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Introduction: Tumors are continuously evolving biological systems which can be
monitored by medical imaging. Previous studies only focus on single timepoint images,
whether the performance could be further improved by using serial noncontrast CT
imaging obtained during nodule follow-up management remains unclear. In this study, we
evaluated DL model for predicting tumor invasiveness of GGNs through analyzing time
series CT images

Methods: A total of 168 pathologically confirmed GGN cases (48 noninvasive lesions and
120 invasive lesions) were retrospectively collected and randomly assigned to the
development dataset (n = 123) and independent testing dataset (n = 45). All patients
underwent consecutive noncontrast CT examinations, and the baseline CT and 3-month
follow-up CT images were collected. The gross region of interest (ROI) patches containing
only tumor region and the full ROI patches including both tumor and peritumor regions
were cropped from CT images. A baseline model was built on the image features and
demographic features. Four DL models were proposed: two single-DL model using gross
ROI (model 1) or full ROI patches (model 3) from baseline CT images, and two serial-DL
models using gross ROI (model 2) or full ROI patches (model 4) from consecutive CT
images (baseline scan and 3-month follow-up scan). In addition, a combined model
integrating serial full ROI patches and clinical information was also constructed. The
performance of these predictive models was assessed with respect to discrimination and
clinical usefulness.

Results: The area under the curve (AUC) of the baseline model, models 1, 2, 3, and 4
were 0.562 [(95% confidence interval (C)], 0.406~0.710), 0.693 (95% CI, 0.538–0.822),
0.787 (95% CI, 0.639–0.895), 0.727 (95% CI, 0.573–0.849), and 0.811 (95% CI, 0.667–
0.912) in the independent testing dataset, respectively. The results indicated that the
peritumor region had potential to contribute to tumor invasiveness prediction, and the
model performance was further improved by integrating imaging scans at multiple
timepoints. Furthermore, the combined model showed best discrimination ability,
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with AUC, sensitivity, specificity, and accuracy achieving 0.831 (95% CI, 0.690–0.926),
86.7%, 73.3%, and 82.2%, respectively.

Conclusion: The DL model integrating full ROIs from serial CT images shows improved
predictive performance in differentiating noninvasive from invasive GGNs than the model
using only baseline CT images, which could benefit the clinical management of GGNs.
Keywords: ground-glass nodules (GGNs), deep learning - artificial neural network (DL-ANN), computed
tomography, follow-up, convolutional neural network
INTRODUCTION

Lung cancer is one of the most fatal cancers worldwide, and
pulmonary nodules may represent early lung cancers. The
National Lung Screening Trial and Dutch-Belgian Randomized
Lung Cancer Screening Trial demonstrated that early lung
cancer screening programs using low-dose computed
tomography (CT) of the chest should be implemented globally
(1). With the increasing use of CT screening for lung nodules—
in particular, the extensive application of high-resolution CT
(HRCT)—ground-glass nodules (GGNs) are observed
increasingly often. As HRCT scans of the chest are gradually
emerging as part of a routine physical examination, reasonable
and necessary management of screening-detected and
incidentally detected indeterminate pulmonary nodules
is warranted.

Persistent lung GGNs may represent noninvasive or
invasive adenocarcinoma. The prognosis of noninvasive
lesions (atypical adenomatous hyperplasia (AAH) and
adenocarcinoma in situ (AIS)) is quite different from that
of invasive lesions (minimally invasive adenocarcinoma
(MIA) and invasive adenocarcinoma (IAC)). Moreover,
different pathological subtypes of GGNs vary with respect
to the surgical approaches and clinical nodule management
strategies required. In general, conservative nodule management
is appropriate for noninvasive GGNs, whereas invasive
GGNs are suitable for surgical resection. The overall survival
rate after surgery for noninvasive GGN patients can be close
to 100%, and there is a promising 5-year survival rate of
80%–95% in the case of invasive GGNs. However, they are
characterized by very slow growth, so regular follow-up
management and a wait-and-see policy are advocated by
many experts (2). The Fleischner Society Guidelines for
management of incidental subsolid nodules was published
in 2017 and recommended follow-up intervals ranging from
3 months to several years (3). Guidelines for GGN management
mainly include qualitative characteristics and patient history
(e.g., smoking history and cancer history). Follow-up has a
crucial role in clinical decision-making and assessment of
surgical indication, and is increasingly recommended by
thoracic and pulmonary guidance.

