EN-
CODE portal (https://www.encodeproject.org/) (45),
GEO (https://www.ncbi.nlm.nih.gov/geo/) (41), SRA
(https://www.ncbi.nlm.nih.gov/sra) (26), SRA Toolkit
v2.8.2 (https://github.com/ncbi/sra-tools), snoRN-
ABase (https://www-snorna.biotoul.fr/) (35), icSHAPE
(https://github.com/qczhang/icSHAPE).

RESULTS

Identification and curation of experimentally identified
snoRNA–RNA interactions

In order to create a predictor of snoRNA–RNA interac-
tions, we began by extracting the canonical snoRNA in-
teractions from snoRNABase (35) and we combined it
with experimentally validated noncanonical interactions
reported in the literature. As a result, we identified 149
non-redundant interactions, 133 from snoRNABase and 16
from the literature (Figure 2A). In addition, we performed
a de novo analysis of the datasets obtained from three
high-throughput RNA–RNA interaction (HTRRI) iden-
tification methodologies PARIS (21), LIGR-seq (14) and
SPLASH (22) to extract new experimentally detected inter-
actions. All sets were analyzed using the PARIS bioinfor-
matics protocol (29), filtered to remove interactions shorter
than 13 bp and the interactions featuring bulges were split to
remove the unpaired region (Figure 2B, Supplemental Fig-
ure S1). Since HTRRI are identified in a high-throughput
manner and have no functional validation, some can be
false positives solely occurring by chance and be incon-
sequential. This adds noise to the dataset and must be
kept in mind throughout this study. Overall, we retrieved
133 known canonical interactions from snoRNABase, 16
known noncanonical interactions from the literature and
445 putative HTRRI, totalling 594 interactions listed in
Supplemental Table S1. The identified target biotypes var-
ied greatly based on the data source underscoring the effect
of the experimental approach and RNA source (Figure 2A).
While snoRNABase is the main repository of canonical hu-
man snoRNA interactions, our manual curation of the liter-
ature revealed articles describing noncanonical snoRNA in-
teractions and thus mainly involves protein coding targets.
In contrast, PARIS, LIGR-seq and SPLASH are method-
ologies detecting RNA–RNA interactions with less experi-
menter bias. The widest distribution of target biotypes was
identified in the HTRRI dataset and the largest number of
distinct targets was found in protein coding RNAs (Fig-
ure 2A). The newly generated combined interaction set in-
cludes a wide variety of biotypes and interaction modes and
forms an excellent base for a positive set. To create a neg-
ative dataset, we generated a combination of random neg-
ative and matched negative interactions (Figure 2C). The
random negative examples are random sequence pairs from
any box C/D snoRNA and any gene, whereas the matched
negative examples are random sequences originating from
a snoRNA–target gene combination from the positive set
(Figure 2D). The positive:negative ratio was chosen to be
imbalanced (1:21) to reflect the fact that the proportion of
transcriptomic sequences bound by C/D snoRNAs is ex-
pected to be much lower than the proportion not bound.

Feature encoding and predictor training

Since snoRNA–RNA interactions involve the formation of
an RNA duplex, the sequences of the two RNAs must be en-
coded amongst the features presented in input. The duplex
length of validated canonical and noncanonical snoRNA
interactions varies from 10 to 32 bp (Figure 2B, known
canonical and known noncanonical), so we encoded the in-

https://github.com/scottgroup/snoGloBe
https://github.com/Gabrielle-DF/paris
https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ensembl.org/
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra
https://github.com/ncbi/sra-tools
https://www-snorna.biotoul.fr/
https://github.com/qczhang/icSHAPE
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teraction sequences in windows of 13 nucleotides for both
the snoRNA and its target. This compromise helps us
take into account the validated snoRNA–RNA interactions
while limiting the chance of finding these sequences ran-
domly in the genome. The position of the interaction win-
dow in the snoRNA varies greatly between the canonical
and noncanonical interactions. Indeed, canonical interac-
tions employ only the regions immediately upstream of the
boxes D or D’ while the regions involved in noncanonical
interactions cover the entire snoRNA length (Figure 1B).
Therefore, we did not specify a fixed position but instead
included it as an input feature. To gain information about
the possible functional impact of the interactions we also in-
cluded the target biotype as well as the position in the target
(either in an exon and/or an intron and whether the exon is
a 5′ or 3′ UTR when appropriate) as input features (Fig-
ure 2E). These input features were encoded for all positive
and negative snoRNA–RNA pairs. Since snoRNA–RNA
duplexes are encoded as 13 nucleotide pairs of windows, an
interaction can consist of multiple such pairs of windows.
The resulting datasets consist of 1740 positive and 36865
negative windows (Figure 2C). The datasets were split in a
non-overlapping manner for hyperparameter tuning, model
training and model testing in a 10:72:18 relative propor-
tion (Figure 2F). However, since there are few examples
of known noncanonical interactions, they were all kept for
the test set (Supplemental Table S1). To avoid the redun-
dancy caused by multicopy snoRNA genes (53,54) we made
sure that members of the same snoRNA clan (or for snoR-
NAs that are not part of a clan, we considered families,
as defined for both clans and families by Rfam (33)) are
present in only one dataset. For example, no member of the
SNORD33 clan is included in the test set if other members
of the clan are present in the training set (details in Meth-
ods section). Together the selection criteria allow the identi-
fication of a broad range of targets, reduce redundancy and
decrease the dependency on the canonical mode of interac-
tion.

