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Measles, caused by measles virus (MeV) infection, is the leading cause of death in chil-
dren because of secondary infections attributable to MeV-induced immune suppression.
Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis
in host cells (referred to as “shutoff”) and that viral mRNAs are preferentially translated
under shutoff conditions in infected cells. To determine the mechanism behind the pref-
erential translation of viral mRNA, we focused on the 5′ untranslated region (UTR) of
nucleocapsid (N) mRNA. The La/SSB autoantigen (La) was found to specifically bind to an
N-5′UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing
the N-5′UTR (N-fLuc), and RNA interference of La suppressed N-fLuc translation. Further-
more, recombinant MeV lacking the La-binding motif in the N-5′UTR displayed delayed
viral protein synthesis and growth kinetics at an early phase of infection. These results
suggest that La induced predominant translation of N mRNA via binding to its 5′UTR under
shutoff conditions. This is the first report on a cellular factor that specifically regulates
paramyxovirus mRNA translation.
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INTRODUCTION
Measles virus (MeV) infection causes a maculopapular rash, fever,
cough, and coryza (Griffin, 2007). Measles, caused by MeV, is the
leading cause of death in children, particularly in developing coun-
tries, because of secondary bacterial or parasitic infections attrib-
utable to MeV-induced immune suppression (Moss and Griffine,
2006). MeV also causes neurological diseases such as subacute scle-
rosing panencephalitis (Griffin, 2007). Although many research
studies have been conducted, many aspects of the pathogenesis of
MeV remain unclear.

Measles virus (genus Morbillivirus, within the family Paramyx-
oviridae) possesses a single-stranded RNA genome with negative
polarity. MeV has six genes on its genome [nucleocapsid (N),
phospho (P), matrix (M), fusion (F), hemagglutinin (H), and
large (L)] and produces eight proteins (V and C proteins are
produced from the P gene). The L gene encodes the L protein,
an RNA-dependent RNA polymerase that transcribes the tem-
plate RNA into new genomic RNA and viral mRNAs, together
with the N and P proteins (Griffin, 2007). MeV mRNAs are
capped at the 5′ end by L protein (Yoshikawa et al., 1986; Hercyk
et al., 1988) and are believed to be translated in a cap-dependent
manner.

Recently, we have shown that wild-type MeVs induce the “shut-
off” of host cellular protein synthesis in infected cells (Inoue
et al., 2009). Furthermore, we clarified that the phosphoryla-
tion of eukaryotic initiation factor (eIF) 2α and the binding of
MeV-N protein to eIF3-p40, which are cellular initiation factors
required for cap-dependent translation, are involved in the induc-
tion of this shutoff (Sato et al., 2007; Inoue et al., 2009). Severe

suppression of the cap-dependent translation of host proteins was
observed in infected cells, however, translated MeV proteins were
still clearly evident (Inoue et al., 2009). Thus, it is considered that
MeV mRNAs might have other mechanism(s) that facilitate their
specific translation under shutoff conditions.

Viruses have acquired various mechanisms for efficient mRNA
translation. Specifically, picornaviruses inhibit mRNA translation
of host cells at the initiation step, and viral mRNA undergoes
selective translation via an internal ribosome entry site (IRES) in
its 5′ untranslated region (UTR; Jang, 2006). Several cellular fac-
tors are reported to bind to the IRES and play roles in translation
independent of the cap structure (Jang, 2006).

On the other hand, the 5′UTR of MeV mRNAs is short (20–60
nt), except for F mRNA (570 nt), and does not contain a functional
structure similar to the IRES. However, based on the predicted
secondary structure of N-5′UTR, a short hairpin may form at
its 5′ end (Figure 1A). This implies that some specific cellular
factors may bind to the N-5′UTR via its sequence or secondary
structure and induce selective viral mRNA translation. To deter-
mine the mechanisms underlying the specific translation of MeV
mRNAs, we analyzed the translational efficiency with the N-5′UTR
and attempted to identify cellular factors mediating the specific
translation of N mRNA.

MATERIALS AND METHODS
CONSTRUCTION OF TEMPLATE PLASMID AND IN VITRO
TRANSCRIPTION OF REPORTER RNA
The DNA fragment containing the SP6 promoter followed
by the N-5′UTR of the HL strain of MeV was amplified
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FIGURE 1 | RNA containing the N-5′UTR escapes the shutoff effect

induced by MeVHL infection. (A) Sequence and computer-predicted
structure of the wild-type N-5′UTR. (B) Structure of N-fLuc reporter RNA
and c-rLuc reporter RNA. The 3′UTR and poly A tail of both types of RNAs,
and the 5′UTR of c-rLuc RNA were derived from the pTNT vector.
(C) Luciferase activity in mock- or MeV-infected B95a cells co-transfected
with N-fLuc (white bar) and c-rLuc RNA (gray bar).