Most previous CT-based quantitative studies have used single
screening images to estimate the invasiveness of GGNs on the
basis of size, density, and mass volume (4, 5). However, there are
known limitations to this approach owing to inter- and
intraobserver variability in morphological features of GGNs.
2

Nevertheless, in short-term follow-up, it is difficult to evaluate
the invasion characteristics of GGNs based on morphological
characteristics such as volume-doubling time and mass volume
(6). In recent years, artificial intelligence has achieved great
progress in the automatic quantitative image characterization
of medical images; in particular, deep learning (DL) algorithms
have proved to be versatile and efficient (1, 7). The clinical
application of AI is currently extensive. The image-based AI can
be used to distinguish the tissues of a COVID-19 patient and
assessed the severity of their infection. Additionally, DL
model can exhibit superior performance to that of general
physicians and general orthopedic surgeons on shoulder
radiographs in fracture datasets (8, 9). Owing to its favorable
performance, DL has been widely used for the early detection,
molecular subtype diagnosis, and prognosis prediction of
GGNs. Several previous studies have reported the application
of DL in predicting tumor invasiveness of GGNs. However,
those studies only focused on the development of CT imaging
biomarkers from a single timepoint, none of them had used
serial CT images including the follow-up scans (10, 11). Since
the evolution of tumor invasiveness is a dynamic biological
progression with stem cell and vascular contributions, CT
scan at a single time point might not capture the tumor
phenotype completely (12–15). Incorporation of serial
CT images from routine follow-up exanimations could be
beneficial to track the phenotypic changes of GGNs and
achieve more accurate diagnosis. There are few reports on
using medical images from multiple time points for diagnosis
(13, 16, 17). To the best of our knowledge, only two studies
have investigated the use of serial CT images with DL
algorithms for diagnosis of nodule malignancy or prognostic
prediction in lung cancer patients (13, 18). Therefore, it is
unclear whether the performance of DL models for predicting
tumor invasiveness of GGNs could be further improved by
using serial CT imaging.

In the current study, we aimed to analyze the characteristics
of lesions based on combined baseline scans and follow-up scan
images via artificial intelligence. We used DL methods—
specifically, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs)—to predict early-stage lung
adenocarcinoma presenting as GGNs by incorporating baseline
and 3-month follow-up CT images. Our results have potential
implications for the use of DL-based analysis of routine follow-
up CT scans in patients with GGNs, as DL can be applied to
predict tumor invasiveness noninvasively and is beneficial in
precision medicine as well as clinical therapy.
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METHODS

Study Population
This study was approved by the institutional ethics committee of
our hospital, and the informed consent requirement was waived.
Data for 1724 patients who underwent CT examinations and were
diagnosed as having GGNs between December 2015 and January
2020 were retrospectively retrieved from the picture archiving and
communication system (PACS). The exclusion criteria were as
follows: (1) the patient did not undergo biopsy or surgery in our
hospital, and tumor invasiveness status was not available (n =
1089); (2) lack of consecutive series of CT scans (n = 297); (3)
incomplete reconstructed thin-slice images (≤ 1.5 mm) or low
image quality (n = 30); (4) patient had received any previous
treatment before CT scan (n = 128); and (5) pleural or mediastinal
adhesion was present and GGNs were difficult to label on CT
images (n = 12). Finally, a total of 168 patients with 168 GGNs [13
atypical adenomatous hyperplasia (AAH), 107 minimally invasive
adenocarcinoma (MIA), 35 adenocarcinoma in situ (AIS), and 13
invasive adenocarcinoma (IAC)] were enrolled, and two
consecutive CT scans within about 3 months (82–109 days,
median 93 days) for each patient were used in this study. The
Frontiers in Oncology | www.frontiersin.org 3
invasiveness of GGNs was later confirmed through pathological
analysis. AAH and AIS were classified as noninvasive lesions, and
MIA and IAC were classified as invasive lesions. The study
workflow is depicted in Figure 1.