SnoGloBe accurately predicts a wide range of interactions

The model used by snoGloBe is a gradient boosting classi-
fier, which is a combination of multiple decision trees. The
hyperparameters were tuned on 10% of the data, using a
random search. The model was then trained on 72% of the
data using a 5-fold stratified cross-validation (Figure 2F).
The output of the prediction is a value between 0 and 1 rep-
resenting the probability of interaction. The performance of
the model was then evaluated on the test set. As indicated
in Supplemental Figure S4, snoGloBe clearly separated the
negative and positive examples in the independent test set,
giving the great majority of the negatives (96%) a score be-
low 0.1 and the majority of positives (63%) a score above
0.9.

To our knowledge, there is currently no available
snoRNA target prediction tool that is built to predict both
canonical and noncanonical box C/D snoRNA interac-
tions, so the model was compared to the closest tools we
could find: snoRNA specific interaction predictors and
general RNA duplex predictors including PLEXY (24),
snoscan (25), RNAup (34), RNAplex (34), RIsearch2 (38)

and IntaRNA (39) using the parameter values summarized
in Supplemental Figure S2. Since these tools were not cre-
ated for this specific task, they are not expected to per-
form as well, especially in the case of canonical snoRNA
interaction predictors that were trained to classify the non-
canonical interactions as negatives. The goal of this com-
parison is to show that snoGloBe is a good addition to the
current available tools, and not an evaluation of the other
tools’ ability to perform the task for which they were de-
signed. The comparison of these tools on the test set shows
that snoGloBe outperformed the other tools in predicting
the snoRNA interactions by obtaining the highest area un-
der the ROC and precision-recall curves (Figure 3A, B).
In addition, all the tools performed similarly on the test
set and the training set, including snoGloBe, hinting that
the model is able to generalize its learning on examples it
has never seen before (compare Supplemental Figure S5
and Figure 3A-B). PLEXY has the weakest performance,
which is expected since it only predicts interactions with
the ASE and the test set has interactions with all regions
of the snoRNA (Supplemental Figure S6). Interestingly,
snoGloBe performs better than general RNA–RNA inter-
action predictors, hinting that snoGloBe is doing more than
simple base-pair matching by capturing the specific infor-
mation defining snoRNA - target interactions. Indeed, an
analysis of the importance of each feature shows that the
relative position of the interaction in the snoRNA has a ma-
jor role in the classification, followed by information regard-
ing the sequence of the interaction in the snoRNA and the
target, and some biotypes, such as pseudogene and rRNA
(Supplemental Figure S7). This indicates that snoGloBe
takes into account a variety of information to classify the
interactions and not only the base-pairing.