by PCR from the cDNA of the MeV genome, using primers
5′-ATTTAGGTGACACTATAGAGGATTCAAGATCCTATTATCA-
GGGACAAGAGC-3′ and 5′-CCATGGCTCGGATATCCCTAATC-
CTGCTCTTGTCCCTGAT-3′. The PCR fragment was subcloned
into pCR2.1TOPO vector (Invitrogen, Carlsbad, CA, USA). After
confirming the sequence, the SP6-N-5′UTR fragment was ligated
to pGL3basic (Promega, Madison, WI, USA) at the KpnI and NcoI
sites. The“CC”residues in front of the AUG codon of the luciferase
open reading frame (ORF) at the NcoI site was deleted using

a QuikChange mutagenesis kit (Stratagene, La Jolla, CA, USA;
pGL3 + N�CC). The N-fLuc�CC fragment was digested with
XhoI and XbaI and inserted to the pTNT vector (Promega) at the
same site (pTNT-N-fLuc). N-fLuc with the polyA tail fragment
was inserted to pCR2.1TOPO at the XhoI and BamHI sites (N-
fLuc template plasmid; pCR2.1-N-fLuc). Deletion of the N-5′UTR
was performed with pGL3 + N�CC using the QuikChange muta-
genesis kit. After confirming the sequence, template plasmids were
prepared in a similar way to pCR2.1-N-fLuc. The ORF of renilla
luciferase, amplified from pRL-CMV (Promega) by PCR using
primers containing the SalI site at the 5′ end and the EcoRI site
at the 3′ end was inserted into pTNT at the SalI and EcoRI sites
(pTNT-rLuc) as control RNA. The capped RNAs were transcribed
from a linearized template with SP6 RNA polymerase using a Ribo-
MAX Large Scale RNA production kit-SP6 (Promega) and cap
analog (Promega). The capped RNA was purified by the method
recommended by the manufacturer.

RNA TRANSFECTION
RNA was transfected into B95a cells (Kobune et al., 1990)
derived from marmoset B cells which are highly susceptible
to MeV infection, and grown in RPMI 1640 medium supple-
mented with 5% fetal calf serum (FCS) using Lipofectamine2000
(Invitrogen). After 4 h of incubation, the HL strain of MeV was
infected into the B95a cells at a multiplicity of infection (moi)
of 1. At 24 h post infection (hpi), the cells were harvested and
luciferase activity was measured using a Dual Luciferase Assay kit
(Promega).

ELECTROPHORESIS MOBILITY SHIFT ASSAY AND ULTRAVIOLET
CROSS-LINK ASSAY
The fragment containing the SP6 promoter followed by the N-
5′UTR containing the KpnI site at the 3′ end was amplified by PCR
from the pGL3-N�CC plasmid and subcloned into pCR2.1TOPO
(pCR2.1-N). After confirming the sequence, pCR2.1-N was lin-
earized using KpnI and blunted to delete a 3′ overhang at the 3′
end of 5′UTR using a blunting kit (TAKARA BIO INC., Shiga,
Japan). The template of each deleted N-5′UTR probe was made
from pCR2.1-N using a QuikChange mutagenesis kit. 32P-labeled
RNA probes were transcribed from the templates with a ribo-
probe kit-SP6 (Promega) and [α-32P] UTP and purified by elec-
trophoresis in an 8% polyacrylamide gel denatured by 8 M urea.
The unlabeled probe was transcribed for competitor RNA. B95a
extract was prepared from B95a cells that were frozen and thawed
three times in buffer A [20 mM Tris-HCL (pH 7.5), 150 mM KCl,
1 mM DTT, and 1 mM EDTA]. His6-tagged recombinant La pro-
tein (rLa) was synthesized using the RTS 500 Wheat Germ CECF
kit and pIVEX1.4WG (Roche Applied Science, Basel, Switzerland)
in which the ORF of human La was inserted at the NcoI and SmaI
sites. rLa was purified using a Protino Ni 1000 prepacked col-
umn kit (MACHEREY-NAGEL, Düren, Germany). EMSA and a
UV cross-link assay were performed as previously described by
Park and Katze (1995). After electrophoresis, the gels were dried,
exposed to imaging plates (FUJI FILM, Tokyo, Japan) and visu-
alized with FLA5100 (FUJI FILM). Competitor RNA was added
to the B95a extract and preincubated at 30˚C for 10 min before
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adding the probe. The antibody against La (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) was added to the B95a extract and
preincubated on ice for 30 min prior to adding the probes.

IN VITRO TRANSLATION ASSAY
Cell-free translation S10 extracts from the suspension of COBL-a
cells (derived from human umbilical cord cells and highly suscep-
tible to MeV infection; Kobune et al., 2007) were prepared, and an
in vitro translation assay was performed according to the method
of Cuconati et al. (1998). After translation, luciferase activity was
measured with PicaGene (Toyo Inki, Tokyo, Japan).

RNA INTERFERENCE
The La-small interfering RNA (siRNA) target sequence (5′-
GUUGAACCGUCUAACAACAGA-3′) was designed using siDi-
rect software and purchased from RNAi Co., Ltd (Tokyo, Japan).
Silencer Negative Control #1 siRNA was purchased from Ambion
(Austin, TX, USA). Transfection experiments were performed
using X-tremeGENE siRNA Transfection Reagent (Roche Applied
Science) according to the manufacturer’s recommendation. After
48-h incubation, the cells were harvested and checked for the effi-
ciency of RNAi by Western blotting with antibodies against La
and β-actin (Santa Cruz Biotechnology). Reporter RNA was trans-
fected into HepG2 cells after the 48-h incubation following siRNA
transfection.