CT Image Acquisition
All patients underwent CT scanning at our hospital with the 750
HD CT (Discovery, GE Healthcare, North Richland Hills, TX,
USA) scanner or the 256 multidetector row scanner (Brilliance
iCT, Philips Healthcare, Cleveland, OH, USA). Scan parameters
were as follows: 0.625-mm slice thickness and 1.25-mm slice
spacing; 120 kV voltage; automatic tube-current modulation
with a mean tube current of 100 mA; 5 mm collimator, and a
512 × 512 matrix. All the thin-slice CT images were reviewed by
a thoracic radiologist with more than 10 years of experience in
chest CT for image qualitative evaluation.

Annotation and Pretreatment of
Tumor Regions
The GGNs in CT images were manually labeled by a radiologist
with 5 years of experiences in chest imaging using the ITK-SNAP
software (version 3.8.0, http://www.itksnap.org). The GGNs were
FIGURE 1 | Patient enrollment and study design.
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segmented at the lung window set (Window Width 1500 Hu,
Window Level -450 Hu) by carefully drawing a region of interest
(ROI) that traced the edge of the GGN on all axial images until
the entire GGN was covered. The annotation results were further
checked by another senior radiologist with 10 years of
experience. When the boundary of the GGN was uncertain, an
expert radiologist with more than 20 years of experience in lung
cancer diagnosis was consulted for the final decision. All
radiologists were blinded to the pathological results.

Before the development of the DL models, a resampling
approach was used for data pretreatment. The CT images were
rescaled to a uniform size with 1-mm isotropic voxel spacing,
then each manually labeled ROI was transformed and defined as
follows. (i) A 64 × 64 × 64-pixel three-dimensional (3D) patch
containing the nodule region which was cropped from each CT
image, and the size was determined based on the largest ROI. (ii)
The pathologically identified label of tumor invasiveness. As
previous studies have indicated that the peritumoral region
provides valuable insight for determining the prognosis of lung
cancer (19, 20), both the gross ROI patch and the full ROI patch
containing perinodular regions were automatically generated, as
the nonlesion area of the 3D patch was left padding zero or
reserving perinodular imaging (Figure 2).

Development of the Baseline Model
A baseline model was constructed by using the image and
demographic features including tumor size, location, age,
gender, cancer history, and smoking history. The logistic
regression (LR) analysis was used as the classifier. The baseline
model was built in the development dataset and validated in the
independent testing dataset.

Construction of the DL Models
Fifteen noninvasive lesions and 30 invasive lesions were firstly
randomly selected to serve as the independent testing dataset,
Frontiers in Oncology | www.frontiersin.org 4
and the remaining samples (33 noninvasive and 90 invasive)
were used as the development dataset. Owing to the limited
amount of training data, data augmentation techniques
including flipping (perpendicular to the x- and y-axis), random
shifting (15% towards the eight vertexes of the 3D patch),
random rotation (90°, 180°, and 270° perpendicular to the z-
axis), mirroring, and random brightness contrast (80%, 90%,
110%, and 120%) were used in the development of the neural
networks. After data augmentation, the sample size increased to
19 times that of the original, yielding a total of 2,337 samples in
the development dataset.

