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Abstract: Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF
contamination entering the feed and food chain has been a crucial long-term issue for veterinarians,
medicals, agroindustry experts, and researchers working in this field. Although different (physical,
chemical, and biological) technologies have been developed, tested, and employed to mitigate the
detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce
AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and
fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive
exclusion or biofungicides, and post-harvest technologies and practices based on biological agents
currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol
technologies can give us the greatest opportunity to reduce AF production on the spot. Together with
post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce
AF contamination without synthetic chemicals.

Keywords: biocontrol; aflatoxin; pre-harvest; post-harvest; non-aflatoxigenic; ruminal

Key Contribution: Elimination of aflatoxins from commodities is possible only in field applications
or under unique microbial processes. The new and promising technologies need to be made available
by the authorities to fight against contamination.

1. Introduction

Aflatoxins (AFs) are furanocoumarin derivative mycotoxins biosynthesized by As-
pergillus species, among which Aspergillus flavus, A. parasiticus, A. nomiae, and A. pseudota-
marii are regarded as primary producers [1]. AFs can contaminate various products (e.g.,
cereals, oilseeds, nuts, spices, fruits, dried fruits, and milk) [2]. Regarding the background
of the AFs production, the regulation of the AF gene clusters is still studied intensively [3].
The ecology of the AF-producer fungi is remarkably complex, and most likely, interac-
tions of the producer fungal species with host plants and the soil micro- and macrobiota
should be considered in detail to reach a deeper understanding of the reasons for AF
production [4].

AFs are among the most dangerous compounds affecting the physiological processes
of animals and humans disadvantageously. AFs are mutagenic, teratogenic, genotoxic, and
carcinogenic under long-term exposure [5–7]. AFs may enter the feed and food chain at
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any time point from pre-harvest to human consumption [6,8,9]. These toxins are typically
absorbed from the gut in both animals and humans and transferred into different body
parts, where they can be chemically bonded or modified. Pathological dysfunction of the
liver and kidneys, the gastrointestinal tract, and the immune and reproductive systems
have been reported in both humans and livestock under AF exposition [5,6]. AF derivatives
like aflatoxin M1 (AFM1) are eventually excreted in animals and cause contamination of
milk and milk products [10–13]. At the same time, AFM1 can be produced in fungal
contamination [14]. It may disturb the early development of embryos after getting through
the placenta [6,15]. In breastfeeding, AFM1 is threatening even human newborns [12,13].
The direct contamination of fermented milk products like cheese by AF-producer molds
and their metabolites has also been described in many cases [16].

Researchers work actively to prevent mycotoxin formation and carry-over because
the dangerous effects of AFs on livestock and human health cannot be underestimated.
Prevention methods and protocols set into operation pre- and postharvest, for example,
good agricultural and manufacturing practices (like deep plowing and grain sorting) and
appropriate storage conditions (cold, dry environment), are regarded as the best choices to
reduce the AF contamination in feed and food. However, these are not always possible [7].

AFs do not decompose quickly because of their remarkable stability [17,18]. Therefore,
preventing the growth of AF-producer fungi and detoxification of contaminated feeds
and foods is critical. Several chemical (e.g., fungicides), physical (e.g., radiation), and
biological detoxification methods were investigated and applied [19]. The chemical and
physical methods may lead to nutrient reduction and sensory property changes, and mount
food safety problems [20,21]. The biological prevention methods take advantage of the
adverse effects of selected microorganisms, including bacteria, yeasts, and nontoxigenic
molds, on the growth and AF production of toxigenic fungal strains. The adverse effects
of these techniques are based on space and nutrient competitions (competitive exclusion),
or biological interactions like antibiosis. The microorganism-based biological control
technologies can be reasonable solutions for controlling and reducing pre- and post-harvest
AF contamination in crops and food products. Notably, such biological control technologies
have been commercialized and are available on the market [22–24].

In this review, special attention is paid to reducing AFs by biological methods in
feed and food pre- and post-harvest and emphasizing promising novel and innovative
approaches and technologies.

2. Document Analysis

The aim was to gain information on AF and Aspergillus mitigations work with any
microbial or biological agents. Therefore, different online libraries (PubMed, Google
Scholar, Science Direct, and Mendeley) were searched for the following terms and phrases:
“aflatoxin degradation”, “aflatoxin binding”, “aflatoxin AND ruminal degradation”, “non-
aflatoxigenic Aspergillus”, “atoxigenic Aspergillus”, “aflatoxin AND biocontrol”, “Aspergillus
AND biofungicide”, and “competitive exclusion AND flavus”. The findings were ordered as
ruminal, pre-, and post-harvest processes to see all natural and biotechnological possibilities
and attempts. Investigations using viable cells in milk or phosphate-buffered saline as a
medium were only considered for a clearer comparison of the effects on AF binding or
degradation.