We then determined the number of test set windows from
each category predicted as positive and negative for each
tool by using a threshold to obtain a 95% precision with ev-
ery tool (Supplemental Figure S2). SnoGloBe retrieves the
highest number of true positive windows, and the highest
proportion of known canonical, known noncanonical in-
teractions and HTRRI (Figure 3C, D, Supplemental Figure
S8). PLEXY retrieves the smallest number of positive win-
dows from the test set, and most are from known canonical
interactions. On the other hand, snoscan performs similarly
to generic RNA–RNA interaction prediction tools and is
able to retrieve interactions from all three categories, but
its performance decreases with the addition of snoRNAs
with degenerated boxes D and/or D’ (compare Figure 3D
and Supplemental Figure S8). Generic RNA–RNA interac-
tion predictors give similar results amongst themselves and
retrieve mostly known canonical and noncanonical inter-
actions. Interestingly, although snoGloBe was not trained
on any known noncanonical interaction, it outperformed
the other tools by identifying 74/94 noncanonical windows
(Figure 3D, Supplemental Figure S8). Every tool tested was
able to retrieve most of the known canonical interactions,
but only a minority of known noncanonical interactions
and even fewer HTRRI, except for snoGloBe which was
able to predict the majority of all three categories of pos-
itive examples. The least well predicted interaction category
is the HTRRI. Since the HTRRI identification methodol-
ogy is prone to false positives, it is possible that the mis-
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Figure 3. SnoGloBe performs better than available tools. (A) Receiver Operator Characteristic (ROC) and (B) Precision-Recall (PR) curves of different
tools calculated on the test set. The corresponding area under the curves (AUC) are indicated in the legend. (C) Table of performance measures from
different tools calculated on the test set with a threshold set to obtain a precision of 95%. PLEXY was only used on interactions from box C/D snoRNA
with non-degenerated boxes D and D’ (Supplemental Table S1) since the position and sequence of the boxes are required. (D) Upset plot representing the
overlaps between each tool prediction of the test set’s positive windows. The upset plot only shows the subset of the interactions that were considered for
PLEXY to ensure a fair comparison. The upset plot of all the test set’s positive windows is shown in Supplemental Figure S8. The proportion of positive
examples from each category predicted as positive (dark color) and negative (light color) by each tool is shown in the bottom right.
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classified HTRRI are in fact interactions only happening by
chance.

As an additional validation step, we added negative ex-
amples obtained by dinucleotide shuffling of positive inter-
action windows. These negative sequences differ from the
positive examples, but all the other input features stay the
same. As mentioned earlier, snoGloBe relies on a variety of
input features to classify a potential interaction, so the shuf-
fling of the sequence without modifying any other input fea-
tures represents a greater challenge for snoGloBe than for
the predictors mainly based on the sequence complemen-
tarity. We also added random negative windows to obtain
a ratio of 1000 random negative for each positive example,
to exacerbate the class imbalance and better represent the
fact that transcriptome is mostly not bound by C/D snoR-
NAs. As shown in Supplemental Figure S9A, every tool’s
performance is affected by the addition of these negative ex-
amples, but snoGloBe still displays the highest area under
the ROC and PR curves. The dinucleotide shuffled windows
are the hardest negative examples to classify as they get the
higher scores with every tool (Supplemental Figure S9B).
SnoGloBe still exhibits a good separation between the pos-
itive window scores and all three types of negative exam-
ples. Taken together, these data show that snoGloBe out-
performs current predictors as it predicts more interactions
with higher diversity and greater overall accuracy.

Transcriptome-wide snoGloBe predictions reveal an enrich-
ment of snoRNA interactions in messenger RNA regulatory
sequences

The interactions of every expressed human snoRNA were
predicted against all protein coding genes in human. As
many snoRNA copies in human are not expressed and
likely represent ‘dead’ copies in the genome (53), we re-
stricted our study to only those detected as expressed as
described in the Methods section. To limit the number of
predicted interactions, we used a stringent cut-off of 3 con-
secutive windows having a probability (i.e. snoGloBe out-
put score) greater than or equal to 0.98 (Supplemental Fig-
ure S10). With this threshold, we obtain a median of 1017
predicted interactions per snoRNA (Figure 4A). SnoR-
NAs with the highest number of predicted interactions in-
clude snoRNAs with known validated noncanonical tar-
gets like SNORD32A (>1500 interactions), SNORD83B
(>6000 interactions) and SNORD88C (>10 000 interac-
tions) (8,14,15). The global analysis of all snoRNA pre-
dicted interactions reveals a preference for the region up-
stream of the box D, even though interactions were pre-
dicted throughout the whole snoRNA length and the train-
ing and test sets displayed enriched interactions upstream
of both the boxes D and D’ (Figure 4B, Supplemental Fig-
ure S6). Interestingly however, individual snoRNAs show
different accumulation profiles along their length includ-
ing some with a clear preference for targets binding the
region upstream of the boxes D’ or D and others with a
square accumulation in regions other than those upstream
of boxes D/D’. For example, SNORD45C displays two
strong regions of target binding, found respectively up-
stream of the boxes D’ and D (Supplemental Figure S11A).
On the other hand, SNORD11 has only one such region,