REVERSE GENETICS
To create recombinant MeV lacking the La-binding motif in the N-
5′UTR, a previously established plasmid encoding the cDNA of the
full-length genome of the HL strain of MeV was used (Terao-Muto
et al., 2008). Deletion of six nucleotides was introduced into the N-
5′UTR of the plasmid (genome position 66–71), and the resulting
plasmid was designated pMeV-6del. The recombinant MeVHL-
6del plasmid was generated from pMeV-6del. Briefly, 293 cells
were placed in a six-well culture dish, inoculated with a recombi-
nant vaccinia virus (MVA-T7) for 1 h, and then transfected with
1 μg of pMeV-6del, 1 μg of pKS-N1, 1 μg of pKS-P, and 0.3 μg of
pGEM-L per well, which expressed N, P, and L proteins, respec-
tively, under the control of a T7 promoter, using FuGENE6 (Roche
Applied Science). After incubation for 3 days, the cells were co-
cultivated with B95a cells at a concentration of 2 × 106 cells per
well, and further incubated until extensive cytopathic effects were
noted. The cells were collected and lysed by three cycles of freeze
thawing. After sonication, samples were centrifuged at 1500 × g
for 10 min to remove the cell debris and stored as a crude virus
stock at −80˚C.

VIRUS GROWTH
B95a cells (1 × 106 cells) were infected with wild-type MeVHL
or MeVHL-6del at an moi of 0.001 for 1 h. The inoculum was
removed and the cells were washed once with medium and then
incubated in medium containing 2.5% FCS. Cells and super-
natants were harvested at the indicated times, and three cycles of
freeze thawing were carried out. Infectivity was determined by tis-
sue culture infective dose 50 (TCID50) titration using the standard
method. The experiment was repeated twice.

RESULTS
ANALYSIS OF N-5′UTR FUNCTION IN TRANSLATION
Measles virus mRNAs possess unknown mechanism(s)
underlying their specific translation under shutoff conditions in
MeV-infected cells. To determine whether the 5′UTR of N mRNA
functions as the cis-element for translation in the MeV-infected
cells, we constructed a reporter RNA (N-fLuc) that has the N-
5′UTR in front of the ORF of the firefly luciferase gene (Figure 1B).
As a control for cellular RNA translation, renilla luciferase RNA
containing a leader sequence of β-globin mRNA in its 5′UTR was
also constructed (c-rLuc). MeV was infected after the reporter
RNAs were co-transfected into B95a cells. At 24 h postinfec-
tion, the cells were harvested, and luciferase activity was mea-
sured. The renilla luciferase activity derived from c-rLuc decreased
(Figure 1C), confirming our previous results that MeV infection
inhibited cap-dependent cellular mRNA translation (Inoue et al.,
2009). In contrast, the firefly luciferase activity derived from N-
fLuc was unaltered by MeV infection. This result suggests that N-
5′UTR plays an important role in the specific translation of MeV-N
mRNA in the shutoff conditions induced by MeV infection.

IDENTIFICATION OF CELLULAR PROTEINS THAT BIND TO N-5′UTR
To determine the presence of cellular proteins that specifically
bind to the N-5′UTR, EMSA was performed using an N-5′UTR
probe and B95a cell extracts (Figure 2A). The shift observed in the
electrophoretic mobility of the N-5′UTR probe indicated the pres-
ence of a protein in the extract that interacted with the N-5′UTR
probe (lane 1). Non-labeled RNA with the same sequence inhibited
protein–RNA complex formation in a concentration-dependent
manner (lanes 2–4). Since the protein–RNA interaction was not
inhibited when yeast tRNA was used as the competitor RNA (lanes
5 and 6), the formation of this complex could be specific for
N-5′UTR. A UV cross-link assay was performed to determine
the molecular weight of proteins that bind to N-5′UTR. Several
proteins that interacted with the N-5′UTR probe were observed
(Figure 2B, lane 1). Among these, three proteins (of 52, 40, and
35 kDa) formed a specific complex with the N-5′UTR because
their bands disappeared or the intensity of their bands decreased
when non-labeled RNA was included in the reaction mixture (lane
2). The 52-kDa protein had the same molecular weight as that of
the human La/SSB autoantigen (La). It has been reported that
La binds to IRES in several viral-encoded RNAs, enhancing their
translation (Jang, 2006). Although IRES is not present in MeV-N-
5′UTR, we analyzed whether or not La bound to N-5′UTR. When
an antibody against La was added to the EMSA reaction buffer
prior to adding the probe, we observed that the specific complex
(Figure 2C, lane 1) disappeared (lane 2). This was not observed
with the antibody against the polypyrimidine tract binding pro-
tein (PTB; lane 3). To examine whether La specifically binds to
N-5′UTR, rLa was constructed and subjected to EMSA along with
N-5′UTR. When rLa was added, an rLa-probe complex was clearly
observed (Figure 2D, lanes 2 and 3). Thus, several proteins in B95a
cells specifically bind to N-5′UTR, one of which is La.