3. Ruminal Detoxification of Aflatoxins

It was common to feed ruminants with the fodder of AFs contamination because it was
known that ruminal microorganisms could detoxify mycotoxins. However, the scientific
literature is still diverse about AFs’ fate in ruminal animals. In 1978, Engel and Hagemeis-
ter [25] reported 42% degradation of aflatoxin B1 (AFB1) in vitro applying rumen fluid.
The effectiveness of the degradation depended on the animal species and the fodder [26].
The resistance of AFs to ruminal degradation may be caused by the strong inhibitory
effect of AFs on rumen microorganisms. It was shown that at high concentration ranges
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(5 and 10 µg mL−1), AFB1 completely inhibited many ruminal bacteria [27] and harmed
ruminal fermentation parameters in vitro [28,29]. Moreover, the fodder composition also
impacts the degradation success since the high-starch diet increased the available AFB1
and ochratoxin [30]. Some authors disputed that rumen fluid affected AFB1 in contrast to
deoxynivalenol, T-2, or zearalenone mycotoxins [31,32].

4. Pre-Harvest Biocontrol
4.1. Pre-Harvest Biocontrol by Competitive Exclusion

A biocontrol technology relying on endemic non-aflatoxigenic Aspergillus flavus strains
as competitors of AF-producer fungi is becoming widespread, as it is remarkably successful,
cost-effective, and environmentally friendly.

Carefully selected endemic non-aflatoxigenic genotypes can efficiently reduce AF
contamination when applied before plant flowering. Hruska et al. [33] demonstrated
via competitive exclusion that the decreased AF level was positively correlated to the
low population of the toxigenic A. flavus under treatment, where the biocontrol A. flavus
strain showed increased propagation and colonization. Recent studies demonstrated
that biocontrol non-aflatoxigenic strains reduced AF concentrations in treated crops by
more than 80% under both field and storage conditions [34–36]. In Argentina, a native
atoxigenic A. flavus strain showed a remarkable biocontrol potential on peanuts, and
the pre-harvest application of the biocontrol agent had a carry-over effect and protected
peanuts under storage conditions [37]. The main criterion in the strain selection is the
high colonization ability of the atoxigenic strain [38]. Researchers showed there was no
competitive advantage of the selected atoxigenic fungal strains over the toxigenic strains
and could exclude the AF role in peanut infections of A. flavus and A. parasiticus [39].
Moreover, these strains were equally applicable to peanut and maize host plants [40].
Multi-strain biocontrol products of non-aflatoxigenic A. flavus showed both immediate
and long-term beneficial effects under different conditions compared with single-strain
products [34,38,41,42]. However, the employed biocontrol product’s efficacy depends
on several factors, including inoculum rate, formulation, application of herbicide, the
soil’s temperature, and the availability of water and substrate [7,43]. Extrolites (e.g.,
volatile organic carbons and secondary metabolites) secreted by the biocontrol strains
may also increase the efficacy of the control, and future biocontrol strategies may take
advantage of these not-yet-characterized compounds [44]. Aspergilli have an outstanding
secondary metabolite production potential, and it includes aflatrems, aflavarins, aflavinines
(only in sclerotium producers), cyclopiazonic acids, kojic acid, and other potentially toxic
compounds besides AFs [1]. The possible overproduction of any health hazard metabolites,
like cyclopiazonic acid, should be carefully checked in the chosen strains. The potential non-
aflatoxigenic biocontrol strains should be real atoxigenic ones [45] without any production
of, at least, the known toxic molecules under field conditions.

Formulation and application strategies of the biocontrol agent are of paramount im-
portance to reach the required efficacies. Solid-state fermented rice, encapsulated A. flavus
fungal conidia in an extrusion product (Pesta), pregelatinized corn flour granules [46],
rice, cracked barley, intact canola seed [39], and sterile sorghum grain [34] were treated
with a spore suspension of nontoxigenic A. flavus, A. parasiticus, or both. Application of
all formulations significantly decreased the AF contamination of peanuts, and the strains
were found to be long-term viable on these matrixes. A more significant or consistent AF
reduction was recorded with fluid and granular delivery of biocontrol strains of A. flavus,
and both methods were efficient and cost-effective [47]. However, granular delivery has
not gained ground in field applications because of the difficulties with applying a gran-
ular product through the canopy in the reproductive stage of the maize development.
Water-dispersible granule formulations of biocontrol strains can also be useful. Weaver
et al. [48] demonstrated that their new formulation with higher wettability and rapid dis-
persion resulted in more than 49% decrease in AF contaminants in all treatments with the
Alfa-Guard biocontrol strain (A. flavus NRRL 21882). In another study, Accinelli et al. [49]
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evaluated an application method for the biocontrol strains on leaf. The preparation proved
to be adherent, the biocontrol strain showed good leaf surface colonization, and it reduced
AF level of the kernels by up to 80%–90%. In comparison, the number of AF-producing
A. flavus in the soil was not changed significantly [49].

An exciting novel approach was also published by Accinelli et al. [50], who used a
starch-based bioplastic formulation to coat corn kernels, which contained two conventional
pesticides and spores of the non-aflatoxigenic A. flavus NRRL 30797 strain. Significantly,
the additives did not affect the kernel germination adversely or the seedlings’ growth,
while the AF contamination was reduced.

