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Abstract

Recent scientific advances have greatly enhanced our understanding of the complex link between the gut
microbiome and cancer. Gut dysbiosis is an imbalance between commensal and pathogenic bacteria and the
production of microbial antigens and metabolites. The immune system and the gut microbiome interact to
maintain homeostasis of the gut, and alterations in the microbiome composition lead to immune dysregulation,
promoting chronic inflammation and development of tumors. Gut microorganisms and their toxic metabolites may
migrate to other parts of the body via the circulatory system, causing an imbalance in the physiological status of
the host and secretion of various neuroactive molecules through the gut-brain axis, gut-hepatic axis, and gut-lung
axis to affect inflammation and tumorigenesis in specific organs. Thus, gut microbiota can be used as a tumor
marker and may provide new insights into the pathogenesis of malignant tumors.
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Background
Human intestines harbor approximately 3.8 × 1013 mi-
croorganisms that maintain the physiology and health of
the host by influencing basic functions, such as metabol-
ism, nutrition, immunomodulation, and pathogen resist-
ance [1–5]. Recently, gut microbiota have been reported
to play key roles in the regulation of several processes
related to brain function and mental health [6]. At the
same time, gut microbiota play an important role in host
disease pathogenesis [7]. Drugs and particular diseases
(autoimmune and chronic diseases) may cause intestinal
microbial dysfunction [8]. Other factors, such as activa-
tion of inflammatory signaling, dietary changes,

infection, and lack of nucleotide-binding oligomerization
domain 2 (NOD2), can also lead to dysbiosis [9, 10].
Dysbiosis of the microbiome has differential effects on
the abundance of certain gut microbiota. It may increase
metabolic disorders and the abundance of inflammation-
inducing bacteria, which can induce carcinogenesis [11–
13]. Gut microbiota regulates cancer at the level of gen-
etic instability, susceptibility to host immune response,
progression, and response to therapy [14, 15].
Using animal models, researchers have gained insights

into the mechanisms through which microbes trigger
carcinogenesis [16–18]. Escherichia coli and Bacteroides
fragilis have been shown to potentiate intestinal tumori-
genesis in chronic inflammation [19]. Besides, specific
microbes and microbial dysbiosis have been shown to
induce and even promote carcinogenesis by releasing
genotoxins that may damage host DNA [20, 21]. Recent
research shows, host innate immune responses against
the resident microbiome may lead to tumor growth [16].
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Thus, the gut microbiome is an essential factor for con-
sideration in the precise treatment of cancer and can be
used as a biomarker for diagnosis and treatment pur-
poses [22]. Moreover, the efficacy of cancer treatments
has been shown to be reduced in antibiotic-treated and
germ-free mice, suggesting that intact gut microbiota is
necessary for optimal treatment response [23].
Regardless of health or disease status, gut microbiota

affect metabolism, tissue development, inflammation,
and immunity in the host [24]. Of course, the large
amount of communication in the gut-organ axis cannot
be separated from the involvement of the gut micro-
biota. It has been shown that there are bidirectional
interactions within the brain-gut-microbiome axis, in-
volving neural, endocrine, and inflammatory mecha-
nisms [25, 26]. In addition, intestinal flora has been
shown to affect liver immune function and bile acid me-
tabolism through the gut-liver axis [27]. Similarly, lung
inflammation originating in the gut has been reported in
a study of the gut-lung axis [28]. In this review, we
summarize how gut dysbiosis and immune dysregulation
can lead to the induction and maintenance of tumors.
Moreover, alterations in the microbiome may participate
in immune modulation to promote cancer through
metabolic pathways. We propose that gut microbiota
dysbiosis affects cancer development through the gut-
organ axis.