La-BINDING REGION OF N-5′UTR
To determine the sequence in N-5′UTR that interacts with
La, deleted N-5′UTR probes (probes d1–d5) were constructed

www.frontiersin.org August 2011 | Volume 2 | Article 173 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive


Inoue et al. La enhances MeV mRNA translation

(Figure 3A) and subjected to EMSA with rLa (Figure 3B). Each
probe formed a complex with rLa, except the d2 probe that barely
interacted with rLa (lane 3). Thus, nt 11–20 of N-5′UTR are
required for the interaction with rLa. To evaluate the function of
the deleted region in the N-5′UTR in translation, deletions similar
to those in Figure 3A were introduced into N-fLuc (d1–d5-fLuc),

and their luciferase activities were measured at 4 hpi in MeV-
infected B95a cells co-transfected with mutant RNAs and c-rLuc.
The luciferase activity from the translated d2-fLuc in the B95a
cells was lower than that from other RNAs (Figure 3C). Because
the observed decrease was by 30%, other region(s) than nt 11–
20 may be involved in the interaction with La and the mRNA

FIGURE 2 | La specifically interacts with N-5′UTR. (A) EMSA was
performed with the N-5′UTR probe (P) and B95a cell extract. A specific
competitor was added at the indicated molar excess ratio (lanes 2–4). Yeast
tRNA was added at the indicated molar excess ratio as a non-specific
competitor (lanes 5 and 6). The specific complex is indicated by an arrow.
(B) The UV cross-link assay revealed that the molecular weight of
specific-binding protein (which disappeared with the addition of a specific

competitor RNA, lane 2) was approximately 35, 40, or 50 kDa (indicated by
arrows). (C) The antibody against La inhibited the interaction of N-5′UTR and
specific-binding protein (arrow; lane 2). As a control experiment, antibody
against PTB was added (lane 3). (D) Recombinant La binds to the N-5′UTR
probe. The probe (P) without rLa is shown in lane 1. rLa at the indicated dose
was added to the reaction (lanes 2 and 3). The arrow indicates the complex
derived from the rLa-probe.

FIGURE 3 |The interaction of La with N-5′UTR requires a specific nt

sequence in N (nt 11–20). (A) Outline of the deleted N-5′UTR probes used in
the EMSA. The broken lines indicate the deleted regions. (B) The binding
activity of rLa to the d2 probe was lower than that of other probes. The
interactions of rLa with the probes (La) and the free probe (P) are indicated by

arrows. (C) Luciferase activity of B95a cells transfected with the reporter RNA
containing various N-5′UTRs. The deletions indicated in (A) were introduced
into N-fLuc (d1–d5-fLuc). c-rLuc was co-transfected as an internal control. The
N-fLuc value was arbitrarily set at 100%. Statistical analysis was performed
using the Student’s t -test; *P < 0.01.
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translation. However, this result clearly indicated that nt 11–20
of N-5′UTR was required for the interaction with La and the
optimum translation of N-fLuc RNA.

La ENHANCES IN VITRO N-fLuc REPORTER RNA TRANSLATION
To determine the role of La in translation via N-5′UTR, an in vitro
translation assay was performed with a COBL-a S10 cell extract.
N-fLuc or d2-fLuc RNA was translated in the COBL-a S10 extract
containing rLa protein (Figure 4A). The luciferase activity trans-
lated from N-fLuc increased proportionally with the dose of rLa
protein. The proportional increase was not observed for luciferase
activity translated from d2-fLuc, indicating that La enhances N-
fLuc translation via the N-5′UTR. The weak effect of the additional
rLa on translation was probably due to the high amount of endoge-
nous La in all extracts. La is a major mammalian cell component
and its copy number reaches 2 × 107 copies/cell (Gottlieb and
Steitz, 1989). In the case of the COBL-a S10 extract, a large amount

FIGURE 4 | La enhances N-fLuc translation. (A) N-fLuc and d2-fLuc were
translated in COBL-a S10 cell extracts with rLa at the indicated quantity.
Statistical analysis was performed using the Student’s t -test; *P < 0.05.
(B) Expression level of La in HepG2 cells transfected with La siRNA (La) or
negative control siRNA (nega). After 48-h incubation, the expression levels
of La and actin on the same membrane were detected by western blotting.
The relative value of the La expression level was measured and is provided
under the panels. (C) The translation of N-fLuc in La siRNA-transfected
HepG2 cells decreased more than that in d2-fLuc. The luciferase activity in
HepG2 cells transfected with negative control siRNA was arbitrarily set at
100%.

of La was extracted (data not shown). To confirm the positive
effect of La on translation, RNAi was performed to knock down
La protein expression in HepG2 cells. Compared with the nega-
tive control siRNA-transfected cells, the La protein expression level
decreased to 50% in La siRNA-transfected cells (Figure 4B). Under
these conditions, N-fLuc or d2-fLuc RNA was transfected. Firefly
luciferase activity decreased to 60% of the control cells following
the knock down of La in the N-fLuc-transfected cells (Figure 4C).
In contrast, the effect of La RNAi on the luciferase activity in d2-
fLuc-transfected cells was less than that of N-fLuc (85% compared
with the control cells). These results imply that La enhances N-fLuc
translation by binding to the N-5′UTR in vivo.

