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The FEN1 L209P mutation interferes with long-patch base
excision repair and induces cellular transformation
H Sun1,6, L He1,6, H Wu1,6, F Pan1, X Wu2, J Zhao1, Z Hu1, C Sekhar1, H Li3,4, L Zheng3,4, H Chen5, BH Shen3,4 and Z Guo1

Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome
stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability
and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In
the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN,
exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant
interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision
repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability
and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-
associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
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INTRODUCTION
Genomic DNA is constantly exposed to endogenous and
exogenous insults, which cause DNA damage. The damage to
DNA, if not repaired, could lead to genetic mutations and
subsequent genome instability and cancer initiation.1,2 Removal
of DNA damage and maintenance of genomic integrity depend on
robust cellular DNA repair systems. Base excision repair (BER) is
one of the major repair pathways in eukaryotic cells for processing
DNA base damage caused by endogenous and exogenous
agents.3,4 It is estimated that BER is responsible for repairing
about 104 damaged/modified bases per cell per day.5–7 BER can
be divided into two types: short-patch BER (SP-BER) and long-
patch BER (LP-BER).8,9 LP-BER is the major pathway used to repair
oxidized bases in the nuclei and mitochondria.10,11 Furthermore,
previous reports have shown that defects in LP-BER can lead to
DNA double-strand breaks (DSBs) and genomic instability.12,13

BER is initiated with the excision of the damaged base by a
specific DNA glycosylase, followed by incision of the DNA
backbone by apurinic/apyrimidinic (AP) endonuclease 1 (APE1)
to produce a nicked abasic intermediate.14 This intermediate
structure can be processed through either the SP-BER or the LP-
BER pathway.8,9 In SP-BER, DNA polymerase β (Pol β) adds only
one nucleotide to the 3′-end of the nicked AP site, and then the
dRP lyase activity of Pol β catalyzes the β-elimination of the
5′-sugar phosphate residue, resulting in a ligatable nick that can
then be sealed by X-ray repair cross-complementing protein 1 and
Ligase IIIa (XRCC1/Ligase IIIa).15,16 However, if the 5′-deoxyribose
phosphate moiety is reduced or oxidized, the 5′-deoxyribose
phosphate lyase of Pol β cannot remove the modified sugar
residue and LP-BER is initiated.17,18 In LP-BER, a few nucleotides

are added by Pol β to produce a 2–10 nucleotide (nt)-long short
flap, which is subsequently removed by FEN1 in complex with
proliferating cell nuclear antigen (PCNA).19–21 DNA ligase I then
seals the nick.8

FEN1 has a central role in LP-BER and therefore is indispensable
for maintaining genome stability and integrity.17,22 FEN1 is a
structure-specific nuclease with 5′ flap endonuclease (FEN), 5′–3′
exonuclease (EXO) and gap endonuclease (GEN) activities.23

Deletion of FEN1 in Saccharomyces cerevisiae (rad27) results in a
high level of sensitivity to DNA damage reagents such as
ultraviolet irradiation and methyl methane sulfonate.24,25 The
complete removal of FEN1 activity via homozygous knockout
causes early embryonic lethality in mice.26 Furthermore, knock-in
of a FEN1 mutation with deficiency in GEN and EXO activity results
in a high incidence of lung adenoma in a mouse model.27 The
data suggest a linkage between functional defects in FEN1 and
increased cancer risk in humans.28–30 However, it is still unclear
whether and how these variations in the FEN1 gene impact cancer
initiation and progression.
Even though somatic mutations have been found in many other

DNA repair genes in a wide range of cancers,31 FEN1 mutation is
very rare,32 suggesting that FEN1 is important for normal DNA
metabolism. Recently, four somatic, non-synonymous, heterozy-
gous single-nucleotide substitutions in FEN1 were identified in
human colon cancer samples.33 These are E20D, L209P, R245G and
S329N. It will be important to determine whether these mutations
affect FEN1’s function and contribute to cancer initiation and
development. Among the four FEN1 mutations, L209P is
particularly interesting because the residue at position 209 is
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conserved from archaea, such as the hyperthermophile Pyrococcus
furiosus, to humans.34

In the current study, we found that the FEN1 L209P mutation
significantly reduces the FEN, EXO and GEN activities of FEN1 but
does not impair its DNA substrate-binding affinity. We also found
impaired LP-BER efficiency when the L209P FEN1 variant was
tested in a reconstitution assay with purified proteins or with
cellular extracts prepared from cells harboring L209P FEN1.
Compared with wild-type (WT) FEN1-containing cells, cells
expressing the L209P FEN1 variant were more susceptible to
DNA-damaging agents and accumulated more DNA damage
lesions in the genome. Consequently, L209P FEN1-containing cells
displayed various chromosomal aberrations, along with a higher
cellular transformation rate and increased tumor growth in a
mouse xenograft model. This evidence demonstrates, for the first
time, that FEN1 mutations found in human cancer are capable of
causing cellular transformation and may therefore be important
determinants of human cancer.