Gut microbiota dysbiosis is associated with the
occurrence and development of cancer
The human gut is populated by trillions of archaea, bac-
teria, eukaryotes, viruses, and microbes belonging to four
major microbial phyla: Proteobacteria, Firmicutes, Bac-
teroides, and Actinobacteria; these account for 95% of
the gut microbiome [29]. Notably, true oncomicrobes in
the intestine account for a very small proportion of all
microbial populations. Furthermore, components of the
microbiota such as flagellin can alter this balance and
promote chronic inflammation, promoting intestinal
tumor development [30]. HPV can cause the overexpres-
sion of the E6 and E7 genes of the virus, thereby cooper-
ating to make the host cell immortal [31, 32]. Cunningly,
microorganisms and their metabolites may migrate to
other parts of the body and contribute to tumor devel-
opment [32]. Disruption of the intestinal barrier function
may trigger inflammation and carcinogenesis [12, 32].
Impaired barrier function can cause bacteria to enter the
intestinal epithelium, allowing toxins to be transmitted.
Bacterial toxins, such as colistin that is produced by
Escherichia coli, have been shown to potentiate colorec-
tal cancer in azoxymethane-exposed mice [12]. The
toxin produced by the enterotoxigenic Bacteroides fragi-
lis is related to colorectal tumors [33, 34]. In fact, mi-
crobes also drive cancerous transformation by affecting

genome stability, resistance to cell death, and prolifera-
tion. For example, soluble fiber microbial fermentation
disorders can induce cholestatic liver cancer [35]. Gut
microbiota dysbiosis modulates the responses of CD8+ T
cells to influence colitis-associated tumorigenesis [18].
Peptide tyrosine tyrosine expression induced by gut
microbiota dysbiosis has been linked to the development
of pancreatic cancer [36, 37]. Dysbiosis of gut microbiota
has been shown to lead to the progression of chronic in-
flammation and liver disease, thereby increasing the risk
of hepatocellular carcinoma (HCC) [38]. Interventions
that regulate intestinal flora and improve immune func-
tion may be new regimens for future cancer treatment
[29, 30]. Specific microbial changes can cause flora im-
balance through signaling pathways and promote related
cancer progression. Representative cancers related to gut
dysbiosis are listed in Table 1.

Gut microbiome and immune dysregulation in
cancer
Intriguingly, the gut microbiome can inhibit infection
by intestinal pathogens by occupying a niche, adjusting
the niche environment, competing for nutrients, releas-
ing bacteriocins, and regulating host immune defense.
This process starts during the constitution of the
microbiome at birth, affecting the maturation of the
immune system, the development of tolerance and con-
tainment of the microbiome [53, 54]. In the mucosa,
the T and B cells of immune system have the pheno-
type and function of specific locations affected by the
microflora. These cells play a key role in maintaining
immune homeostasis by inhibiting the response to
harmless antigens and preserving the integrity of the in-
testinal mucosal barrier function [54].
Indeed, the host intestinal mucosal surface barrier al-

lows microbial symbiosis [45, 55]. Gut microbiota are
susceptible to continuous damage caused by the
environment and must be repaired quickly to restore
homeostasis. Disruption of the gut barrier results in con-
frontation between the microorganisms and the immune
system, which may result in cancer and inflammatory
diseases. The immune response in the developing tumor
microenvironment, including the triggering of pro-
inflammatory or immunosuppressive processes, can be
further affected by microorganisms [46].
The central role of immunity in the biology of cancer

calls for attention to the exact contribution of micro-
biota in oncogenesis. For example, gut microbiome
dysbiosis promotes inflammation via chemokine C-C
chemokine ligand 5 (CCL5), which recruits a non-
physiological number of lymphocytes in the intestine,
and the resulting inflammatory state promotes epithelial
cell proliferation through local activation of the
interleukin-6 (IL-6) pathway [56, 57] (Fig. 1).
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Upregulation of toll-like receptors (TLRs) by lipopoly-
saccharide (LPS) and other microbial products can acti-
vate the nuclear factor (NF)-κB, c-Jun/JNK, and JAK/
STAT3 pathways, which have well-defined roles in cell
proliferation and immunosuppression [21, 50].

Gut microbiome participates in immune modulation to
promote cancer through metabolic pathways
Research on the interaction between the gut microbiome
and immunity is an emerging field that examines the
role of environmental factors, such as diet, as well as
genetic and immune signals in metabolism, immunity,
and host response to infection [58]. Studies on immune
dysregulation may contribute to our understanding of
the effects exerted by the microbiome in cancer

development and treatment. In patients with colorectal
cancer (CRC), the gut microbiome can directly or
indirectly affect CRC by secreting metabolites, invading
tissues, and modulating host immune response [39, 40].
Clostridium, Peptostreptococcus, Porphyromonas
Genus, Prutella, Bacteroides, and twin cocci are the most
significant bacteria associated with CRC [41, 59].
The liver is sensitive to intestinal bacterial metabolites,