upstream of the box D (Supplemental Figure S11B). In con-
trast, SNORD31B in Supplemental Figure S11 panel C and
SNORD18A in panel D both have only one clear target
binding region, overlapping and downstream of the box D’.
Interestingly, while most snoRNA target sequences were lo-
cated in introns, we detected enrichment in the exons and
exon-intron junctions when compared to the distribution
of these features in the transcriptome (Figure 4 compare
panels C and D). Indeed, the protein coding transcriptome
consists of 7.26% exonic sequences and 0.03% intron-exon
junctions (measured in terms of 13 nt windows as described
above), while 15.65% and 1.19% of the predicted snoRNA
interactions are found in these regions respectively, repre-
senting increases of >2-fold in exonic sequences and 40
fold in intron-exon junctions. Many exonic snoRNA inter-
actions are found in the 5′ or 3′ UTRs (Figure 4E, F), sug-
gesting a role in regulating translation, transcript stability
and/or 3′ end processing. Binding of snoRNAs to exonic
sequence accumulates in precise regions or hot spots argu-
ing for an organized binding program (Figure 4G). In ad-
dition, we found 15 snoRNAs that are predicted to interact
with highly similar copies of themselves located at differ-
ent genomic loci (i.e. the snoRNA and its copy are not lo-
cated in the same host gene). These copies are encoded on
the opposite strand of a protein coding gene, but none of
these copies have a host gene on the same strand, therefore,
they are unlikely to be expressed since most snoRNA de-
pend on the transcription of their overlapping host gene to
be produced (Supplemental Figure S12). This hints at the
possibility that a snoRNA could be retrotransposed anti-
sense to a protein coding gene to act as a regulatory region,
as already described for miRNA (55,56). We conclude that
binding of snoRNAs is not randomly distributed in the hu-
man transcriptome but targets specific regulatory elements
and in particular those regulating splicing and translation.

SnoGloBe uncovers functional specialization of snoRNA

Surprisingly, we found that snoRNAs do not feature uni-
form binding patterns or target preferences but instead dis-
play snoRNA or snoRNA family specific binding patterns.
For example, SNORD35A binding is increased on the 3′
splice site, snoU2-30 binding is enriched in the 5′ splice site
while SNORD38A shows an enrichment on the polypyrim-
idine tract (PPT) (Supplemental Figure S13). Some snoR-
NAs display even more convincing target sets, including
strong enrichment in specific gene elements of target genes
enriched in specific biological processes, as well as sig-
nificant overlap with functionally relevant RNA binding
protein (RBP) target sites. For example, SNORD50B was
found to be strongly enriched in 5′UTR binding of its tar-
gets and using its box D adjacent guide region (Supple-
mental Figure S14A, B). Gene ontology enrichment anal-
yses show that predicted targets of SNORD50B are in-
volved in neuronal functionality and genes coding for pro-
teins related to cell-cell interactions (Supplemental Figure
S14C). Many SNORD50B exonic targets bind alternative
5′UTRs, involving alternative transcription start sites, such
as those of NDFIP2, COPS3 and SPG21, which could lead
to transcript-specific effects (Supplemental Figure S15).
These possible regulatory events of SNORD50B are not
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Figure 4. Box C/D snoRNA predicted interactions across the coding transcriptome. (A) Histogram and boxplot (above) of the number of interactions
per snoRNA using a threshold of at least 3 consecutive windows having a probability greater than or equal to 0.98. Most snoRNAs have less than 2000
predicted interactions. (B) Distribution of the predicted region of interaction in all snoRNAs. The position in the snoRNAs is normalized between 0 and
1. The computationally identified boxes C, D’, C’ and D are respectively represented in green and purple. The predicted interactions are found throughout
the snoRNA, with an enrichment in the 3′ end. (C, D) Bar chart representing the proportion of exon, intron and intron-exon junction in the protein coding
transcriptome (C) and the box C/D predicted interactions in the targets (D). The predicted interactions are enriched in the exons and the intron-exon
junctions (D) compared to the protein coding transcriptome (C). (E, F) Doughnut charts representing the composition in terms of 13-nt windows of the
exons of the protein coding transcriptome (E) and the box C/D snoRNA predicted interactions in the targets (F). The predicted interactions located in
exons are mainly found in UTRs (F) and are enriched in 5′UTRs when compared to the protein coding transcriptome (E). (G) Distribution of the predicted
interactions 100 nucleotides upstream of exons (left), in the exon (middle), and 100 nucleotides downstream of the exons (right). The positions in the exons
are normalized between 0 and 1. The number of interactions is normalized by the number of existing features (exons or introns) at each position multiplied
by one million. The predicted interactions are uniformly distributed across the exons, there is a higher number of interactions predicted inside the exons
than in the flanking nucleotides.