INTERACTION OF La WITH N-5′UTR AFFECTS MV GROWTH EFFICIENCY
AT AN EARLY PHASE OF INFECTION
We further investigated the effect of La on viral RNA in the replicat-
ing state using a recombinant MeV generated by reverse genetics
(Terao-Muto et al., 2008). Because the genome length of Morbil-
liviruses, including MeV, is an integral of six (Kolakofsky et al.,
1998), we synthesized a new deletion probe (6del-probe) by delet-
ing nt 11–16 instead of nt 11–20 and tested the La interaction.
La did not bind to the 6del-probe in EMSA, and a reporter RNA
with the same deletion in the N-5′UTR showed low translation
efficiency comparable to d2-fLuc (data not shown). Therefore, we
performed reverse genetics using a plasmid encoding MeVHL full-
length genome cDNA, which lacks 6 nt of the La-binding motif
corresponding to the genome position 66–71, and generated the
recombinant MeV (MeVHL-6del). Wild-type strain and MeVHL-
6del were infected into B95a cells at an moi of 0.001 and harvested
at each time point indicated. In cells infected with the 6del strain,
the expression level of N protein lagged nearly 12 h behind that
of wild-type infected cells (Figure 5A). Growth kinetics of the
recombinant MeV indicated that production of infectious MeV
particles in cells infected with MeVHL-6del was also delayed at
an early phase of infection compared with the wild-type, and
then recovered rapidly and reached similar levels to wild-type
(Figure 5B). In MeV-infected cells, MeV-N is the first, most abun-
dantly, and excessively synthesized among all viral proteins, and is
necessary for viral genome replication and mRNA transcription,
and therefore for virus growth. MeV-N synthesis was delayed in
MeVHL-6del-infected cells approximately 12 h, and reached to the
same amount as wild-type at 36 hpi (Figure 5A). Therefore, the
virus growth kinetics was also delayed approximately 12 h, and
increased rapidly between 24 and 36 hpi and reached the maxi-
mum titer at 48 hpi. Thus, the impaired La interaction with the
N-5′UTR suppressed the translation efficiency of N mRNA and
consequently virus replication at an early stage of infection. This
result suggested that La contributes to synthesis of MeV proteins
after infection.

DISCUSSION
We demonstrated that the 5′UTR of MeV-N mRNA possesses a
function for selective translation under the shutoff conditions
induced by MeV infection (Figure 1). Moreover, La binds to
the N-5′UTR and plays an important role in the induction of
specific translation of N-5′UTR-driven mRNA in vitro and in vivo
(Figures 2–4).
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FIGURE 5 | La interaction with N-5′UTR affects the replication of MeV

at an early phase of infection. (A) The expression levels of N protein in
B95a cells infected with wild-type MeV or MeVHL-6del were determined by
western blotting. As an internal control, β-actin protein was measured.
(B) The growth kinetics of MeVHL-6del. Wild-type MeV (straight line) and
MeVHL-6del (dotted line) were inoculated to B95a cells at an moi of 0.001,
and harvested at the indicated time point. The average of two independent
measurements is shown.

La was first described as an autoantigen in patients with the
rheumatic diseases systemic lupus erythematosus and Sjogren’s
syndrome (Mattioli and Reichlin, 1974; Alspaugh et al., 1976).
To date, it has been revealed that La possesses at least two major
functions. First, La associates with various nascent RNAs tran-
scribed by RNA polymerase III, such as pre-tRNAs and pre-5S
rRNA, and plays a role in the regulation of RNA processing and
nuclear export and retention (reviewed in Ref. Wolin and Ceder-
vall, 2002). In this process, the La-binding motif (UUU-OH 3′)
and the underlying molecular mechanisms have been well charac-
terized. Many studies have indicated that the other major function
of La protein is in the translation of specific viral and cellular
mRNAs. For example, La binds to IRES in the 5′UTR of viral
RNAs such as poliovirus (Meerovitch et al., 1993) and hepati-
tis C virus (HCV) RNA (Jang, 2006), as well as some eukaryotic
mRNAs, namely, human immunoglobulin heavy chain binding
protein mRNA (Kim et al., 2001). La also interacts with the 5′
end of HIV mRNAs which contain no IRES but have a trans-
activation response (TAR) element (Chang et al., 1994; Svitkin
et al., 1994). These interactions are proposed to enhance RNA
translation (Ali and Siddiqui, 1995; Pudi et al., 2004). In addition,
La has a negative effect on the translation of mRNAs of ribo-
somal proteins and translation elongation factors which contain
the 5′ terminal oligopyrimidine tract sequence (Zhu et al., 2001).
These data suggest that La has various functions in translation
which maintain the optimal activity of interacting RNA. In this
study, we showed that La has a positive effect on the translation