RESULTS
Occurrence of the L209P variant in colorectal cancer
Because FEN1 is important for maintaining genomic DNA stability
and integrity,35,36 we speculated that FEN1 loss-of-function
mutations might lead to cancer onset and development. We
searched The Cancer Genome Atlas database (https://tcga-data.
nci.nih.gov/tcga/) and found that heterozygous FEN1 somatic
mutations are present in the tumor tissues of most cancer types,33

with colorectal cancer showing the highest FEN1 mutation
frequency (Figure 1a). Four FEN1 mutations have been detected
in colorectal cancers. They are E20D, L209P, R245G and S329N
(Figure 1b). The conservation of the FEN1 mutations was
described by Hosfield et al.34,37 From Pyrococcus furiosus to
human, amino acids E20, L209 and R245, which are indicated in
Figure 1b, are conserved, whereas S329 is not conserved. We
focused on the L209P mutation because it is in a core nuclease
domain (Figure 1c) and is evolutionarily conserved.34

To predict the possible effects of the L209P mutation on FEN1
activity and DNA substrate binding, we performed bioinformatics
analysis based on human FEN1 crystal structures with DNA (PDB
code 3Q8K).38 The behavior of the L209P mutation may be
explained as an ‘allosteric effect’ on the FEN1 active center. As
shown in Figure 1d, the FEN1 active center is predicted to
comprise two magnesium metal atoms, M1 and M2. The M2 atom
is positioned by a strong electrostatic interaction with negative
charges on the DNA backbone and the E160/D179/D181 residues.
Meanwhile, the L209 residue is predicted to closely contact S187
and form a hydrophobic interaction with L183. The L209P
mutation is also likely to disrupt side-chain interactions between
the L209 and S187/L183 residues. Therefore, the helix around the
179–187 amino acid region is likely to lose part of its anchor and
become more flexible and unstable. Consequently, the stability of
the D179/D181 residues at the other end of the 179–187 amino-
acid helix may be weakened. Eventually, the interactions between
D179/D181 and the M2 metal atom may be disrupted, leading to
FEN1 activity loss. On the other hand, L209P mutation does not
significantly change the FEN1/DNA interaction surface, consistent
with the observation that it does not affect DNA binding.
To partly test the prediction, FEN1 L209P and WT were

expressed in Escherichia coli and purified to homogeneity
(Figure 1e). We first performed circular dichroism analysis at
22 °C. The results showed that the L209P FEN1 protein had almost
the same conformation as the WT FEN1 protein at 22 °C
(Figure 1f), suggesting that the proline-to-leucine transition had
no obvious effects on protein conformation. To investigate
whether the L209P mutation affects the thermostability of FEN1,
circular dichroism analysis was also carried out at 37 °C (Figure 1g).

The results showed that L209P FEN1 has a similar overall structure
to WT FEN1, indicating that the thermostability of FEN1 is not
affected by the L209P mutation.

FEN1 L209P mutant lacks all three nuclease activities
To further verify the prediction and evaluate the effects of the L209P
mutation on FEN1 biochemical activity, we assayed the FEN, EXO and
GEN activities of L209P FEN1, in vitro, using synthetic DNA substrates
(Table 1). Indeed, as predicted in Figure 1d, L209P mutation almost
completely eliminated all three activities of FEN1 (Figures 2a–c) when
assayed at 37 °C. Because L209P and WT FEN1 have the same overall
structure at both 22 and 37 °C, it is not likely that the defect in L209P
FEN1 activity is due to the sensitivity of the L209P protein to
temperature. Activity assays at 22 °C also showed that L209P FEN1 is
inactive (Supplementary Figure S1). This type of mutation has never
been characterized previously and further strengthened our
enthusiasm for studying the L209P FEN1 variant.39

In previous studies, we found that FEN1 mutations could affect
either the interaction of FEN1 with its partner proteins or its
biochemical activity.13,27,40–45 We have reported that the S187D
and F343A/F344A FEN1 mutations disrupt the FEN1–PCNA
interaction and the E160D mutation impairs the EXO and GEN
activities of FEN1. More recently, we found that the FEN1 E359K
mutation lacks both Werner syndrome ATP-dependent helicase
(WRN)-binding affinity and GEN activity. To test whether the L209P
mutation affects FEN1 protein-binding affinity, we compared the
binding abilities of WT and L209P FEN1 with the most common
partner proteins, including PCNA, APE1 and Pol β.46–50 We found
that the L209P mutation does not affect the FEN1 interaction with
these proteins (Supplementary Figure S2).