randomly distributed but appear to target a specific group
of genes. In contrast to SNORD50B which is specialized in
targeting alternative 5′ UTRs, SNORD22 shows enriched
binding at the 3′ splice sites and PPTs of its targets, involv-
ing a non-ASE region of the snoRNA overlapping with the
box C’ (Supplemental Figure S16A, B). Many SNORD22 3′
splice site targets bind alternatively spliced exons including
in the diacylglycerol kinase zeta gene DGKZ, the amyloid

beta precursor protein binding family B member APBB1
and three hits on the same alternatively spliced exon in the
focal adhesion protein PXN (Supplemental Figure S17).
Gene ontology terms for SNORD22 targets are enriched
in membrane proteins, cell junctions and GTPases (Sup-
plemental Figure S16C). Together these data indicate that
snoRNAs use different mechanisms to identify their targets,
co-regulating players of a common cellular function.
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Overlap of the binding sites of snoRNAs and RNA binding
proteins

Comparison between the snoRNA binding sites identified
by snoGloBe and the binding sites of RNA binding pro-
teins (RBP) as determined by the ENCODE project us-
ing eCLIPs (43,45) indicated strong overlap between the
two. For example, both SNORD50B and SNORD22, which
show strong position enrichment and functional enrich-
ment of their targets, show strong overlap of their bind-
ing sites with those of specific RBPs (Supplemental Figures
S14D and S16D). In the case of SNORD50B, the strongest
enrichments include DDX3X a helicase known to bind
RNA G-quadruplexes in 5′UTRs, NCBP2 a cap-binding
protein interacting with pre-mRNA, BUD13 involved in
pre-mRNA splicing and FTO an RNA-demethylase in-
volved in the maturation of mRNAs, tRNAs and snRNAs,
supporting a role for SNORD50B in the maturation of pre-
mRNA and in particular their 5′ extremity. In contrast,
for SNORD22, the RBPs with strongest enrichment are
PCBP2 the poly(rC) binding protein, PTBP1 a PPT bind-
ing protein involved in the regulation of alternative splicing
as well as BUD13, PRPF8 and AQR all known as involved
in pre-mRNA splicing, supporting a role for SNORD22 in
the regulation of alternative splicing, through the binding
of PPTs. These data suggest that snoRNAs may influence
RBP function through collaborative or competitive binding
to the targeted RNA sequence.

SnoGloBe predicts functional regulatory targets

To evaluate the functional significance of snoGloBe’s pre-
dicted interactions, we experimentally measured the impact
of knocking down a model snoRNA on its predicted targets.
We chose SNORD126 as a model since it was implicated in
different cellular functions while most of the targets rele-
vant to these functions remain unidentified. This snoRNA
was originally thought to be an orphan (35), but was later
predicted to interact with and then shown to condition-
ally methylate the 28S rRNA (57,58). In addition, it was
shown that SNORD126 can activate the PI3K-AKT path-
way through a yet to be determined mechanism (59). The
SNORD126 interactions predicted by snoGloBe against
protein coding genes led to interesting profiles. Most of
the snoGloBe predicted interactions for this snoRNA in-
volve a non ASE sequence overlapping the D’ box suggest-
ing noncanonical methylation independent functions (Fig-
ure 5A and B). SNORD126 interactions are enriched in
exons (1.6-fold) and particularly enriched on intron-exon
junctions (>50-fold) compared to the protein coding tran-
scriptome composition (Figure 5C, D). The exons predicted
to be targeted by SNORD126 are enriched in 5′UTR (Fig-
ure 5E, F). SNORD126 predicted interactions are mostly
uniformly distributed in the target exons, with the exception
of notable enrichment around 80 nucleotides upstream of
the exons (Figure 5G). These data suggest that SNORD126
may regulate gene expression through modulation of RNA
stability and/or splicing.

To evaluate the impact of SNORD126 on splicing and
RNA stability we knocked it down using RNase H depen-
dent antisense oligonucleotides and monitored the impact

on the transcriptome using RNA-seq. The knockdown was
performed in the HepG2 cell line, which is frequently used
in genome wide analysis (45). In this cell line, 798 predicted
target genes are expressed at 1 TPM or higher. Overall, the
knockdown of SNORD126 resulted in the up regulation
of 340 genes and the down regulation of 710 genes, total-
ing 1050 protein coding genes, 65 of which are snoGloBe’s
predicted targets (Figure 5H). The overlap between the pre-
dicted targets and the differentially expressed genes shows a
significant enrichment (P-value < 0.0001 by random sam-
pling analysis as described in the Methods). The most up-
regulated predicted target following SNORD126 knock-
down is BNIP3L, a pro-apoptotic protein, and the pre-
dicted interaction is located in the intron. The upregula-
tion of BNIP3L following SNORD126 knockdown is in
line with SNORD126 oncogenic role through the activa-
tion of PI3K–AKT pathway (59) and this predicted inter-
action could be an interesting lead to elucidate the underly-
ing mechanism. On the other hand, the most downregulated
predicted target is DNAH17, a dynein component, and has
two predicted binding sites, one in an exon and one in an
intron, around 300 nucleotides upstream the exon. These
data suggest that one snoRNA can have different effect de-
pending on the binding characteristics, such as the number
of interactions and their region.