and changes in the intestinal microbiome affect the
function of immune cells in the liver. Moreover, com-
mensal microbiota can mediate the metabolism of pri-
mary to secondary bile acids. Gut microbiota are
thought to be involved in the physiological activities of
the host by affecting the bile acid pool, thus regulating
hormone secretion and immunity via the resulting me-
tabolites [60, 61]. We hypothesize that the gut micro-
biome promotes host immunity mainly through anabolic
pathways. Ma et al. have found that the immune re-
sponse to liver cancer has the opposite effect and that
reducing the abundance of intestinal Clostridial bacteria
through the use of antibiotics can increase the levels of
primary bile acids and inhibit liver tumors by increasing
the expression of CXC chemokine ligand 16 (CXCL16)
in sinusoidal endothelial cells, after primary bile acids
are metabolized to secondary bile acids by Clostridium
bacteria [27]. Primary bile acids increase CXCL16 ex-
pression, whereas secondary bile acids exert the opposite
effect. Schramm et al. have reported that the expression
of CXCL16 in patients with liver cancer is linked to pri-
mary bile acids. However, there are differences in the
composition of human and mouse immune systems, in-
testinal microbiome, and bile acid [62]. Therefore, the
clinical significance of the relevant research results is
limited.
In mice, gut microbiota and bile acid products play di-

verse roles in cancer development. For example, elimin-
ation of Clostridium XIV, increase in primary bile acids,
and reduction in secondary bile acids inhibits the pro-
gress of liver cancer. Immune cells, such as dendritic
cells, macrophages, and myeloid-derived suppressor

Table 1

Cancers Associated microbiota signaling reference

With Gut Dysbiosis

Pancreatic cancer Proteobacteria, Bacteroidetes, Firmicutes TLR [37]

Colorectal cancer Bifidobacteria, Helicobacter, Bacteroides TGF-β [39–41]

Liver cancer Fiber-Fermenting Bacteria Proteobacteria TLR [35, 42]

Lung cancer Enterococcus,Streptococcus, Prevotella [43, 44]

Gastrointestinal cancer H. pylori STAT3 [45–47]

Breast cancer Pseudomonas aeruginosa, human papilloma virus NF-κΒ [48, 49]

Thyroid cancer Neisseria,Streptococcus STAT3 [50]

Bladder cancer Bacteroides fragilis and Clostridium cluster I IL-6 [51, 52]

Fig. 1 Gut dysbiosis can drive inflammation-induced cancer; it
causes epithelial reprogramming and induces CCL5 transcription to
induce local inflammation. In turn, it leads to local induction of IL-6
secretion and proliferation of intestinal epithelial cells, ultimately
leading to tumor formation
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cells, can be regulated by bile acids or their receptors,
thus promoting anti-cancer immune responses. Bile acid
receptors and flora metabolites may be novel targets for
cancer treatment in the future [63]. Moreover, microbial
pathogen-associated molecular patterns can activate toll-
like receptor (TLR) signaling in a variety of cell types,
leading to cytokine production and NF-κB-mediated in-
flammation, which can fuel tumor growth. Gut micro-
biota exacerbate metabolic inflammation through TLR
signaling [64]. For example, the LPS receptor TLR4 has
been shown to promote hepatocellular carcinoma, pan-
creatic cancer, and colon cancer. TLR-induced activation
of NF-kB and STAT3 is a key signaling pathway that
promotes cancer [32]. NF-κB signaling can stimulate
glycolytic energy flux during acute inflammation [65].
(Fig. 2).

Gut microbiota may affect the efficacy of PD-1 inhibitors
Previous studies in mouse models and humans have
shown that regulation of the fecal microbiome signifi-
cantly affects the outcome of cancer immunotherapy in

terms of toxicity and efficacy [66]. Cancer immunother-
apy based on the blockade of programmed cell death
protein 1 (PD-1) and programmed death-ligand 1 (PD-
L1) has become an essential approach for the treatment
of various cancers in advanced stages [66]. Fecal bacter-
ial transplantation may alter the gut microbiome of pa-
tients with cancer to improve the efficacy of drugs such
as anti-PD-1 monoclonal antibody. Routy et al. have
found that the response of patients with lung or kidney
cancer to PD-1 monoclonal antibody is related to a
higher abundance of Akkermansia muciniphila [67].
It is worth noting that the efficacy of tumor immuno-

therapy is related to the composition of intestinal
bacteria [4]. Gopalakrishnan et al. have shown that, in
patients with melanoma, the response to treatment with
PD-1 monoclonal antibody was related to
Faecalibacterium-based flora in patients [68]. There is a
link between the efficacy of the cancer immune drug
PD-1 blocker and the gut microbiota of patients, as gut
microbiota may affect the efficacy of PD-1 inhibitors.
Scientists suspect that the cytokine IL-12, which is