L209P FEN1 retains intact DNA substrate-binding capacity
Because L209P FEN1 has the same overall structure as WT FEN1
(Figure 1f), it is unlikely that a global structural defect is the reason
for the decreased activity of L209P FEN1. We therefore tested
whether the FEN1 L209P variant affects DNA substrate binding.
We used gel shift (Figures 3a, c and e) and enzyme-linked
immunosorbent (ELISA)-based assays (Figures 3b, d and f) to
determine the FEN1–DNA-binding affinity. Both assays showed no
difference between the DNA-binding affinities of the L209P
variant and WT FEN1. This result is consistent with the prediction
in Figure 1d and our previous observation that only positively
charged amino acids, such as arginine in positions 70, 245 and 327
and lysine in positions 244, 252 and 326, are directly involved in
FEN1–DNA interactions.51,52

L209P FEN1 interferes with WT FEN1 nuclease activity
Because L209P FEN1 shows intact DNA substrate-binding affinity,
we speculated that the presence of L209P FEN1 might interfere
with the activity of WT FEN1. To evaluate this supposition, we
mixed various amounts of each protein with DNA substrate and
assayed their FEN (Figure 4a), EXO (Figure 4b) and GEN (Figure 4c)
activities. When incubated with L209P FEN1, the cleavage activity
of WT FEN1 was repressed. The inhibitory effect of L209P FEN1 on
WT FEN1 was dose dependent. These results indicate that L209P
interferes with WT FEN1 activity in a dominant-negative manner.

The L209P FEN1 mutation interferes with BER efficiency
The removal of flap structures is a key step for completing LP-BER.
The impaired activity of L209P FEN1 suggests that this mutation
likely affects LP-BER function. To test this hypothesis, the LP-BER
assay was carried out using purified proteins.50 Tetrahydrofuran
(THF)-containing substrates (FEN1-F) were used as LP-BER
substrates (Table 1). The THF lesions were efficiently repaired in
the presence of WT FEN1 but not the L209P FEN1 variant
(Figure 5a). As shown in Figure 4, L209P interferes with FEN1
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activities; we therefore speculated that L209P FEN1 could also
interfere with the overall BER efficiency of WT FEN1. To test this,
purified L209P FEN1 was mixed with WT FEN1 protein to perform
the LP-BER assay. Our result showed that BER efficiency is reduced
in the presence of the L209P FEN1 protein (Figure 5b). Further-
more, we performed LP-BER using SW480 cell extracts with or
without additional L209P FEN1 protein to determine whether
L209P FEN1 could impair BER in a cell extract context. The amount

of L209P FEN1 added to the assay, relative to the WT protein
within the whole-cell extract, was determined by quantitative
western blotting (Supplementary Figure S3). As shown in
Figure 5c, although SW480 cell extracts could repair THF lesions
efficiently, the addition of L209P FEN1 to the cell extracts
decreased BER efficiency. To mimic the heterozygous L209P
somatic mutation of FEN1 detected in human colon cancer cells,
we overexpressed L209P FEN1 or WT FEN1 in SW480 cells that also
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Figure 1. The FEN1 L209P mutation in cancer. (a) FEN1 gene mutation frequency from the The Cancer Genome Atlas (TCGA) data set. (b) The
sites of four colorectal cancer-associated mutations in the FEN1 gene from the TCGA data set: E20D, L209P, R245G, and S329N. Green indicates
XPG_N. Red indicates XPG_I. (c) 3D structure of FEN1 showing the site of the L209P mutation. (d) ‘Allosteric effect’ of L209P by analyzing the
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(blue sphere). The M2 atom is surrounded by the DNA backbone (gray cartoon), E160 (brown line) and D179/D181 residues (magenta sticks).
(e) SDS–PAGE of WT and L209P FEN1 (42 KDa). 6xHis-tagged FEN1 was expressed in E. coli and purified using a Ni-NTA column. Circular
dichroism spectra of 1 μM WT or L209P FEN1 in 10 mM K2PO4 at 22 °C (f) or 37 °C (g). Measurements were collected in 1-nm steps from 190 to
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contain endogenous WT FEN1 (Supplementary Figure S4A). Our
results showed that the BER efficiency of cell extracts expressing
L209P FEN1 is much lower than that of WT FEN1-expressing cell
extracts (Figure 5d). Altogether, the data above indicate that
L209P FEN1, either purified or expressed in SW480 cells, interferes
with the BER activity of WT FEN1.

Expression of L209P FEN1 sensitizes cells to DNA damage
To investigate the possible biological function of the L209P FEN1
variant in cells, we transfected SW480 colorectal cancer cells with
lentivirus-vectors containing L209P or WT FEN1 gene. Cells with
similar expression levels of L209P FEN1 and WT FEN1 were chosen
for our experiments (Supplementary Figure S4A). Because L209P
interferes with LP-BER, we speculated that expression of L209P could
sensitize cells to DNA damage. Cells harboring exogenous L209P or
WT FEN1 were treated with 5-FU (Fluorouracil) or H2O2, which have
been reported to cause DNA base oxidation, a lesion mainly repaired
by LP-BER. We found that cells transfected with L209P FEN1 are
more sensitive to 5-FU or H2O2 than cells transfected with WT FEN1
or transfected parental control SW480 cells, indicating that LP-BER
repair is defective in L209P FEN1-containing cells (Figures 6a and b).
Then fluorescence-activated cell sorting analysis was carried out to
compare the percentage of apoptotic cells induced by 5-FU or H2O2.
As shown in Figure 6c, after treatment with 5-FU or H2O2, the L209P
FEN1-expressing cells showed a much higher percentage of
apoptotic cells than the cells expressing WT FEN1 or parental
SW480 cells. Cell staining with an antibody against Caspase-3, a
marker of cell apoptosis, also corroborated the fluorescence-
activated cell sorting result (Figures 6d and e). These data support
previous reports that DNA damage, if not repaired, could lead to
cellular apoptosis.53–55 However, the non-apoptotic treated cells
may be more prone to transformation owing to accumulation of
DNA lesions and genome instability.