In addition to the change in expression, SNORD126
knockdown also altered the alternative splicing of tran-
scripts. 309 such events are affected by the knockdown of
SNORD126, 9 of which overlap a predicted SNORD126
binding site (P-value = 0.002). Amongst the interesting can-
didates, the target site of SNORD126 on CPT1B, encod-
ing a carnitine O-palmoyltransferase, overlaps an alterna-
tive 5′ splice site detected with a differential splicing pat-
tern and the target site of SNORD126 on MR1, which en-
codes a hydrolase involved in the NF-�B pathway, is near
a 3′ splice site for which the intron has an alternative 5′
extremity (Supplemental Figure S18). Interestingly, three
genes having an alternative splicing event overlapping a pre-
dicted interaction were also differentially expressed upon
SNORD126 knockdown: CPT1B, MR1 and DDX11, hint-
ing that SNORD126 could affect RNA stability through al-
ternative splicing.

To further evaluate snoGloBe’s performance in predict-
ing functionally relevant interactions, we compared it to
PLEXY (24), snoscan (25) and RIsearch2 (38), the gen-
eral RNA–RNA interaction predictor with the best area
under the ROC and Precision-Recall curves on the test
set (Figure 3A, B). For PLEXY and RISearch2, we used
an energy threshold of −20.4 kcal/mol, which is the av-
erage of snoRNA–rRNA duplexes recovered by PLEXY
(24), and for snoscan we used a score threshold of 25.91
as identified in (25). Comparing the predicted interactions
obtained by each tool in the protein coding transcriptome
to SNORD126 knockdown shows that a higher proportion
of the target genes predicted by snoscan are differentially
expressed genes, but snoscan predicts none of the alter-
native splicing events upon SNORD126 knockdown (Fig-
ure 5I). SnoGloBe’s predicted interactions have the high-
est proportion of alternative splicing events and the second
highest proportion differentially expressed genes follow-
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Figure 5. SNORD126 predicted targets are significantly affected by its knockdown. (A) The major interaction site in SNORD126 predicted by snoGloBe
is located in the middle of the snoRNA and doesn’t match the ASE upstream of the boxes D and D’ represented in purple. The accumulation profile
represents the proportion of SNORD126 predicted interactions overlapping each nucleotide in the snoRNA (blue) and the interactions predicted in
differentially expressed (DE) genes (orange). (B) Predicted folded structure of SNORD126 considering the main region of interaction. Mfold (61) was
used to predict the secondary structure of SNORD126, forcing nucleotides 37 to 53 to be single stranded (blue) through the unafold webserver. (C, D)
SNORD126 predicted interactions are enriched in the exons and the intron-exon junctions. (C) Shows the relative length of the different elements of the
protein coding transcriptome while (D) shows the relative proportion of the targets of SNORD126. (E, F) The predicted interactions located in exons are
enriched in 5′UTRs. (E) Doughnut chart showing the breakdown of the different constituents of exons in the protein coding transcriptome. (F) Doughnut
chart showing the same breakdown but only for regions targeted by SNORD126. (G) SNORD126 predicted interactions are uniformly distributed across
exons, with an enrichment around 80 nucleotides upstream of exons. (H) Volcano plot representing the impact of SNORD126 knockdown on protein
coding genes. The dots above the gray line are considered significantly differentially expressed (adjusted P-value ≤ 0.01). SNORD126 targets predicted
by snoGloBe are colored in blue, PLEXY in orange and snoscan in green. Targets predicted by more than one tool are represented by dots colored
by all corresponding tools. Only genes having a mean of 1 TPM across all samples are shown. (I) Bar plot representing the number of experimentally
validated events (LSV : local splicing variation, DEG: differentially expressed gene) having at least one overlapping predicted interaction per thousand
total SNORD126 predicted interactions by snoGloBe, PLEXY, snoscan and RIsearch2.
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ing SNORD126 knockdown. PLEXY performs similarly
to snoGloBe on the prediction of differential expression
targets, but the overlap between snoGloBe and PLEXY
predicted targets is small, hinting that both tools use dif-
ferent information and complement each other, whereas
all the differentially expressed genes predicted by snoscan
were also predicted by PLEXY (Supplemental Figure S19).
RIsearch2 has the highest number of false positives, un-
derlining the importance of using snoRNA specific predic-
tor to delineate high confidence interactions. Even though
snoGloBe provides an enhancement and complement in the
prediction of functional targets compared to other tools,
not all predicted targets are affected by SNORD126 knock-
down and several non-predicted targets were affected re-
flecting the complexity of the biological system that could
vary depending on the cell line, growth conditions and
propensity to secondary effects. The power of snoGloBe
in predicting functionally relevant targets is evident when
compared to HTRRI. In contrast to snoGloBe predictions
of SNORD126 for which a total of 72 were detected as ei-
ther stability and/or splicing targets following SNORD126
knockdown, only two SNORD126 interactions were iden-
tified in the HTRRI datasets, neither of which is detected
as affected by the SNORD126 knockdown, emphasizing
the usefulness of snoGloBe in addition to high-throughput
methodologies. We conclude that snoGloBe is an efficient
tool for the prediction of biologically relevant snoRNA–
RNA interactions.