We employed a modified 3D ResNeXt34 as the backbone
network of the DL models, as the 3 × 3 2D convolution filters
were replaced by 3 × 3 × 3 3D convolution filters (21). Transfer
learning approach was applied to improve the robustness and
generalization of the DL models (22). To pretrain the modified
3D ResNeXt34 network in this study, a total of 178 pulmonary
nodules were manually labeled on the TCGA-LUAD, CPTAC-
LUAD, TCGA-LUSC, and CPTAC-LSCC datasets which were
downloaded from The Cancer Imaging Archive (TCIA)
database. For the prediction of tumor invasiveness based on
single or serial CT images, two kinds of DL models were
designed: the single-DL model using only the baseline CT
images as inputs and the serial-DL model using two
consecutive series (baseline and follow-up) CT images as
inputs. For the single-DL model, the 3D ResNeXt34-based
CNN with a fully connected layer was used to extract high-
dimensional features from the imaging data, followed by a soft-
max output layer to predict the probability of tumor
invasiveness. The neural architecture for the serial-DL model
included ResNeXt34-based CNN merged with a RNN
(Figure 3A). In brief, two weight-sharing 3D ResNeXt34
networks were used for feature extraction from two
consecutive series CT images, and the outputs of each CNN
model were fed into the RNN with a long short-term
FIGURE 2 | Examples of the automatedly generated gross ROI patch and full ROI patch.
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memory (LSTM) architecture as time-varying inputs
(Figure 3B). Therefore, four DL models were designed in our
study: a single-DL model using gross ROI patches as inputs
(model 1), a serial-DL model using gross ROI patches as
inputs (model 2), a single-DL model using full ROI patches
as inputs (model 3), and a serial-DL model using full ROI
patches as inputs (model 4).

The proposed single-DL models were trained based on the
binary cross-entropy loss function; the weights of hidden layers
were randomly initialized by Xavier, and the initial learning rate
was set to 0.0001. Adam was used as the optimizer in the training
stage owing to its fast convergence and weight-dependent
learning rate, and the beta 1 and beta 2 parameters were 0.9
and 0.99, respectively. In addition, a weighted oversampling
technique was used to train the model; only resampled
minibatches with a noninvasive/invasive ratio of 1:1 was
selected for training. The minibatch size was 24, and the
dropout rate was set to 0.5; other parameters were set to their
default values. As for the serial-DL models, there were three cells
in the LSTM unit with the dropout rate set to 0.8, and each cell
contained 512 features. The training was stopped when the loss
of function was stable (23). Since deep learning models based on
small sample size could be subject to obvious overfitting after a
certain number of epochs, the early stopping method was used to
halt parameter iteration for the model. The number of modeling
epochs was set between 60 and 100 in this study. The changes in
model efficiency (AUC) and cross-entropy loss function index
corresponding to each epoch in the training process of the DL
models were shown in Figure 4.

The code of these DL models was open sourced at https://
github.com/TangWen920812/3d-resnext-lstm.
Frontiers in Oncology | www.frontiersin.org 5
Supervised training was performed on a computer with a
Core i7-6700 K central processing unit (Intel, Santa Clara, CA,
USA), 32 GB memory, and a GeForce GTX 1080 graphics
processing unit (NVIDIA, Santa Clara, CA, USA). Python 3.6.8
(https://www.python.org) and the Mxnet 1.5.0 (https://mxnet.
incubator.apache.org) framework for neural networks were used
to construct the DL models. The development and independent
of the DL models were performed with InferScholar platform
version 3.3 (InferVision, China).

Development of the Combined Model
To integrate both serial CT images and clinical information, a
combined model was constructed by incorporating the following
candidate variables: age, gender, GGN size, GGN location, cancer
history, smoking history, and the invasiveness probability
calculated by the serial-DL model. The combined model was
developed in the development dataset by using linear support
vector machine (linear SVM) classifier, and the prediction value
was calculated using following formula:

Prediction value = −0:4061 ∗ gender  male = 1,  female = −1ð Þ
−0:0316 ∗ age + 0:5521 ∗GGN size + 0:6422 ∗RUL location  yes = 1,  no = 0ð Þ

− 0:5790∗RML location   yes = 1,  no = 0ð Þ − 1:9971 ∗ RLL location  yes = 1,  no = 0ð Þ
+1:1625 ∗ LUL location  yes = 1,  no = 0ð Þ+0:7715 ∗ LLL location  yes = 1,  no = 0ð Þ