The competitive exclusion method was first set in the USA, and similar technologies
working with endemic strains have been developed in several African countries [34,41,42,
51,52] (Table 1). A non-aflatoxigenic strain (A. flavus NRRL 21882) under the commercial
name Afla-Guard (Syngenta, Basel, Switzerland), which is marketed in the USA, has been
used successfully on maize, groundnuts, pistachios, and cottonseed for many years [36,40].
A mixture of four endemic non-aflatoxigenic A. flavus strains called Aflasafe (Ibadan,
Nigeria) also has been used on maize and groundnuts in various African countries, with
an AF contamination reduction rate of 80–99% [35,41,51,53–56]. A commercial product
AF-X1 (A. flavus MUCL54911, Pioneer Hi-Bred, Italy) is applied in Italy to prevent AF
contamination [57].

4.2. Pre-Harvest Biocontrol by Microbial Biofungicides

Besides atoxigenic A. flavus biocontrol strains, some other promising biocontrol agents
are emerging against AF-producer molds. For example, a Trichoderma harzianum strain was
applied to restrict A. flavus contamination, with 57% and 65% reduction on AF levels in
groundnut [58] and in sweet corn [59], but there were no commercialized products found
against A. flavus [60]. However, Lagogianni and Tsitsigiannis [24] evaluated six biofungi-
cides/stimulants (Botector® (Aureobasidium pullulans as anti-Botrytis agent; bio-ferm GmbH,
Getzersdorf, Austria), Mycostop® (Streptomyces griseoviridis as anti-Fusarium, Phytophthora,
Alternaria, and Pythium agent; Verdera Oy, Espoo, Finland); Serenade Max® (biofungi-
cide, bactericide with Bacillus subtilis QST 713; Bayer, Auckland, New Zealand), Trianum®

(Trichoderma harzianum TT-22 as biofungicide against Pythium, Rhizoctonia, Fusarium, and
Sclerotinia; Koppert Biological Systems, Berkel en Rodenrijs, The Netherlands); Vacciplant®

(biofungicide containing laminarine; Helena Agri-Enterprises, LLC, Collierville, TN, USA)
and zeolite inorganic adsorbent) and found most of them useful in reducing A. flavus coni-
diospores and AFB1 production in vitro. Mycostop® and Botector® treatments decreased
(43%) the AFB1 content of maize kernels.
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Table 1. Aflatoxin elimination by non-aflatoxigenic Aspergillus strains.

Date Country Crop Non-Aflatoxigenic Strains Target Success Rate (%) References

1994–1997 USA Maize, peanuts, and
cotton

A. flavus strains (NRRL 21882
and NRRL 21368), A. parasiticus

(NRRL 21369)
AFB1, AFB2, AFG1, AFG2 * 66–96 [40]

1996–1997 USA Peanuts
atoxigenic A. flavus

(NRRL21368) and A. parasiticus
(NRRL 21369),

AFB1, AFB2, AFG1, AFG2 86–92 [46]

2004–2006 Kenya Maize 12 atoxigenic A. flavus isolates AFB1 64–90 [41]

2007–2008 Nigeria Maize (ACCR-9931-SR) mixture of four atoxigenic
strains of A. flavus

AFB1 and AFB2 by A. flavus L- and
SBG-morphotypes, A. parasiticus and A. tamarii 67–95 [34]

2007–2009 USA Maize (Pioneer 32R25
hybrid)

Afla-Guard, A. flavus NRRL
21882.

AF36, A. flavus NRRL 18543.
A. flavus K42

AFB1, AFB2, AFG1, AFG2 by toxigenic
A. flavus F3W4
(NRRL 30796),

K54 (NRRL 58987),
NRRL 58976,

NRRL 58988, and
NRRL 58974

83–98 [40]

2010–2014 Senegal Groundnut and maize Aflasafe SN01, mixture of 4
atoxigenic isolates of A. flavus

AFB1, AFB2, AFG1, AFG2
by A. aflatoxiformans,

A. flavus L-morphotype, A. parasiticus, A. tamarii
58–100 [51]

2012–2013 USA Maize
Afla-Guard, A. flavus NRRL

21882.
AF36, A. flavus NRRL 18543

AFB1 by A. flavus, A. parasiticus, A. caelatus, A.
nomius, and A. tamarii 0–97 [36]

2012–2013 Italy Maize AF-X1™, A. flavus A2085 and
A2321 AFB1 84–95 [57]

2014 Ghana Maize and groundnut 13 atoxigenic A. flavus isolates AFB1 87–98 [38]

* AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; AFG2, aflatoxin G2.
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5. Post-Harvest Management of Aflatoxin Contamination

The effects of bacteria and yeasts have also been studied extensively to reduce al-
ready manifested AF contamination [4,5,7]. Biological detoxification by microorganisms
relies on the binding and transformation of AFs into less toxic metabolites by microbial
biomass [4,5,21]. These post-harvest methods are needed as, despite the encouraging re-
sults, pre-harvest biocontrol methods have their drawbacks. Interactions in the microbiota
are in a flux state, even at the strain level, and the biocontrol effect differs under various
environmental conditions [61].