SnoGloBe predicts interactions between human snoRNAs
and the SARS-CoV-2 transcriptome

As another example of the utility of snoGloBe, we ap-
plied it to the SARS-CoV-2 transcriptome. It has been
shown that the SARS-CoV-2 genome is heavily 2′-O-ribose
methylated and interacts strongly with snoRNAs using the
high-throughput structure probing methodology SPLASH
(22,60). Thus as another proof of concept for the utility
and capacity of snoGloBe, we predicted the interactions be-
tween human snoRNAs and the SARS-CoV-2 genome us-
ing snoGloBe. We detected 8818 interactions between 312
snoRNAs and the SARS-CoV-2 genome, the distribution
of which is shown in Figure 6A. One of the strongest inter-
action partners between SARS-CoV-2 and host transcripts
detected experimentally using SPLASH is with the box C/D
snoRNA SNORD27 (60). Although, the SPLASH experi-
ments were carried out in Vero-E6 cells from African green
monkey kidney, snoGloBe detects the SARS-CoV-2 inter-
action with human SNORD27 (Figure 6B), suggesting that
the interaction is also relevant in human.

SnoGloBe availability and usage

The snoGloBe code is written in Python using the machine
learning package scikit-learn (37). It is freely available and
can be downloaded from https://github.com/scottgroup/
snoGloBe. Users must provide a file with the sequences of
the snoRNAs of interest, the sequences of whole chromo-
somes, an annotation file in gtf format and a file with the
potential target identifiers to scan for snoRNA interactions.
Detailed instructions are available in the help manual.

DISCUSSION

Motivated by the continually increasing number of exam-
ples of snoRNAs interacting with noncanonical targets us-
ing diverse regions within but also without the ASE (Figure
1) as well as by the diversity in RNAs targeted by snoRNAs
(Figure 2A), we built snoGloBe, a box C/D snoRNA inter-
action predictor that considers the whole snoRNA and any
type of RNA target. SnoGloBe is a gradient boosting clas-
sifier that takes into account the sequence of the snoRNA
and of its potential target as well as the position in the
snoRNA and the type and position in the potential target.
Compared to general use RNA–RNA interaction predic-
tors that consider only sequence complementarity and the
interaction stability of the duplex, snoGloBe performs con-
siderably better, suggesting that considering snoRNA and
target features enhances the prediction. SnoGloBe also per-
forms better than the snoRNA-specific predictors PLEXY
and snoscan which were not built to predict interactions
outside of the snoRNA ASEs. Many such non-ASE interac-
tions are detected in HTRRI datasets and some have been
extensively validated for individual snoRNAs (Figure 1B),
limiting the scope of the PLEXY and snoscan predictors,
even though snoscan performs quite well on some known
noncanonical interactions. Interestingly a subset of positive
examples (32%) is not found by snoGloBe and while this
proportion is considerably lower than for all other predic-
tors considered (they miss >65% of positives in the test set,
Figure 3C), there is still room for improvement. This subset
involves mostly HTRRI and interactions displaying bulges
in the base pairing in one or both members of the inter-
action, which are more difficult to accurately identify and
will require different approaches and likely larger training
datasets for machine learning approaches to accurately pre-
dict them.

The study of the snoGloBe predicted interactions in
human is very interesting and opens numerous research
avenues that will likely lead to important insights into
snoRNA function. Dozens of snoRNAs display profiles
supporting the non-uniform distribution of predicted tar-
gets in pre-mRNA, with hundreds or even thousands of
targets enriched in common regulatory elements such as
PPTs, 5′ or 3′ splice sites and 5′ or 3′ UTRs (Figures 4
and 5,Supplemental Figures S13, S14 and S16). Each such
snoRNA target profile will require in depth integrative anal-
ysis to consider the possible functionality, molecular mech-
anism and ultimately cellular outcome of the collective reg-
ulation of these targets by the snoRNA. We began such
studies for SNORD50B, SNORD22 and SNORD126, all
three of which display strong enrichment for binding to
specific regulatory elements, respectively 5′ UTRs, PPTs/3′
splice sites and 3′ of introns. Manual review of their pre-
dicted targets led to the identification of a subset of such
binding events overlapping alternatively regulated events
(e.g. alternative 5′ UTRs for SNORD50B and alterna-
tively spliced exons for SNORD22, Supplemental Figures
S15 and S17). Gene ontology analysis of the targets show
strong enrichment for specific biological processes and pro-
vide convincing subsets of targets to focus on. Finally the
strong overlap between snoRNA predicted binding sites
and ENCODE-detected RBP binding sites is important evi-