L209P causes endogenous DNA damage and chromosomal
aberrations
In addition to damage from exogenous agents, DNA damage can
occur naturally in response to metabolic or hydrolytic processes.
Naturally occurring oxidative DNA damage arises at least 10 000
times per cell per day in humans.5,6 Therefore, we expected that
the L209P cells would show a higher level of endogenous DNA
damage than WT cells. To verify this hypothesis, we examined the
levels of the phosphorylated form of the H2AX histone protein
(γH2AX), an established early marker of the cellular response to
DNA breaks. In the absence of an exogenous source of DNA

damage, the basal levels of phosphorylated γH2AX in L209P cells
were higher than those in WT cells (Figure 7a). Furthermore, DSBs
were detected as nuclear foci in cells stained with the γH2AX
antibody. The results showed a greater number of γH2AX-positive
nuclei in the L209P FEN1-containing cells than that in WT cells
(Figure 7b). The data indicate that L209P FEN1 expression leads to
the accumulation of DNA DSBs.
γH2AX is not a specific marker of DNA DSBs but can also be an

indication of other types of damage that occur during DNA
replication. Because of the critical role of FEN1 in DNA replication,
it is important to clarify whether the chromosomal instability is
due to DNA single-strand breaks (SSBs) converting to DNA DSBs
during S phase or whether the chromosomal instability is caused
by other replication defects that result in the persistence of under-
replicated DNA throughout the cell cycle. To distinguish these two
mechanisms, cells were co-stained with antibodies against 53BP1
(tumor-suppressor p53-binding protein 1) and CENPF (centromere
protein F). 53BP1 is a key regulator of DSB repair.56,57 53BP1
rapidly forms large foci near DNA lesions where DNA damage
signaling is induced.58–60

The CENPF staining allows G1 and S-phase/G2 cells to be
distinguished (G1 cells lack any CENPF staining, while CENPF
staining increases in intensity from late S phase to G2 phase).61,62

The formation of 53BP1 foci is suggestive of inefficient/defective
DNA replication.63 The results showed that, in the absence of an
exogenous source of DNA damage, a significant increase in 53BP1
foci occurred in G2 (CENPF-positive cells) (Figure 7c), indicating
that spontaneous damage arises from unrepaired SSBs colliding
with replication forks. However, an increase in 53BP1 foci was also
observed in G1 (CENPF-negative cells) (Figure 7d), suggesting that
L209P FEN1 also causes DNA replication defects.63 This data set is
consistent with the dual role of FEN1 in both DNA replication
Okazaki fragment maturation and LP-BER.
To test whether LP-BER is retarded in L209P-expressing cells in vivo,

we performed the alkaline comet assay before and after H2O2

treatment. Using the same set of control and SW480-expressing
L209P or WT FEN1 cell lines, we assessed steady-state levels of DNA
fragmentation after exposure of cells to H2O2. To detect all possible
intermediates of BER, that is, abasic sites and DNA SSBs and DSBs, as
quantitatively as possible, we performed the comet assays under
alkaline conditions.64–67 We then evaluated the overall distribution of
comet events into the defined stages of DNA fragmentation
(Figure 7e). These stages range from cells with no DNA fragmentation
(stage I, o5% fragmentation) to cells with heavy DNA fragmentation
(stage V, 495% fragmentation).67,68 Experiments without H2O2

treatment revealed that SW480 cells expressing L209P FEN1 had

Table 1. Oligonucleotides and applications

Name Oligonucleotide sequence Application

FEN1 L209P F 5′-CCAGGAATTCCACCCGAGCCGGATTCTGC-3′ Mutagenesis
FEN1 L209P R 5′-GCAGAATCCGGCTCGGGTGGAATTCCTGG-3′

FEN1-21-T 5′-ATGCGATACAGTCCGATAGCT-3′ FEN1 FEN activity assay
FEN1-40 5′-32P-CCATGAGCAACTACGATATGCGTACTAAGCCTAATCCGAC-3′
FEN1-A-F-G-40 5′-GTCGGATTAGGCTTAGTACGGCTATCGGACTGTATCGCAT-3′
FEN1-21-EXO 5′-ATGCGATACAGTCCGATAGCC-3′ FEN1 EXO activity assay
FEN1-19-EXO 5′-32P-GTACTAAGCCTAATCCGAC-3′
FEN1-A-F-G-40 5′-GTCGGATTAGGCTTAGTACGGCTATCGGACTGTATCGCAT-3′

FEN1-10-GAP 5′-TTGCTCATGG-3′
FEN1-20-GAP 5′-ATGCGATACAGTCCGATAGC-3′ FEN1 GAP activity assay
FEN1-40 5′-32P-CCATGAGCAACTACGATATGCGTACTAAGCCTAATCCGAC-3′
FEN1-A-F-G-40 5′-GTCGGATTAGGCTTAGTACGGCTATCGGACTGTATCGCAT-3′