5.1. Bacteria

Lactic acid bacteria (LABs), for example, Lactobacillus acidophilus, Lactococcus lactis
subsp. lactis, Lactobacillus selangorensis, Pediococcus acidilactici, Streptococcus thermophilus,
Weissella confusa, Enterococcus avium, and Bifidobacterium animalis subsp. lactis, inhibit AF
production or remove AFs from feed and food products (Table A1). The sufficient binding
of AFs by LAB strains is dependent on the inherent features of the strain, temperature,
pH, the matrix itself, and incubation time [20,62]. Asurmendi et al. [63] successfully
demonstrated that all LAB strains tested inhibited the growths of aflatoxigenic A. flavus
strains and their AFB1 production in brewer’s grains, which is used for feeding pigs. More
recently, Saladino et al. [64] tested the beneficial effects of LAB strains on the AF content of
bread and found considerable 84%–100% decreases in 4 days. Assaf et al. [65] suggested
a method for reducing AFM1 in milk by biofilm-forming probiotic LAB strains. They
recorded a 61% reduction of AFM1 by a Lacticaseibacillus rhamnosus (formerly Lactobacillus
rhamnosus) GG biofilm. Such capable bacterial biofilms could be formed on glass, metal,
plastic surfaces in a test tube, 96-well plate, or flow cell formats [66]. Wacoo et al. [67]
found that the allochthonous LAB species (L. brevis, L. casei, L. fermentum, and L. plantarum)
isolated from the gut microbiota bound AFs effectively.

The antifungal compounds biosynthesized by LAB can support the reduction of
mycotoxin production [20,68]. These compounds usually are organic acids (e.g., acetic,
lactic, and propionic acids), carboxylic acids, phenolic compounds, including phenolic
acids (benzoic acids, hydroxyphenyl lactic acid, phenyl lactic acid, gallic acid, and tannins),
fatty acids (3-hydroxydecanoic acid, coriolic acid, caproic acid, decanoic acid, and ricinoleic
acid), volatile organic compounds (e.g., acetoin and diacetyl), cyclopeptides (e.g., cyclo(L-
Leu-L-Pro), cyclo(Phe-Pro), cyclo(L-Met-L-Pro), and cyclo(L-Tyr-L-Pro)), ethanol, hydrogen
peroxide, proteinaceous compounds, and reuterin [69–72]. Thus far, the process of the
antifungal action of proteinaceous compounds and hydroxy fatty acids has not been
elucidated [69]. However, some of them can increase cytoplasmic permeability, which can
finally lead to fungal cell death [69]. H2O2 is well known for its oxidizing potential directly
on the lipid components and the cellular membranes’ integrant proteins [69].

Several non-lactic acid bacteria, such as Bacillus spp., Brachybacterium spp., Brevundi-
monas spp., Cellulosimicrobium spp., Enterobacter spp., Escherichia spp., Klebsiella spp., My-
colicibacterium spp., Myxococcus spp., Nocardia spp., Pseudomonas spp., Rhodococcus spp.,
Streptomyces spp., and Stenotrophomonas spp., can also inhibit the growth and AF production
of molds (Table A2). For example, probiotic Enterococcus faecium M74 and EF031 strains
reduced the AFB1 content of aqueous solution by 19–38% [73]. A Bacillus subtilis strain also
reduced the AFB1 content of contaminated feed and food by 60–95% [74,75]. Moreover,
metabolites from Bacillus subtilis (bacillomycin D, fengycins A and B, iturin A, mycosub-
tilin, and plipastatins A and B), Achromobacter xylosoxidans (cyclo (L-leucyl-L-propyl)), and
Streptomyces spp. (blasticidin A, aflastatin A, dioctatin A) are effective inhibitors of AF
biosynthesis in vitro and in vivo in crop model systems and field [76]. While the plant-
growth-promoting (PGPR) Pseudomonas aeruginosa inhibited A. flavus growth with only
15% in soil [77]. Cellulosimicrobium funkei strains showed outstandingly high (97%) AFB1
biodegradation ability, suggesting that it could be used as a feed additive [78]. Bacillus
and Pseudomonas strains isolated from peanut, pistachio, and maize fields also could be
promising new biocontrol agents to reduce the growth of aflatoxigenic fungi and the AF
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contamination of arable crops [79]. According to Wang et al. [80], the culture supernatant
of Escherichia coli CG1061 (isolated from healthy chicken cecum) degraded AFB1 by 61.8%,
and the strain could colonize the animal gut; therefore, it may also be a suitable candidate
for AFB1 detoxification.

Application of active immobilized enzymes of bacterial origin can also be a useful
tool to degrade AFs in feeds and foods. In Mycolicibacterium smegmatis (Mycobacterium
smegmatis), two families of F420H2-dependent reductases were identified that catalyze AF
degradation [81,82]. Meanwhile, an AF degradation enzyme (MADE) was also identified
from Myxococcus fulvus [83].