of MeV-N-5′UTR-driven mRNA, although it contains neither an
IRES nor a TAR element. The precise mechanism of upregulation
of mRNA translation by La has not yet been elucidated, however,
one possible role has been discussed on the basis of the reported
function of La. La protein has been reported to function as a
helicase that unwinds double-stranded RNA (Xiao et al., 1994;
Hühu et al., 1997). The TAR element of HIV RNA is a stem-loop
structure and suppresses the translation of the following RNA
(Parkin et al., 1988), and La-binding enhances the translation of
TAR-driven RNA (Chang et al., 1994; Svitkin et al., 1994). These
reports imply that La functions as a helicase on the 5′UTR of
mRNA and serves as an RNA chaperone. The MeV-N-5′UTR has
a small stem-loop structure at its 5′ end consisting of nt 1–15
(Figure 1A), and the region responsible for La-binding is found
in the stem region (Figure 3). In Figure 3, d2 probe showed low
interaction with La, while d1 probe, which also lacks a part of
the stem-loop structure at 5′ end (Figure 1A), bound to La com-
parable to N probe. Interestingly, d1 probe is estimated to form
an alternative short hairpin structure at the 5′ end, which con-
sists of nt 12–26, from a secondary structure prediction (data not
shown). It suggests that La bound to d1 probe via the alternative
stem structure at 5′ end. Thus, unwinding of the stem structure by
La may result in the efficient translation of MeV-N mRNA. Alter-
natively, previous reports indicated that the binding of La to the
stem-loop IV region of HCV IRES facilitates the formation of the
48S ribosomal complex on IRES (Costa-Mattioli et al., 2004; Pudi
et al., 2004). Therefore, the binding of La to the N-5′UTR might
facilitate formation of the ribosomal complex at the 5′ end. Inter-
estingly, secondary structure predictions have indicated that not
only N but also other MeV mRNAs, except for F, possess similar
small stem-loop structures on their 5′UTR, and our preliminary
experiments suggest that each 5′UTR can bind to La in vitro (data
not shown). These findings indicate that efficient translation of
other MeV mRNAs under shutoff conditions is also upregulated
by similar mechanisms.

Recently, an additional function of La has been proposed in
negative strand viruses, in which La binds to the leader RNA of
viruses such as the human parainfluenza virus, vesicular stomatitis
virus, rinderpest virus, and respiratory syncytial virus (Wilstz et al.,
1983; De et al., 1996; Raha et al., 2004; Bitko et al., 2008). In par-
ticular, the leader RNA of rinderpest virus, which is closely related
to MeV, specifically binds to La and this interaction enhances the
replication/transcription of viral RNA (Raha et al., 2004). In addi-
tion, a more recent report indicated that La binds to the leader
RNA of respiratory syncytial virus and shields it from RIG-I fol-
lowed by abrogation of the early viral activation of type I interferon
(Bitko et al., 2008). These results imply that La contributes to virus
replication in multiple systems.

A previous study suggested that sufficient intracellular accu-
mulation of N protein is required for viral genome replication
(Lamb and Kolakofsky, 2001). Moreover, a recent report showed
that a siRNA that specifically targets MeV-N represses the syn-
thesis of viral mRNAs and genomic RNA (Reuter et al., 2006).
These findings indicate that the efficient expression of N protein
is important for virus replication. N protein binds to the viral
genome and forms a ribonucleoprotein complex with P and L
proteins, which acts as a template for viral genome replication
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and transcription. Therefore, interference of N protein expression
might result in the suppression of MeV transcription and replica-
tion. In this study, we demonstrated that the lack of La-binding
to N-5′UTR, which elicits lower expression of N protein, caused a
delay in N protein synthesis and virus replication at an early phase
of infection (Figure 5). This suggests that the binding of La to
N-5′UTR contributes to the rapid expression of N protein which
in turn facilitates efficient virus growth.

In conclusion, our study revealed that a host protein, La
autoantigen, enhances the translation of RNA containing N-
5′UTR, and that La interaction can facilitate escape from the
shutoff effect induced by MeV infection. This is the first report

of a cellular factor that specifically regulates morbilliviral mRNA
translation. Further studies are required to clarify the overall
mechanism underlying the upregulation of mRNA translation and
its implication in the pathogenesis of MeV.

ACKNOWLEDGMENTS
We thank Dr. K. Ito (Institute of Medical Science, The University
of Tokyo) for providing valuable insights and for critical read-
ing of this manuscript. This work was supported by grants from
the Japanese Ministry of Education, Culture, Sports, Science and
Technology, and the Bio-oriented Technology Research Advance
Institution.

REFERENCES
Ali, N., and Siddiqui, A. (1995). The La

antigen binds 5′ noncoding region
of the hepatitis C virus RNA in
the context of the initiator AUG
codon and stimulates internal ribo-
some entry site-mediated transla-
tion. Proc. Natl. Acad. Sci. U.S.A. 94,
2249–2254.