FEN1-F 5′-CTTACACGTTGACTACCTTFTTTGAGGCAAGAGTGGATCC-3′ LP-BER assay
3′-GAATGTGCAACTGATGGCAGAAACTCCGTTCTCACCTAGG-5′

Abbreviations: EXO, exonuclease; FEN1, flap endonuclease-1; GAP, gap endonuclease; LP-BER, long-patch base excision repair.
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relatively higher levels of spontaneous DNA strand breaks than
WT cells (Po0.05, Student’s t-test, stages III and IV, Figure 7f). After
H2O2 exposure, all cell lines showed severe amounts of DNA damage
(Figure 7f). However, cells expressing L209P FEN1 showed a stronger
DNA damage than those expressing WT FEN1 (Po0.05, Student’s
t-test, stages IV and V, Figure 7f). The major damage status of SW480
cells expressing WT FEN1 occurred in stage III but the major damage
status of SW480 cells expressing L209P FEN1 occurred in stage IV after
H2O2 exposure (Figure 7f). The examination of the comet stage
distributions confirmed that the L209P FEN1 mutation causes defects
in LP-BER, as well as Okazaki fragment maturation.
Defects in BER lead to significant accumulation of BER inter-

mediates (Figures 7a–d), which will consequently cause chromoso-
mal aberrations.69,70 To test whether the L209P FEN1-expressing cells
accumulate more chromosomal breaks than the WT FEN1-expressing
and parental SW480 control cells, we analyzed metaphase nuclei for
chromosomal aberrations. Cells expressing L209P FEN1 exhibited

significantly increased the levels of chromosomal fragments and
breaks, when compared with WT FEN1-expressing and control
parental cells (Figure 8a). This result indicates that the expression of
L209P FEN1 indeed results in genomic instability in cells. However,
under normal culture conditions, the growth rate of L209P FEN1-
expressing cells is similar to that of the WT FEN1-expressing or
parental control cells (Supplementary Figures S4B–D). Based on the
increase in chromosomal aberrations, we hypothesized that the
L209P FEN1-expressing cells are likely to become transformed.
Therefore, we next determined whether L209P FEN1 cells are
susceptible to cellular transformation and tumorigenesis.

L209P induces cellular transformation
It has been reported that aneuploidy is a hallmark of cancer
cells.71 Therefore, we first determined the aneuploidy rate in WT
and mutant L209P FEN1-expressing cells. We found that the
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aneuploidy rate of L209P FEN1-expressing cells is nearly fourfold
greater than the rate in WT FEN1-expressing cells (12.1 vs 3.2%)
(Figure 8b). These data indicate that L209P FEN1-expressing cells
spontaneously accumulate chromosomal fragments, which leads
to the chromosomal instability and aneuploidy. These cellular
abnormalities are likely to contribute to cellular transformation
and lead to clonal expansion. To determine whether the L209P
mutation promoted tumorigenesis, we performed focus formation
and soft agar anchorage-independent growth assays. In both
assays, the number of colonies formed by L209P FEN1-expressing
cells was significantly higher than by the WT FEN1-expressing or
parental control cells, suggesting that L209P FEN1 cells contain
more transformed cells than WT FEN1 cells (Supplementary
Figure S5).
To further address whether L209P FEN1-expressing cells are

more tumorigenic than WT cells in vivo, we injected L209P FEN1-
expressing, WT FEN1-expressing and parental control SW480 cells
into the flank regions of adult immunodeficient mice. Figure 8c
illustrates the tumorigenic capacity of each cell type. No tumors

were detected after 15 days in animals inoculated with WT FEN1-
expressing and parental SW480 cells, whereas all of the five
animals inoculated with L209P FEN1-expressing cells had tumors.
The tumor growth rate of the L209P FEN1-expressing tumors was
substantially higher than the growth rates in WT FEN1-containing
and parental control groups (Figure 8c). The animals were killed
on day 24, and the tumors were weighed. Figure 8d shows that
the average tumor weight from the cells expressing L209P FEN1 is
significantly higher than the tumor weights of the WT FEN1-
expressing and parental control cells. These data suggest that cells
harboring the L209P FEN1 mutation are more oncogenic than
WT cells.

DISCUSSION
Because of the fundamental functions of FEN1 in the maintenance
of genome stability, complete elimination of FEN1 activity in mice
results in early embryonic lethality.26,72 However, we propose that
partial deficiency of FEN1 causes defects in DNA replication and
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repair, leading to the accumulation of DNA intermediates, which
then induce genomic instability and tumorigenesis. Consistent
with this hypothesis, we have detected FEN1 heterozygous
mutations in various human cancers, including lung, breast and
colon cancers.27 However, most of the identified mutations impair
either the EXO or GEN activity of FEN1 but do not impair the FEN
activity. For example, the E160D FEN1 mutation abrogates the EXO
activity, leading to frequent spontaneous mutations and accumu-
lation of incompletely digested DNA fragments in apoptotic cells.
The E160D FEN1 mutant mice are predisposed to autoimmunity,
chronic inflammation and cancers.13,42 Recently, we reported a
germline FEN1 mutation, E359K, from a breast cancer family. This
variant abolishes the GEN activity and the interaction of FEN1 with
WRN, an interaction that is critical for resolving stalled DNA
replication forks. Cells harboring this E359K FEN1 mutation
accumulate more spontaneous chromosomal anomalies than
WT cells and show higher frequencies of transformation.40