Bacterial volatile organic compounds are also able to hinder or kill fungal cells. Al-
caligenes faecalis N1-4 produced several antifungal volatiles and inhibited the growth of
A. flavus through in vitro testing. GC-MS/MS analysis detected dimethyl disulfide and
methyl isovalerate as the two primary compounds in the strain’s volatile organic carbon
spectrum [84]. Dimethyl disulfide hindered the germination of conidia and the growth
of A. flavus. These volatile organic compounds repressed the gene expression of 12 genes
in the AF biosynthesis pathway, and eight genes were significantly downregulated [84].
In groundnut, rice, maize, and soybean with high water activity, A. flavus infection and
AFs contamination were entirely inhibited by Enterobacter asburiae Vt-7 volatile organic
compounds (phenyl ethyl alcohol and 1-pentanol) [85]. In Vitro, volatile organic car-
bons from Streptomyces yanglinensis 3-10 inhibited growth, conidial germination, asexual
sporulation, and expression of AFB1 biosynthesis cluster genes in A. flavus and A. para-
siticus, and, in vivo, reduced the disease symptoms on peanut kernels [86]. The volatile
organic carbons suppressed the mycelial growth of more than 15 plant pathogenic fungi
and an oomycete organism. Chemicals, including 2-phenyl ethanol, methyl 2-methyl bu-
tyrate, and β-caryophyllene, showed activity against A. flavus and A. parasiticus. Therefore,
S. yanglinensis 3-10 may become a promising biofumigant in the control A. flavus and
A. parasiticus [86].

Microbial volatile organic carbons are also investigated as plant growth inducers,
whose characteristics belong to various groups of chemicals, including alcohols, sulfur
compounds, terpenes, ketones, and furans. Microbial volatiles can stimulate growth by
modulating hormonal balance, essential nutrients, metabolism, and sugar concentrations.
The alterations are coupled mostly to cellular structure and stress response genes [87–89].

5.2. Yeasts

Several publications have demonstrated that yeasts, for example, Candida, Debary-
omyces, Pichia, Saccharomyces, Saccharomycopsis, Saccharomycodes, Schizosaccharomyces, Tri-
chosporon, and Zygosaccharomyces species, inhibited AF production significantly in aflatoxi-
genic molds (Table A3). It is considered that yeast supplementation (e.g., Kluyveromyces
marxianus and Pichia kudriavzevii) improved AFB1 detoxification in the rumen, reduced
the AFM1 content of milk, and improved the performances of dairy cattle [90]. Viable
yeast supplement in feed exerts a positive effect on the ruminal environment, total and
cellulolytic bacteria, and protozoa [91,92]. Mycotoxin binding of the feed additives, such as
bentonite, modified yeast cell-wall extract, or esterified glucomannan, has been shown to
reduce the toxic effects of AFB1 in different livestock species by nonspecific binding of the
AFs so that they cannot be absorbed in the gastrointestinal tract [93–97]. However, research
on the interactions between detoxifying additives and mycotoxins is rare [94,97].

Yeast volatile organic carbons also take part in the hindrance of A. flavus growth and
AF production [98]. Additionally, yeasts can bind AFs reversibly and rapidly [4,7]. Conse-
quently, the GRAS baker’s yeast Saccharomyces cerevisiae can be used safely as a feed additive
to mitigate aflatoxicosis in livestock, including both broilers and ruminants [21,99–104].
Moreover, S. cerevisiae can also be used directly for AF decontamination in food. For
example, Shetty et al. [105] reported on the high AF binding capability of S. cerevisiae in
indigenous fermented foods from Ghana. Furthermore, S. cerevisiae and S. pastorianus
converted the AFB1 content of the raw materials used for wine and beer into a less toxic
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substance during alcoholic fermentation [106]. Foroughi et al. [107] proposed a unique
AF detoxification method for AFM1-contaminated milk. The process relied on baker’s
yeast, which had been immobilized on perlite beads, and was suitable to reduce the AFM1
content of all tested milk samples without affecting the milk composition [107]. Such
microbial cell immobilization-based methods can be of outstanding practical value and
importance when AF decontamination of milk and other drinks is considered.

5.3. Fungal Biomass, Enzymes, and Antifungal Proteins

Glucomannan from fungal cell wall or peptidoglycan and other cell wall polysaccha-
rides can be effective adsorbents for mycotoxins because of their structural complexity.
Saki et al. [108] tested the effect of Mycosorb (patented glucomannan-containing yeast
product derived from yeast cell wall; Alltech) on broiler performance, organ weight, protein
digestibility, plasma characteristics, and metabolizable energy of the diets. They found
that Mycosorb was effective in mitigating the harmful effects of AFs in broiler chickens.
Haidukowski et al. [109] also demonstrated that nonviable Pleurotus eryngii mycelia could
be used as a practical and economically feasible feed additive for AFB1 detoxification.

Mycotoxin enzymatic degradation is a simple method for usage in food decontam-
ination. However, for AFs degradation, only some fungal enzyme families are known.
For example, the spent mushroom substrate crude extract (SMSE) is a rich source of
AF-degrading enzymes (e.g., laccase and Mn-peroxidase), and thereby it is a good can-
didate for the detoxification of AF-contaminated commodities in the future [110]. An
extracellular enzyme from the edible mushroom Pleurotus ostreatus showed remarkable
AF-degradation activity via cutting the lactone ring of AFB1 [111]. Manganese peroxidase
from Phanerochaete sordida YK-624 catalyzed the detoxification by the oxidation of AFB1 to
AFB1-8,9-epoxide, and the subsequent hydrolysis to AFB1-8,9-dihydrodiol [112]. Another
well-studied AF oxidase, the former AF-detoxifizyme from Armillaria tabescens (Armillariella
tabescens) E-20, also attacks the 8,9-unsaturated carbon-carbon bond in AFB1 [113]. Besides
enzymes, small-molecular-mass antifungal proteins from filamentous fungi are also char-
acterized by their initiated apoptotic cell death in sensitive fungal pathogens [114–116]
and regarded as promising future biocontrol agents against many plant-pathogenic and
food-deteriorating fungi, including A. flavus.