+1:0314 ∗ cancer history  yes = 1,  no = 0ð Þ+0:4313 ∗ smoking history  yes = 1,  n = 0ð Þ
+39:818∗invasiveness probability−14:6215 ðLUL left upper lobe; LLL, left lower lobe;
 RUL,  right upper lobe; RML, right middle lobe ;  RLL, right lower lobe)

In addition, the decision curve analysis (DCA) was applied to
assess the clinical usefulness of the combined model as well as the
deep learning models on the independent testing dataset.
A

B

FIGURE 3 | Conceptual architecture of the single-DL model using only baseline CT images (A) and the serial-DL model integrating serial CT images at multiple
timepoints (B).
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Statistical Analysis
In order to evaluate the performance of the DL models for the
discrimination of noninvasive from invasive lesions, a receiver
operating characteristic (ROC) curve was plotted for the
calculation of sensitivity and specificity, and the area under the
curve (AUC) was determined. The sensitivity, specificity, and
accuracy were calculated under optimal threshold according to
the maximum Youden index (24). Delong’s test was used to
compare the differences between two or more AUCs of
different models. The association between categorical variables
was assessed by Chi-square test or Fisher’s exact test, and the
Mann–Whitney U test was performed to evaluate the differences
among variables with a continuous distribution. The DCA curve
was plotted using the “rmda” package. All analyses were
performed using Prism 5 for Windows (version 5.01), and a
two-sided p-value <0.05 was considered statistically significant.
RESULTS

Patient Characteristics
The clinicopathologic characteristics of the enrolled patients in
the independent and datasets are summarized in Table 1. There
Frontiers in Oncology | www.frontiersin.org 6
were no significant differences in gender, age, cancer history, or
smoking history between patients with noninvasive nodules and
those with invasive nodules in either the development or the
independent testing dataset (all p > 0.05). The prevalence of
GGN showed a greater tendency to occur in the upper lobe in the
noninvasive group compared with the invasive group (70.8%
[34/48] in the noninvasive group vs. 47.5% [57/120] in the
invasive group, p = 0.03). The average GGN in the invasive
group was larger than that of the noninvasive group across all
patients (p = 0.02); however, the differences were not significant
in the development dataset (p = 0.08) or the independent testing
dataset (p = 0.10).

Performance of Different
Predictive Models in the
Independent Testing Dataset
In the independent testing dataset, the baseline model
showed limited discrimination capability with the AUC,
accuracy, sensitivity, and specificity achieving 0.562 (95%
CI, 0.406–0.710), 64.4%, 67.7%, and 60.0%, respectively.
The result indicated that an effective diagnosis of tumor
invasion in GGNs was not possible when only using the
clinical variables.
A B

C D

FIGURE 4 | The model efficiency (AUC) and cross-entropy loss function corresponding to each epoch of the model 1 (A), model 2 (B), model 3 (C), and model 4
(D) during training process. The model efficiency corresponding to each epoch gradually increased while the model loss function decreased and eventually stabilized.
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The accuracy of DL models was 66.6% (model 1), 71.1%
(model 2), 75.6% (model 3), and 84.4% (model 4) in the
independent testing dataset. The AUCs of models 1 and 2
(using gross ROI patches as inputs) were 0.693 (95% CI,
0.538–0.822) and 0.787 (95% CI, 0.639–0.895), respectively
(Figures 5A, B), whereas that of models 3 and 4 (using full
ROI patches as inputs) were 0.727 (95% CI, 0.573–0.849) and
0.811 (95% CI, 0.667–0.912), respectively (Figures 5C, D). The
serial-DL models and the combined model outperformed the
baseline model with significant differences (Delong’s test, p =
0.046, 0.022, and 0.024 for model 2, model 4, and combined
model, respectively). The full ROI patch-based DL models
showed an increased performance tendency than the gross ROI
patch-based models; however, the differences were not
statistically significant (model 3 vs. model 1, p = 0.753, model
4 vs. model 2, p = 0.796). In addition, the AUC of serial CT
image-based DL models was also higher than that of single CT
image-based DL models (model 2 vs.model 1, p = 0.187, model 4
vs. model 3, p = 0.383). The accuracy of the serial-DL model
using full ROI was significantly higher than that of the single-DL
model using gross ROI (model 4 vs. model 1, 84.4% vs. 66.6%,
Chi-square test p = 0.049), indicating that the spatial pattern of
perinodular regions and incorporation of serial CT images could
facilitate the prediction of tumor invasiveness in patients
with GGNs.