However, no mutation disrupting the FEN activity of FEN1 has
been ever reported and its role in tumorigenesis was unknown
until now.39 L209P is the first mutation that completely abolishes
the FEN activity of FEN1, along with the EXO and GEN activities.
Therefore, the L209P FEN1 mutation represents a novel mechan-
ism by which FEN1 dysregulation promotes cancer development.

The importance of the FEN, GEN and EXO activities of FEN1 in
normal cells leads to the question: how do cells harboring the
FEN1 L209P mutation survive? The cellular lethality of FEN1
deficiency is most likely due to a failure of FEN1’s function in DNA
replication.39 In the current case, the identified mutation exists in
the heterozygous state in human somatic cells and in our
experimental system. We used a lentiviral expression system to
express L209P FEN1 in the endogenous WT expression back-
ground. During S phase, the endogenous WT FEN1 is highly
expressed,73 allowing for successful DNA replication to occur in
L209P FEN1 cells, though the cell morphology and cell cycle
progression are slightly affected (Supplementary Figures S4B and
D). However, in the G1 and G2 phases, when DNA repair occurs,
the WT FEN1 protein expression level is reduced, whereas L209P
FEN1 is expressed at constant levels. The mutant protein would
then bind to the DNA replication fork or damage foci but fail to
remove the RNA primer in Okazaki fragment or DNA flap structure
in LP-BER, thus blocking the function of the WT protein.
FEN1 is a key enzyme for maintaining genome integrity and

stability. FEN1 mutation is rare in both the normal population and
in cancer patients. Sato et al.32 sequenced seven small-cell lung
cancers and nine non-small-cell lung cancers. No FEN1 mutation
was found, suggesting that FEN1 is an essential gene. We
have previously identified a set of mutations in cancer that
eliminate non-essential exonuclease and gap-dependent endonu-
clease activities and demonstrated that the loss of those activities
causes inflammation and cancer.74 In the current manuscript, we
found a FEN1 L209P mutation in colorectal cancer from the TGCA
database. Currently, there is not enough data to calculate the
prevalence of the L209P mutation in colorectal and other types of
cancers. However, based on the observation that FEN1 L209P
mutation leads to the accumulation of DNA lesions owing to its
functional defects in DNA replication and repair, we predict that
people carrying the L209P mutation should be more sensitive to
treatment with DNA damage-inducing drugs.
LP-BER is a major pathway used to repair oxidized DNA bases in

mammals. Successful repair would require three sequential steps:
(i) Pol β-dependent polymerization to form a DNA flap, (ii) removal
of the flap by FEN1, and (iii) ligation of the upstream and
downstream DNA strand by Ligase I. FEN1 is a key enzyme in
LP-BER. L209P FEN1 interrupts the WT FEN1 activity and perturbs
the overall LP-BER efficiency, generating unligated DNA inter-
mediates. As shown in Figure 5, a fully repaired product is 40 nt
long, whereas non-repaired intermediates are 20–40 nt long.
Furthermore, THF lesions were efficiently repaired by WT FEN1 but
not the L209P variant (Figure 5a). At the same time, with the
decrease in the levels of repaired product, more unligated
intermediates accumulated in the L209P FEN1-containing assay
than in the WT FEN1-containing assay. This accumulation is mainly
due to the inability of L209P FEN1 to cleave the flap structures of
the intermediate, leading to failure to generate nicked DNA
duplex substrates for Ligase I, and resulting in unfilled DNA gaps.
DSBs could be generated when the replication fork reaches these
unfilled gaps. Besides, in LP-BER, the DSBs could also be formed
owing to the failure in Okazaki fragment maturation in cells
carrying FEN1 L209P mutation. These DNA DSBs, if left unrepaired
or repaired aberrantly, can lead to genome instability. Indeed,
L209P FEN1-containing cells have more γH2AX and 53BP1 foci
and, consequently, more chromosome breaks. Chromosome
breaks can then lead to loss of heterozygosity, activation of
oncogenes and loss of tumor-suppressor genes.75,76 In addition,
L209P FEN1 cells are prone to develop aneuploidy. We have
previously revealed that aneuploidy is associated with epigenetic
alterations that promote the ability of cancer cells to evade cellular
senescence and apoptosis pathways.77