6. Conclusions and Future Trends

Natural methods reducing the use of synthetic chemicals represent a promising future
trend in AF eliminations. Combinations of physical and biological (natural) methods are
expected to improve AF decontamination efficiency, both pre- and post-harvest (Figure 1).

The most essential requirement for the emerging novel decontamination technologies
is that these should not change the physical–chemical properties of the treated feed or food
products significantly and no toxic residues of the mycotoxins should be left behind in
the decontaminated products. The non-aflatoxigenic, even atoxigenic biocontrol strains
are tested mostly for maize, peanuts, groundnuts, pistachios, or cottonseed, while their
application in other agricultural sectors like vineyards is also a possibility. When AF
contamination occurs in commodities with high water content, like milk, wine, or beer, the
application of other technologies like microbial cell immobilization-based methods and
enzymatic degradation can have an outstanding practical value and importance. Under
the storage of the commodities or in packaging methods, the promising alternatives to
synthetic chemicals are the microbial (fungal or bacterial) volatile organic carbons.

Since mammals lack strong natural ruminal or cellular AF degradation, the usual and
promising agricultural technology is to help animals with potent probiotic yeasts or bacteria
or only their polysaccharides to mitigate the toxic effects. Moreover, pro- or prebiotics
are also applied as food supplements. The probiotic supplements have more benefits
than the inorganic mycotoxin binders in toxin mitigation, as the microbes have positive
physiological effects besides AF binding. Nevertheless, the AF mitigation efficiency is
greatly influenced by the nature of the products and the AF contamination level. However,
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some authors debated the safety of elongated application of LAB or other microbes in food
if these cells cannot degrade AFs [117]. Therefore, there is a need to employ starter and
probiotic cultures with AF degradation abilities.

Toxins 2021, 13, x FOR PEER REVIEW 8 of 19 
 

 

product derived from yeast cell wall; Alltech) on broiler performance, organ weight, pro-

tein digestibility, plasma characteristics, and metabolizable energy of the diets. They 

found that Mycosorb was effective in mitigating the harmful effects of AFs in broiler 

chickens. Haidukowski et al. [109] also demonstrated that nonviable Pleurotus eryngii my-

celia could be used as a practical and economically feasible feed additive for AFB1 detox-

ification. 

Mycotoxin enzymatic degradation is a simple method for usage in food decontami-

nation. However, for AFs degradation, only some fungal enzyme families are known. For 

example, the spent mushroom substrate crude extract (SMSE) is a rich source of AF-de-

grading enzymes (e.g., laccase and Mn-peroxidase), and thereby it is a good candidate for 

the detoxification of AF-contaminated commodities in the future [110]. An extracellular 

enzyme from the edible mushroom Pleurotus ostreatus showed remarkable AF-degrada-

tion activity via cutting the lactone ring of AFB1 [111]. Manganese peroxidase from Phan-

erochaete sordida YK-624 catalyzed the detoxification by the oxidation of AFB1 to AFB1-8,9-

epoxide, and the subsequent hydrolysis to AFB1-8,9-dihydrodiol [112]. Another well-

studied AF oxidase, the former AF-detoxifizyme from Armillaria tabescens (Armillariella 

tabescens) E-20, also attacks the 8,9-unsaturated carbon-carbon bond in AFB1 [113]. Besides 

enzymes, small-molecular-mass antifungal proteins from filamentous fungi are also char-

acterized by their initiated apoptotic cell death in sensitive fungal pathogens [114–116] 

and regarded as promising future biocontrol agents against many plant-pathogenic and 

food-deteriorating fungi, including A. flavus. 

6. Conclusions and Future Trends 

Natural methods reducing the use of synthetic chemicals represent a promising fu-

ture trend in AF eliminations. Combinations of physical and biological (natural) methods 

are expected to improve AF decontamination efficiency, both pre- and post-harvest (Fig-

ure 1).  

 

Figure 1. Three typical areas of mitigation of aflatoxins (AF) contamination. Pre-harvest biocontrol 

methods with non-aflatoxigenic strains of A. flavus, other non-Aspergilli, and their extrolites are 

available. In animals fed with contaminated fodder, enteral or ruminal bacteria can degrade or 

transform AFs to lesser toxic molecules. Besides their beneficial effects on animal health, supple-

mented probiotic organisms (yeasts and bacteria) can also bind or degrade AFs. In stored food and 

feed, depending on the water content of the commodity, bacteria, yeasts, or their volatile carbons 

and enzymes can be used for the AF decontamination in biofilm, immobilized, or encapsulated 

form. 