Evaluation of the Combined Model
The combined model showed the best performance with AUC,
sensitivity, specificity, and accuracy achieving 0.831 (95% CI,
0.690–0.926), 86.7%, 73.3%, and 82.2%, in the independent
testing dataset, respectively (Figure 6A). The details of
the predictive performance of the baseline model, the DL
models, and the combined model are summarized in Table 2.
Frontiers in Oncology | www.frontiersin.org 7
DCA was used to evaluate the clinical usefulness of the
different predictive models. The results showed that the
combined model had a slightly higher overall net benefit
compared with the DL models across the majority of
probability threshold (Figure 6B).
DISCUSSION

In this study, we developed novel DL models to detect the
invasiveness of GGNs based on consecutive CT thin-scanned
images (baseline and 3-month follow-up scans). We found that
the peritumoral region could contribute to invasiveness
prediction. Notably, integrating consecutive serial CT images
further improved the performance of DL models for predicting
tumor invasiveness of GGNs. In addition, the combination of
clinical variables and risk probability calculated by DL model
showed favorable capability in distinguishing noninvasive GGNs
from invasive GGNs.

Previous studies have reported that the size of GGNs is a
critical risk factor for potential invasiveness (3–5, 21). Lee et al.
found that the optimal cutoff size for preinvasive lesions was less
than 10 mm (sensitivity, 53.33%; specificity, 100%) in a pure
GGN cohort; this could be used as a selection criterion to identify
patients suitable for sublobar resection (25). In addition, Kim
showed that 8 mm was the optimal cutoff value for
discrimination of noninvasive GGNs from invasive GGNs (26).
In short, these results combined with those of previous studies
indicate that the clinical feature of size is indeed highly correlated
with the invasiveness of GGNs (27). Notably, we also observed
significant differences in size between the preinvasive cohort and
the invasive cohort in the all-patient dataset (p < 0.05). However,
there were no such significant differences in either the
TABLE 1 | The clinicopathologic characteristics of enrolled patients.

All patients Development dataset Independent dataset

Noninvasive Invasive p-Value Noninvasive Invasive p-Value Noninvasive Invasive p-Value

Gender 0.67 0.19 0.27
Male 14 39 7 30 7 9
Female 34 81 26 60 8 21

Age (years) 0.16 0.11 0.83
Mean 46.8 49.8 45.7 49.7 49.1 50.0
SD 10.4 13.0 11.3 12.4 8.0 14.8

GGN size (mm) 0.02 0.08 0.10
Mean 7.6 9.1 7.8 9.0 7.3 9.3
SD 2.3 3.9 2.4 3.8 1.9 4.3

GGN location 0.06 0.05 0.53
LUL 18 30 11 23 7 7
LLL 3 19 2 13 1 6
RUL 16 27 13 20 3 7
RML 2 17 0 13 2 4
RLL 9 27 7 21 2 6

Cancer history 0.44 0.52 0.71
Yes 4 15 3 12 1 3
No 44 105 30 78 14 27

Smoking history 0.69 0.80 0.36
Yes 13 29 7 21 6 8
No 35 91 26 69 9 22
Sep
tember 2021 | Volu
me 11 | Article
GGN, ground-glass nodules; LUL, left upper lobe; LLL, left lower lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe.
725599

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. Artificial Intelligence, Follow-Up, Ground-Glass Nodules
independent testing dataset or the development dataset, although
the average GGN size of the invasive group was larger than that
of the noninvasive group in all patients.