Alspaugh, M. A., Talal, N., and Tan,
E. M. (1976). Differentiation and
characterization of autoantibodies
and their antigens in Sjogren’s
syndrome. Arthritis Rheum. 19,
216–222.

Bitko, V., Musiyenko, A., Bayfield, M.
A., Maraia, R. J., and Barik, S.
(2008). Cellular La protein shields
nonsegmented negative-strand RNA
viral leader RNA from RIG-I
and enhances virus growth by
diverse mechanisms. J. Virol. 82,
7977–7987.

Chang, Y. N., Kenan, D. J., Keene, J.
D., Gatignol, A., and Jeang, K. T.
(1994). Direct interactions between
autoantigen La and human immun-
odeficiency virus leader RNA. J.
Virol. 68, 7008–7020.

Costa-Mattioli, M., Svitkin, Y., and
Sonenberg, N. (2004). La autoanti-
gen is necessary for optimal func-
tion of the poliovirus and hepatitis
C virus internal ribosome entry site
in vivo and in vitro. Mol. Cell. Biol.
24, 6861–6870.

Cuconati, A., Molla, A., and Wimmer,
E. (1998). Brefeldin A inhibits cell-
free, de novo synthesis of poliovirus.
J. Virol. 72, 6456–6464.

De, B. P., Gupta, S., Zhao, H., Drazba, J.
A., and Banerjee, A. (1996). Specific
interaction in vitro and in vivo of
glyceraldehyde-3-phosphate dehy-
drogenase and LA protein with
cis-acting RNAs of human parain-
fluenza virus type 3. J. Biol. Chem.
271, 24728–24735.

Gottlieb, E., and Steitz, J. A. (1989).
The RNA binding protein La influ-
ences both the accuracy and the
efficiency of RNA polymerase II

transcription in vitro. EMBO J. 8,
841–850.

Griffin, D. E. (2007). “Measles virus,”
in Fields Virology, 5th Edn, Vol. 2,
eds D. M. Knipe and P. M. How-
ley (Philadelphia, PA: Lippincott
Williams & Wilkins), 1551–1586.

Hercyk, N., Horikami, S. M., and Moyer,
S. A. (1988). The vesicular stomatitis
virus L protein possesses the mRNA
methyltransferase activities. Virology
163, 222–225.

Hühu, P., Prujin, G. J. M., Van Venrooji,
W. J., and Bachmann, M. (1997).
Characterization of the autoanti-
gen La (SS-B) as a dsRNA unwind-
ing enzyme. Nucleic Acids Res. 25,
410–416.

Inoue, Y., Tsukiyama-Kohara, K.,
Yoneda, M., Sato, H., and Kai, C.
(2009). Inhibition of host protein
synthesis in B95a cells infected with
the HL strain of measles virus.
Comp. Immunol. Microbiol. Infect.
Dis. 32, 29–41.

Jang, S. K. (2006). Internal initiation:
IRES elements of picornaviruses and
hepatitis c virus. Virus Res. 119,2–15.

Kim, A. K., Back, S. H., Rho, J., Lee,
S. H., and Jang, S. K. (2001). La
autoantigen enhances translation of
BiP mRNA. Nucleic Acids Res. 29,
5009–5016.

Kobune, F., Ami, Y., Katayama, M.,
Takahashi, M., Tuul, R., Koruklu-
oglu, G., Kiyohara, T., Miura, R.,
Sato, H., Yoneda, M., and Kai, C.
(2007). A novel monolayer cell line
derived from human umbilical cord
blood cells shows high sensitivity
to measles virus. J. Gen. Virol. 88,
1565–1567.

Kobune, F., Sakata, H., and Sugiura,
A. (1990). Marmoset lymphoblas-
toid cells as a sensitive host for iso-
lation of measles virus. J. Virol. 64,
700–705.

Kolakofsky, D., Pelet, T., Garcin, D.,
Hausmann, S., Curran, J., and
Roux, L. (1998). Paramyxovirus
RNA synthesis and the requirement
for hexamer genome length: the

rule of six revisited. J. Virol. 72,
891–899.

Lamb, R. A., and Kolakofsky, D.
(2001). Fields virology, 4th Edn,
Vol. 1. Philadelphia, PA: Lippincott
Williams & Wilkins, 1305–1340.

Mattioli, M., and Reichlin, M. (1974).
Heterogeneity of RNA protein anti-
gen reactive with sera of patients
with systemic lupus arythematosus.
Description of a cytoplasmic non-
ribosomal antigen. Arthritis Rheum.
17, 421–429.

Meerovitch, K. S., Svitkin, Y. V., Lee,
H. S., Lejbkowicz, F., Kenan, D. J.,
Chan, E. K., Agol, V. I., Keene, J.
D., and Sonenberg, N. (1993). La
autoantigen enhances and corrects
aberrant translation of poliovirus
RNA in reticulocyte lysate. J. Virol.
67, 3798–3807.

Moss, W. J., and Griffine, D. E. (2006).
Global measles elimination. Nat.
Rev. Microbiol. 4, 900–908.