The most essential requirement for the emerging novel decontamination technolo-

gies is that these should not change the physical–chemical properties of the treated feed 

or food products significantly and no toxic residues of the mycotoxins should be left be-

hind in the decontaminated products. The non-aflatoxigenic, even atoxigenic biocontrol 

strains are tested mostly for maize, peanuts, groundnuts, pistachios, or cottonseed, while 

Figure 1. Three typical areas of mitigation of aflatoxins (AF) contamination. Pre-harvest biocontrol
methods with non-aflatoxigenic strains of A. flavus, other non-Aspergilli, and their extrolites are
available. In animals fed with contaminated fodder, enteral or ruminal bacteria can degrade or trans-
form AFs to lesser toxic molecules. Besides their beneficial effects on animal health, supplemented
probiotic organisms (yeasts and bacteria) can also bind or degrade AFs. In stored food and feed,
depending on the water content of the commodity, bacteria, yeasts, or their volatile carbons and
enzymes can be used for the AF decontamination in biofilm, immobilized, or encapsulated form.

It can be stated that there is no general all-purpose decontamination method that could
be broadly employed and, hence, one of the main future challenges in this field is to develop
new procedures that would support comparable detoxification in a broad spectrum of feed
and food matrices. Future research should focus on elaborating these novel technologies
and their extensive testing in as versatile feed and food matrices as possible.
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Appendix A

Table A1. Aflatoxin elimination by lactic acid bacteria. We intended to collect data on the viable cells’ bounding properties,
usually in PBS or milk at 4 ◦C.

Aflatoxin Bacteria Strain Toxin Elimination (%) References

B1
Bifidobacterium animalis subsp.

animalis (formerly Bifidobacterium
animalis)

CSCC 1941 45.7

[118]
B1

Bifidobacterium animalis subsp. lactis
(formerly Bifidobacterium lactis)

E-94508 18

CSCC 5094 34.7

CSCC 1906 48.7

B1 Bifidobacterium longum CSCC 5304 37.5

B1 Enterococcus faecium M74 19.3–30.5
[73]

EF031 23.4–37.5

B1 Lactobacillus acidophilus

ATCC 4356 48.3 [119]

E-94507 18.2
[118]

CSCC 5361 20.7

Chr. Hansen, Denmark 56.6 [120]

CH-2 36 [121]

B1 Lactobacillus amylovorus
CSCC 5160 59.7

[118]
CSCC 5197 57.8

B1 Lactobacillus bulgaricus Chr. Hansen, Denmark 16.3 [120]

B1
Lacticaseibacillus casei (formerly

Lactobacillus casei) Shirota
YIT 901, commercial 21.8 [119]

Yakult 98 [122]

B1
Lacticaseibacillus casei (formerly

Lactobacillus casei)
Chr. Hansen, Denmark 22.4 [120]

Iranian dairy products 43 [123]

B1 Lactobacillus delbrueckii MK9 17.3 [118]

B1 Lactobacillus delbrueckii subsp.
bulgaricus

Australian Starter Culture
Research Centre Collection,

Werribee, Australia
15.6 [119]

B1
Limosilactobacillus fermentum

(formerly Lactobacillus fermentum)

CSCC 5362 22.6 [118]

N.A. ≥60 [93]

Iranian sourdough 61 [123]

PTCC 1744 99.9 [124]

B1 Lactobacillus helveticus

Australian Starter Culture
Research Centre Collection,

Werribee, Australia
17.5 [119]

Aki4 30.1 [118]

Chr. Hansen, Denmark 17.8 [120]

B1 Lactobacillus johnsonii CSCC 5142 30.1 [118]

B1
Lactiplantibacillus plantarum

(formerly Lactobacillus plantarum)

ATCC 8014 29.9 [119]

E-79098 28.4 [118]

N.A. ≥40 [93]

Iranian dairy products 56 [123]

EMCC-1039 39.2 [121]
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Table A1. Cont.

Aflatoxin Bacteria Strain Toxin Elimination (%) References

B1
Lacticaseibacillus rhamnosus (formerly

Lactobacillus rhamnosus)

DSM 7061 76.5 [119]

ATCC 53103
54 [125]

78.9 [119]

E-97800 22.7
[118]

Lc 1/3 54.6

NRRL B-445 17.2 [121]

B1 Lactococcus lactis subsp. lactis

Australian Starter Culture
Research Centre Collection,

Werribee, Australia
59 [119]

E-90414 31.6 [118]

Dairy products 54.3 [126]

B1 Lactococcus lactis subsp. cremoris

Australian Starter Culture
Research Centre Collection,

Werribee, Australia
26.9 [119]

MK4 5.6
[118]

ARH74 (Valio Ltd, Finland) 41.1

B1 Lactobacillus selangorensis (formerly
Paralactobacillus selangorensis) N.A. <39 [93]

B1 Pediococcus acidilactici N.A. 45–59 [93]

B1
Propionibacterium freudenreichii subsp.

shermanii JS
Valio Ltd. Finland 22–82

[125]

[119]

B1 Streptococcus thermophilus

Australian Starter Culture
Research Centre Collection,

Werribee, Australia
32.7 [119]

Dairy products 81 [126]

CH-1 26.9 [121]

B1 Weissella confuse N.A. 15–39 [93]

M1 Bifidobacterium bifidum

Bb13 23.48
[127]

NCC 381 18.11

PTCC 1644 99.9 [124]

M1 Bifidobacterium lactis FLORA-FIT BI07 (Danisco
Ltd.) 16.89 [128]

M1 Enterococcus avium CTC 469 (Tecnolat, Brazil) 7.36 [128]

M1 Lactobacillus acidophilus

NCC 12 16.05 [127]

NCC 36 22.23 [127]

NCC 68 14.22 [127]

LA-5 (Chr. Hansen,
Denmark) 95 [62]

M1
Lactobacillus delbrueckii subsp.

bulgaricus

LB340 (Danisco Ltd.) 30.22 [128]

CH-2 (Chr. Hansen,
Denmark) 18.7 [129]

M1 Lactobacillus gasseri ATCC 33323 21.37 [128]
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Table A1. Cont.