Indeed, the levels of endogenous DNA DSBs in L209P-
expressing cells, as combination results of failure in both DNA
replication and repair, are significantly higher than those in
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WT cells, as shown in Figures 7a and b. However, L209P expression
does not alter the cell cycle profile and baseline level of apoptosis
without DNA damaging agent treatment. This may be because the
DSBs in the cells are rapidly repaired by the homology-directed
repair (HDR) pathway. The remaining and persistent DSBs could be
in the range of the cellular tolerance but not sufficient to trigger
DNA fragmentation and cell apoptosis. Therefore, the mutant cells
appear to grow normally. However, the persistently elevated DSBs
could lead to the accumulation of DNA mutations and eventually
cellular transformation. A recent report has shown that inhibition
of FEN1 leads to the accumulation of DSBs in cells. When the HDR
pathway is also blocked, the cells are much more sensitive to a
FEN1 inhibitor, suggesting that HDR supports cell growth in FEN1-
deficient cells.78

MATERIALS AND METHODS
Antibodies
The anti-FEN1 (sc-56675), PCNA (sc-7907), APE1 (sc-55498), c-Myc (sc-40),
Tubulin (sc-23950), 53BP1 (sc-22760), CENP-F (sc-22791), goat anti-rabbit
IgG-HRP (sc-2004) and goat anti-mouse IgG-HRP (sc-2005) antibodies were
purchased from Santa Cruz Biotechnology (Dallas, TX, USA). The Pol

β-specific antibody (ab26343) and anti-γH2AX (ab2893) were purchased
from Abcam (Cambridge, UK).

Cell lines and cell culture
SW480 colorectal cancer cell lines were obtained from ATCC (Manassas, VA,
USA) and maintained in Dulbecco’s modified Eagle’s medium (Invitrogen,
Shanghai, China) supplemented with 10% fetal bovine serum (Invitrogen)
and penicillin–streptomycin (Invitrogen) at 37 °C in a humidified 5% CO2

incubator. Cells are tested for mycoplasma contamination.

Protein expression and purification
The WT human FEN1 cDNA was described previously.79 The 6xHis-tagged
WT FEN1 and the L209P mutant FEN1 cDNAs were constructed as
previously described.79 The QuikChange Site-directed Mutagenesis Kit
(Stratagene, La Jolla, CA, USA) was used to generate the L209P mutant
FEN1. The primers used for mutagenesis are shown in Table 1. The pET28b
vectors containing the WT and mutant genes were transformed into E. coli
BL21 cells for expression. Protein expression was performed as previously
described.43 The proteins were purified from inclusion bodies under
denaturing conditions, and refolding was induced using a method
described previously.80,81 To purify the 6xHis-tagged proteins, the
harvested cells (150 ml of culture) were lysed in 3 ml of lysis buffer
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(50 mM NaH2PO4, 300 mM NaCl (pH 8.0)) containing 6 M guanidinium
chloride. The cell lysate was sonicated until clear, followed by centrifuga-
tion at 18 000 g for 30 min. The supernatant was then loaded onto
PrepEase columns (USB Corporation, Cleveland, OH, USA). The 6xHis-
tagged proteins were eluted and refolded. The protein purity was
determined by sodium dodecyl sulfate (SDS)–polyacrylamide gel electro-
phoresis (PAGE), and the concentration was quantified using the Bradford
Assay Kit (Bio-Rad Laboratories, Hercules, CA, USA).

Lentiviral and stable cell line preparation
Lentivirus particles expressing the L209P FEN1 or WT FEN1 gene were
generated by transfecting 293T cells with the L209P FEN1 or WT FEN1
plasmids, together with packaging plasmids. The virus-containing medium
was collected every 24 h for 3 days. The cells were incubated with the
lentivirus-containing medium plus 4 μg/ml polybrene for 24 h and then
selected for 72 h in 1.5 μg/ml puromycin. All the lentivirus particles were
prepared by Guangzhou Fitgene Biotechnology CO., LTD (Guangzhou, China).

Immunofluorescence
Cells were cultured in six-well plates containing acid-treated cover slides
and incubated overnight. The cover slides were then washed with
phosphate-buffered saline (PBS), fixed with 4% formaldehyde in PBS for
30 min and then washed again with PBS. Triton X-100 (0.05%) was added
for 5 min to permeabilize the cells. The slides were blocked with 2% bovine
serum albumin and then incubated with the primary antibody. The slides
were washed with PBS and then incubated with secondary antibody
conjugated with fluorescein isothiocyanate. The slides were then washed
again with PBS and stained with DAPI (4′,6-diamidino-2-phenylindole).
The mounted slides were viewed with a Zeiss Axioscope (Oberkochen,

Baden-Wuerttemberg, Germany), and the images were captured with a
charge-coupled-device camera (Oberkochen).

Alkaline comet assay
Alkaline comet assay analysis was performed on SW480 cells expressing
L209P or WT FEN1. The cells were exposed to 0.3 mM H2O2 for 1 h, then
washed with PBS, replated in normal medium and incubated for 24 h. For
the comet assay, we applied the procedure according to previous
reports.64–66 Comets were visualized by PI (propidium iodide) staining
and examined at × 400 magnification with a fluorescence microscope
(Axiovert 200 M, Zeiss, Jena, Germany). DNA spots from each sample were
classified into five categories, corresponding to the amount of DNA in
the tail.67,68

Drug-sensitivity assay
As described previously,50 cells were seeded in 12-well plate, treated with
multiple dilutions of drugs to be tested and incubated for 48 h under
normal growth conditions. The number of viable cells was determined by
the CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS,
Promega, Madison, WI, USA). At least three replicate experiments for each
clone were averaged. The data are expressed as the percentage of growth
relative to untreated controls.