Park, Y. W., and Katze, M. G. (1995).
Translational control by influenza
virus. Identification of cis-acting
sequence and trans-acting factors
which may regulate selective viral
mRNA translation. J. Biol. Chem.
270, 28433–28439.

Parkin, N. T., Cohen, E. A., Darveau,
A., Rosen, C., Haseltine, W., and
Sonenberg, N. (1988). Mutational
analysis of the 5′non-coding region
of human immunodeficiency virus
type 1: effects of secondary struc-
ture on translation. EMBO J. 7,
2831–2837.

Pudi, R., Srivasan, P., and Das, S. (2004).
La protein binding at the GCAC
site near the initiator AUG facil-
itate the ribosomal assembly on
the hepatitis c virus RNA to influ-
ence internal ribosomal entry site-
mediated translation. J. Biol. Chem.
279, 29879–29888.

Raha, T., Pudi, R., Das, S., and Shaila, M.
S. (2004). Leader RNA of rinderpest
virus binds specifically with cellular
La protein: a possible role in virus
replication. Virus Res. 104, 101–109.

Reuter, T., Weissbrich, B., Schneider-
Schaulies, S., and Schneider-
Schaulies, J. (2006). RNA
interference with measles virus
N, P, and L mRNAs efficiently
prevents and with matrix protein
mRNA enhances viral transcription.
J. Virol. 80, 5951–5957.

Sato, H., Masuda, M., Kanai, M.,
Tsukiyama-Kohara, K., Yoneda, M.,
and Kai, C. (2007). Measles virus
N protein inhibits host translation
by binding to eIF3-p40. J. Virol. 81,
11569–11576.

Svitkin, Y. V., Pause, A., and Sonen-
berg, N. (1994). Autoantigen allevi-
ates translational repression by the
5′ leader sequence of the human
immunodeficiency virus type 1
mRNA. J. Virol. 68, 7001–7007.

Terao-Muto, Y., Yoneda, M., Seki, T.,
Watanabe, A., Tsukiyama-Kohara,
K., Fujita, K., and Kai, C. (2008).
Heparin-like glycosaminoglycans
prevent the infection of measles
virus in SLAM-negative cell lines.
Antiviral Res. 80, 370–376.

Wilstz, J., Kurilla, M. G., and Keene, J. D.
(1983). A host protein (La) binds to a
unique species of minus-sense leader
RNA during replication of vesicular
stomatitis virus. Proc. Natl. Acad. Sci.
U.S.A. 80, 5827–5831.

Wolin, S. L., and Cedervall, T. (2002).
The La protein. Annu. Rev. Biochem.
71, 375–403.

Xiao,Q.,Sharp,T.V., Jeffrey, I. W., James,
M. C., Prijin, G. J. M., Van Venrooji,
W. J., and Clemens, M. J. (1994).
The La antigen inhibits the acti-
vation of the interferon-inducible
protein kinase PKR by seques-
tering and unwinding double-
stranded RNA. Nucleic Acids Res. 22,
2512–2518.

Yoshikawa, Y., Mizumoto, K., and
Yamanouchi, K. (1986). Charac-
terization of messenger RNAs of
measles virus. J. Gen. Virol. 67,
2807–2812.

Zhu, J., Hayakawa, A., Kakegawa, T., and
Kasper, R. L. (2001). Binding of the

www.frontiersin.org August 2011 | Volume 2 | Article 173 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive


Inoue et al. La enhances MeV mRNA translation

La autoantigen to the 5′ untrans-
lated region of a chimeric human
translation elongation factor 1A
reporter mRNA inhibits translation
in vitro. Biochim. Biophys. Acta 1521,
19–29.

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 02 June 2011; accepted: 02
August 2011; published online: 23 August
2011.

Citation: Inoue Y, Sato H, Fujita K,
Tsukiyama-Kohara K, Yoneda M and
Kai C (2011) Selective translation of
the measles virus nucleocapsid mRNA by
La protein. Front. Microbio. 2:173. doi:
10.3389/fmicb.2011.00173
This article was submitted to Frontiers
in Virology, a specialty of Frontiers in
Microbiology.

Copyright © 2011 Inoue, Sato, Fujita,
Tsukiyama-Kohara, Yoneda and Kai.
This is an open-access article subject
to a non-exclusive license between the
authors and Frontiers Media SA, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Frontiers in Microbiology | Virology August 2011 | Volume 2 | Article 173 | 8

http://dx.doi.org/10.3389/fmicb.2011.00173
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Virology
http://www.frontiersin.org/Virology/archive

	Selective translation of the measles virus nucleocapsid mRNA by La protein
	Introduction
	Materials and Methods
	Construction of template plasmid and in vitro transcription of reporter RNA
	RNA transfection
	Electrophoresis mobility shift assay and ultraviolet cross-link assay
	In vitro translation assay
	RNA interference
	Reverse genetics
	Virus growth

	Results
	Analysis of N-5UTR function in translation
	Identification of cellular proteins that bind to N-5UTR
	La-binding region of N-5UTR
	La enhances in vitro N-fLuc reporter RNA translation
	Interaction of La with N-5UTR affects MV growth efficiency at an early phase of infection

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