https://github.com/scottgroup/snoGloBe
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Figure 6. Human box C/D snoRNAs are predicted to target the SARS-CoV-2 transcriptome. (A) Distribution of the number of predicted interactions
per snoRNA across the SARS-CoV-2 transcriptome. Human box C/D snoRNAs have a median of 22 predicted interactions having at least 3 consecutive
windows with a score greater or equal to 0.85 with SARS-CoV-2 transcriptome. (B) The validated interaction between African green monkey SNORD27
and SARS-CoV-2 is also predicted with human SNORD27. The validated interaction is shown in red, the nucleotide that differs between the African green
monkey and human SNORD27 is underlined. The predicted interaction is outlined by the box.

dence of the functional relevance of the interactions, partic-
ularly as the function of the RBPs with the strongest overlap
strongly supports the type of regulation likely carried out by
the snoRNA. Several molecular mechanisms could explain
the binding overlap of snoRNA and RBP at the same po-
sition on the same target pre-mRNA. The snoRNA could
be guiding the RBP to its target as snoRNAs do for core
snoRNA binding proteins such as FBL, and as has been re-
ported for nuclear exosome components as shown in (13).
However, since RNA binding motifs are known for several
of the RBPs considered and because snoRNAs have not
been found as enriched binding partners of all these RBPs,
it is likely that the snoRNAs and some of the RBPs are
competing for the same binding site. Further studies will
be required to define the snoRNA–RBP relationship and
its effect on the regulation of the targets. These overlap-
ping snoRNA–RBP targets could be revealing novel lev-
els of post-transcriptional regulation, the understanding of
which will be important in health and disease.

Analysis of the newly predicted targets suggests that
snoRNAs play an important role in regulating the splicing
and stability of protein coding RNA. Indeed, the knock-
down of a model snoRNA altered the stability and splic-
ing of predicted targets even when tested in a single cell
line and growth condition. Comparison with other tools
showed that snoscan predicted interactions have a greater
proportion of differentially expressed genes, followed by
snoGloBe and PLEXY. All of snoscan predicted differen-
tially expressed genes are also predicted by PLEXY, but
the overlap between PLEXY and snoscan, and snoGloBe

is low, indicating that they can be used together to identify
more valid targets (Supplemental Figure S19). SnoGloBe’s
predicted interactions have the highest proportion of al-
ternative splicing events (Figure 5I). SnoRNA–RNA inter-
actions are short, which is reflected in their minimal free
energy. Hence, when using general RNA–RNA interaction
predictors, the minimal free energy threshold can’t be set to
a very stringent value, resulting in a vast number of reported
interactions, emphasizing the importance of snoRNA spe-
cific tools to help narrow the search and rapidly identify
high confidence candidates. Meanwhile, by considering the
ensemble of the data generated by snoGloBe, certain missed
targets could be identified by virtue of independent neigh-
bourhood analysis or similarity of their effects on cellular
phenotype. Clearly most targets need to be ultimately vali-
dated experimentally and datasets like HTRRI will remain
valuable resources. However, the limitation of most experi-
mental approaches including the consideration of too few
cell types and growth conditions as well as the cost and
time involved makes them less useful for uncovering new
targets and condition-specific binding events. Additionally,
both the HTRRI datasets and snoGloBe likely predict in-
teractions that could occur in the cell but have no functional
consequences. SnoGloBe will continue to be improved in
an iterative cycle as more functionally validated snoRNA–
RNA interactions are identified.

Overall, while HTRRI datasets have collectively been
generated in a handful of cell lines, considerable time and
money would be required to explore normal human tis-
sues and diverse conditions using these methodologies.
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SnoGloBe predictions will be instrumental in filling the
gap by providing rapid predictions for snoRNA interac-
tions that can then be further investigated to better under-
stand cellular functionality. Our additional demonstration
that snoGloBe can be used to investigate the interactions
between snoRNAs and viral transcripts (Figure 6), further
widens its scope and utility.
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