Aflatoxin Bacteria Strain Toxin Elimination (%) References

M1 Lactiplantibacillus plantarum
(formerly Lactobacillus plantarum) CTC368 5.6 [128]

M1
Lacticaseibacillus rhamnosus (formerly

Lactobacillus rhamnosus)
Ezal, France 20.21 [127]

HOWARU (Danisco Ltd.) 17.13 [128]

M1 Pediococcus pentosaceus TR570 (Tecnolat, Brazil) 8.68 [128]

M1 Streptococcus thermophilus ST-36 (Chr. Hansen,
Denmark) 29.42 [129]

Table A2. Aflatoxin elimination by non-lactic acid bacteria. We intended to collect data on the viable cells’ bounding
properties, usually in PBS or milk at 4 ◦C.

Toxin Bacteria Strain Toxin Elimination (%) References

B1 Bacillus licheniformis Thai fermented soybean 74 [130]

B1 Bacillus stearothermophilus N.A. 87 [131]

B1

Bacillus subtilis

UTBSP1 85.66 [74]

B1,
G1,
M1

ANSB060 81.5, 81, 60 [132]

B1 Brachybacterium spp. Rabbit feces 74.83 [133]

B1 Brevundimonas spp. Yellow cheek feces 76.86 [133]

B1 Cellulosimicrobium funkei Soil around coal factories 97 [78]

B1 Enterobacter spp. Hog deer feces 76 [133]

B1 Escherichia coli Strain CG1061 18–62 [80]

B1 Klebsiella spp. Rabbit feces 78 [133]

B1
Mycolicibacterium fluoranthenivorans

(formerly Mycobacterium
fluoranthenivorans)

DSM 44556 >90 [134]

B1 Mycolicibacterium smegmatis
(formerly Mycobacterium smegmatis) N.A. >90 [82]

B1,
G1,
M1

Myxococcus fulvus ANSM068, Deer feces 72, 68, 64 [83]

B1
Nocardia corynebacterioides
(formerly Flavobacterium

aurantiacum)

DSM 12,676 74.5 [135]

NRRL B-184 85 [136]

B1,
B2M1 Pseudomonas aeruginosa Grain kernels and soils 83, 47, 32 [137]

B1 Pseudomonas stutzeri F4 strain, Budorcas taxicolor
feces 90 [138]

B1 Rhodococcus erythropolis

Strain 4.1491 96 [139]

ATCC 4277 [140]

18 strains 70–100 [141]

DSM 14303 83 [134]

B1 Streptomyces aureofaciens ATCC 10762 88 [140]

B1 Streptomyces lividans TK 24 86 [140]

B1 Stenotrophomonas maltophilia South American tapir feces 85 [133]
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Table A3. Aflatoxin elimination by some yeast cultures.

Toxin Fungi Strain Toxin Elimination (%) References

B1 Aureobasidium pullulans H1 68.61 [142]

B1 Candida albicans
AA17 50.34

[142]
AA19 64.61

B1 Diutina catenulata
(formerly Candida catenulata) N.A. <15 [93]

B1 Candida krusei
N.A. 15–60 [93]

AUMC 8161 100 [143]

B1, B2, G1, G2 Candida parapsilosis
N.A. 15–72 [93]

IP1698 99.94 [144]

B1 Wickerhamiella sorbophila
(formerly Candida sorbophila)

ECF16 52.59
[142]

ECF85 51.49

B1 Debaryomyces hansenii N.A. 15–39 [93]

M1 Kluyveromyces lactis N.A. 60–69 [145]

B1 Komagataella pastoris

EW1 71.5

[142]EW3 51.5

EW6 50.5

B1
Wickerhamomyces anomalus (formerly

Pichia anomala)
N.A. 15 [93]

AUMC 2674 100 [143]

AFs Meyerozyma guilliermondii
(formerly Pichia guilliermondii) AUMC 2663 80 [143]

B1 Pichia membranifaciens N.A. 40–59 [93]

B1 Rhodotorula mucilaginosa various strains 52.77–70.2 [142]

B1 Saccharomyces cerevisiae

N.A. 10–60 [93]

CECT 1891 - * [146]

A18 53 [105]

26.1.11 48.8 [105]

RC 016 - [101]

EB34 52.25
[142]

EB57 51.12

M1 Saccharomyces cerevisiae

SAFLAGER W37/70 90.3 [147]

N.A. 81.3
[107]

ATCC 9763 75

B1 Saccharomycopsis fibuligera N.A. <15

[93]

B1 Saccharomycodes ludwigii N.A. 40–59

B1 Schizosaccharomyces pombe N.A. 40–59

B1 Cutaneotrichosporon mucoides (formerly
Trichosporon mucoides) N.A. <15

B1 Zygosaccharomyces bailii N.A. 15–39

* no data.
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