The largest lung cancer screening trial in Europe showed that
malignant tumors were localized predominantly in the periphery
of lungs and the right upper lobe (27). Interestingly, in our study,
the GGNs in the noninvasive group showed a greater tendency to
occur in the upper lobe compared with the invasive group
(noninvasive group 34/48 vs. invasive group 57/120). This bias
is probably introduced in our study because of the difference
between tumor malignancy and tumor invasiveness.

However, previous studies had certain limitations. First, most
studies only considered whether clinical characteristics such as
smoking vs. nonsmoking or tumor history (yes vs. no) were
related to GGN growth. Few studies have evaluated the weights
of CT images and clinical information for predicting GGN
invasiveness with specific numerical formulas, which could be
better verified and recognized by radiologists. Second, the most
Frontiers in Oncology | www.frontiersin.org 8
of reported DL algorithms were applied to lung nodule
classification as benign or malignant, and they focus on a
single scan for the model input.

Most of the previous studies only considered the relation
between the quantitative radiographic characteristic and
pathologic classification that are limited at the single time-
point (19, 21, 28). In our study, we applied different DL
algorithms to predict the invasiveness of GGNs. The single-DL
models and serial-DL models that are based on whether they
used single or serial CT images were proposed, and their
performance was compared. This is a different approach from
the current method of predicting malignant nodules based on a
single CT scan (26, 28). We combined baseline and 3-month
follow-up continuous CT scan images to obtain the original
features and changed features that maximized the risk of tumor
invasion. Recently, numerous studies and guidelines have
advocated that early follow-up of patients with GGN should
replace unnecessary surgical resection (3, 5, 19). However, subtle
A B

C D

E

FIGURE 5 | ROC analysis of the predictive models in the independent testing dataset. (A) The baseline model. (B–E) The DL models.
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changes between the short-term follow-up images and the
baseline CT images are often invisible to mostly radiologists,
hence the need to evaluate invasiveness using DL algorithms.
Previous studies have shown that an increase of 2 mm or more in
diameter indicates that a GGN is growing; this change is often
related to the malignant characteristics of the nodule (26, 29). Qi
et al. showed that compared with the 2D diameter, a 20%
increase in volume can reflect the growth of GGNs with
greater sensitivity and accuracy (30). In addition, the
development of solid proportions is considered strong evidence
for clinical management of part-solid nodules (31). Recently,
increasing numbers of studies have shown that high-throughput
extraction of details that are not obvious or visible to the human
eye, using radiomics and artificial intelligence, has great
advantages and promising applications (11, 12, 32–34).
Therefore, considering the results of the above studies, it may
be reasonable to infer that the DL model incorporating both
follow-up and baseline CT scans could better predict the
invasiveness of nodules, enabling GGNs to be managed more
rationally and avoiding unnecessary surgical resection.

Several studies have reported that radiomics and DL
algorithms could be used to detect the invasiveness of GGNs.
However, most of these studies just focused on the nodules
Frontiers in Oncology | www.frontiersin.org 9
themselves, few had investigated the contribution of the
microgrowth environment to the prediction of tumor
invasiveness. Wu suggested that there were differences between
ICA andMIA/AIS in the radiomic features of cluster prominence
and the gray level run-length matrix in the surrounding area of
the tumor (35). Wang and Beig et al. found that clinical
interpretation of peritumoral radiomics features could be used
to differentiate adenocarcinoma from granuloma, predict the
characteristics of lymph node metastasis, and evaluate recurrence
rates after surgery (36, 37). Those reports indicated that the
peritumor regions of GGNs could be used for diagnosis
of invasiveness.