FEN1 nuclease activity assay
The cleavage of DNA substrates by FEN1 was determined under the same
conditions as those previously published.43 Briefly, 32P-labeled DNA
substrates were incubated with purified FEN1 in a buffer solution
containing 50 mM Tris-HCl (pH 8.0), 50 mM NaCl and 5 mM MgCl2. The
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Figure 8. The FEN1 L209P mutation induces chromosomal instability and cellular transformation. (a) Spontaneous chromosomal breaks in
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reactions were carried out at 37 °C for 30 min and were terminated with
stop solution (95% formamide, 20 mM EDTA, 0.05% bromophenol blue,
0.05% xylene cyanol). The product and substrate were then separated by
15% SDS–PAGE and visualized by autoradiography.

Reconstituted BER assay
The BER assay was performed as described previously.50 Complete repair
reactions were carried out in 20 μl of reaction buffer (40 mM HEPES–KOH
(pH 7.8), 70 mM KCI, 7 mM MgCl2, 1 mM dithiothreitol, 0.5 mM EDTA, 2 mM

ATP, 200 U creatine-phosphokinase, 0.5 mM NAD and 5 mM phosphocrea-
tine, 50 μM each of dATP, dTTP and dGTP and 8 μCi (α-32P)-dCTP]. For BER
reconstitution with purified proteins, the substrate was incubated with a
mixture of FEN1 (0–24 nM) and other purified BER proteins. For cell extract
reconstitution, the LP-BER DNA substrate was incubated with the whole-
cell extracts (0–7 μg). Reactions (30 min, 37 °C) were then stopped
by adding an equal volume of the gel-loading buffer and visualized by
autoradiography.

DNA-binding assay
Gel shift and ELISA-based assays were used to compare the DNA-binding
affinity.50 For the gel shift assays, various concentrations of FEN1 protein
(0.5–2000 nM) were incubated (15 min, room temperature) with 0.5 nM
radio-labeled DNA substrates in a buffer containing 50 mM Tris-HCl
(pH 8.0), 100 mM NaCl, 10% glycerol and 0.1% NP-40. The samples were
run on a 5% native polyacrylamide gel and visualized by autoradiography.
For ELISA-based affinity assays, a biotin-labeled DNA substrate (1 pmol)
was immobilized on a streptavidin-coated 96-well ELISA plate and washed
three times with binding buffer. Bound FEN1 was detected using a mouse
anti-FEN1 antibody and goat anti-mouse IgG linked to horseradish
peroxidase (HRP). Color was developed by adding tetramethylbenzidine
and stopped by the addition of 1 N HCl. The optical density at 450 nm was
read on a microplate reader.

Metaphase spread preparation and chromosome counting
As described previously,13 the cells were collected and treated with
colcemid to arrest the cells at metaphase. The cells were then incubated
(20 min, room temperature) with hypotonic solution (75 mM KCl), placed in
a 37 °C water bath (5 min) and fixed with Carnoy’s solution. The fixation
process was repeated three times and a dropper was used to place the
cells onto a clean slide. The cell spread was incubated (55 °C overnight),
stained with Giemsa solution and scanned under a microscope for mitotic
cells. The images were recorded and analyzed with ImagePro 7.0
(MediaCybernetics, Bethesda, MD, USA), and the chromosomes in each
metaphase cell were counted.

Cellular transformation assay
The focus formation assay was conducted according to a previous report.40

The presence of foci was visually evaluated after staining the cells with
0.05% crystal violet. The anchorage-independent growth assay in soft agar
was described previously.82 Briefly, the cells (3000 cells per 35 mm well)
were suspended in complete medium containing 0.35% agarose. The cells
were grown on tissue culture dishes containing a 2-ml layer of solidified
0.7% agar in a complete medium. After 10 days, the number of colonies
was quantified from micrographs taken at random locations on the plate
(original magnification, × 20).

In vivo tumorigenesis assays
Xenograft growth of tumors in null mice is as described previously.83

Female null mice were purchased from Model Animal Research Center of
Nanjing University. Mice were procured and the study was conducted
according to the guidelines as well as protocol approved by the
Institutional Animal Ethics Committee, Nanjing Normal University, China.
Mice were randomly divided into three groups (n=5). SW480 cells
transfected with vector control, L209P or WT FEN1 (1 × 106 cells per mouse)
were suspended in 100 μl Dulbecco’s modified Eagle’s medium and held
on ice. The entire 100-μl sample was injected into subcutaneous tissue of
6–8-week-old female null mice. Five mice per group were used. The mice
were checked daily for tumor appearance by palpation, and the tumor
volume was measured every 3 days and recorded in mm3

(length×width2). The tumors were removed on day 25 and weighed.84,85

Statistical analysis
Phenotypic and molecular differences, owing to genetic differences or
environmental treatments, in cultured cells or mice were assessed by
Student’s t-test, using the n-Query program (Statistical Solutions, Saugus,
MA, USA).
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