In our study, the proposed DL algorithms could be
categorized into two groups (gross ROI-DL and full ROI-DL)
depending on the size of the extracted GGN ROI range. The full
ROI patch containing both the nodules and perinodular regions
provided information on the nodules themselves as well as their
microgrowth environment. As expected, the full ROI group
(models 3 and 4) achieved higher AUC values for predicting
tumor invasiveness than the gross ROI group (models 1 and 2).
These findings suggested that the spatial pattern of perinodular
regions could also have a role in tumor invasiveness prediction.
In addition, the results were similar to those of previous
A B

FIGURE 6 | Performance evaluation of the combined model. (A) ROC analysis. (B) Decision curve analysis for the predictive models; the combined model had
higher net benefit compared with the other models across majority range of threshold probabilities.
TABLE 2 | Performance comparison of the predictive models in the independent dataset.

Models AUC (95% CI) p-Value Cut-off threshold Accuracy Sensitivity Specificity

Baseline 0.562 (0.406~0.710) Reference 0.5396 64.4% (29/45) 66.7% (20/30) 60.0% (9/15)
Model 1 0.693 (0.538~0.822) 0.314 0.5239 66.7% (30/45) 70.0% (21/30) 60.0% (9/15)
Model 2 0.787 (0.639~0.895) 0.046 0.5248 71.1% (32/45) 66.7% (20/30) 80.0% (12/15)
Model 3 0.727 (0.573~0.849) 0.197 0.4918 75.6% (34/45) 76.7% (23/30) 73.3% (11/15)
Model 4 0.811 (0.667~0.912) 0.022 0.4685 84.4% (38/45) 93.3% (28/30) 66.7% (10/15)
Combined 0.831 (0.690~0.926) 0.024 0.6570 82.2% (37/45) 86.7% (26/30) 73.3% (11/15)
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radiomics studies, in which combining texture features extracted
from both intranodular and perinodular regions led to better
performance compared with the single intranodular-based
approach (35, 37). Unfortunately, there are currently no
relevant authoritative studies or guidance on the specific size of
the perinodular region (38). Furthermore, the combined model
that integrated the serial CT images and clinical information
involved calculations using a specific formula for prediction.
DCA demonstrated that the combined model had a moderate
increase in overall net benefit compared with the DL models
(models 1–4).

To our knowledge, this is the first study combining the serial
CT imaging to corroborate the quantitative predictive
relationship between clinical-radiological characteristics and
invasiveness. Most previous studies focused on the time-to-
growth characteristics of tumors or the effectiveness of
computer-aided diagnosis. Yoshihisa reported that smoking
history and initial lesion diameter were strongly related to
GGN growth (18). Matsuguma et al. analyzed the growth of
174 subsolid GGNs during the follow-up period and found that
history of lung cancer was a significant predictive factor in GGN
growth (39). In recent years, various DL models have been
widely used to evaluate and detect changes in GGNs and have
shown excellent performance compared with radiologists (40,
41). Zhao et al. reported a DL system based on 3D CNNs, and
multitask learning, which achieved better classification
performance than senior and junior doctors in pathological
labeling of GGNs (41). Moreover, Ding et al. applied two models
for distinguishing degree of nodule invasiveness, the lung DL
model and dense model; both modes showed high performance
in terms of AUC (0.88 and 0.86, respectively), especially the
lung DL model (42).

Our study also had several limitations. First, it was a
retrospective single-center study and the number of GGNs
used for model development was limited; a prospective
Frontiers in Oncology | www.frontiersin.org 10
multicenter study with a larger sample size will be required in
the future. Second, the ROIs were mainly manually segmented.
Automatic detection and segmentation of GGNs will be
considered in our future research. Third, whether
incorporating more time-point serial CT images (e.g., 6-month
follow-up and 12-month follow-up) could further benefit DL
models in predicting tumor invasiveness still needs investigation.

In conclusion, integration of consecutive serial CT images
improves the predictive efficacy of DL models in differentiating
noninvasive GGNs from invasive GGNs, and the performance
could be further improved by incorporating clinical information.
The proposed DL models in this study show favorable
performance and might have the potential to assist clinicians
in tailoring precise therapy.
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