Fig. 2 Microbiota metabolites are related to tumor development. Pro-inflammatory pathways are activated when the mucosal barrier is broken.
The loss of the boundary between the host and the microorganism is related to the pattern recognition receptor signaling cascade. The
feedforward circuit of chronic inflammation mediated by NF-kB and STAT3 signal transduction promotes canceration in transformed cells and
non-tumor cells. Microbial PAMP activate TLR signaling in a variety of cell types, leading to cytokine production and NF-kB-mediated
inflammation, thereby exacerbating tumor growth
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released in response to A muciniphila, may help recruit T
cells to combat cancer [3, 69]. Cancer patients harboring di-
verse intestinal flora rich in Clostridium lentum and Clos-
tridiaceae have a better response to PD-1 inhibitors, and
may show more significant effects of immunotherapy [3, 4].
A study examining the response of patients with differ-

ent flora to PD-1 monoclonal antibodies has shown that
responding patients were found to have a higher diver-
sity of bacteria and a higher abundance of Bifidobacter-
ium longum [69]. Therefore, the composition of the gut
microbiome can affect the anti-tumor immunity of can-
cer patients, and can be used as a biomarker to predict
the response of patients to immune checkpoint blockade
therapy.
Prediction of the efficacy of PD-1 through microbial

signals may require combining RNA sequencing, meta-
bolomics, cancer process management, and intestinal
fungal/viral analysis through clinical trials to fully under-
stand the relationship between microbiota and the effi-
cacy of tumor immunotherapy [70, 71]. Gut microbiota
can regulate anti-PD-1 efficacy by interacting with the
host immune system and thus represent a new thera-
peutic target [68, 72].

Patients with cancer should use antibiotics judiciously
Cancer treatment with microbial preparations or their
products has the potential to shrink tumors [73]. Be-
cause flora can affect cancer progression, it may also
affect the efficacy of chemotherapy and immunotherapy.
Intervention with fecal flora affects the toxicity and ef-
fectiveness of immunotherapy. Gut microbes have been
considered as key modulators of host immunity, raising
the possibility that they could influence the outcome of
cancer immunotherapy [74]. For example, it has been
suggested that the use of antibiotics early in the treat-
ment reduces the survival rate of patients with renal cell
carcinoma and non-small cell lung cancer [66]. Antibi-
otics have saved countless lives, but they have also many
side effects, such as Clostridium difficile infection, anti-
biotic resistance, and flora changes [75]. A study by Wu
et al. has found that the use of antibiotics increases the
risk of colon cancer, but reduces the risk of rectal cancer
[76]. Antibiotic exposure is the main reason for the
emergence of drug resistance, leading to the accumula-
tion of drug-resistant genes in specific locations; the
abundance and diversity of drug-resistant genes in the
intestinal flora are high, which may be closely related to
the use of antibiotics [77].

Gut microbiota dysbiosis affects cancer through
gut-organ axis
The gut-organ axis establishes links or a two-way or
multi-directional communication between organs
through nerve, endocrine, immune, humoral, and

metabolic pathways [78]. Intestinal flora and their secre-
tions can be involved in the occurrence and develop-
ment of tumors through the gut-organ axis [79, 80]. The
bidirectional relationship between the gut and vital
human organs (such as the lung, brain, and liver) is
discussed below.

Gut microbiota dysbiosis affects cancer through the gut-
brain axis
The gut-brain axis plays an important role in tumor pro-
liferation, invasion, apoptosis, autophagy, and metastasis
[47, 81]. Ruty et al. have proposed that gut microbiota can
follow many routes to the brain and impact brain tumor
therapeutic interventions [82]. In support, gut microbiota
has been shown to have significant associations with can-
cer treatment-related psychoneurological symptoms [83].
The gut microbiota-brain axis includes gut microbiota

and their metabolic products, the enteric nervous system
(ENS), sympathetic and parasympathetic branches within
the autonomic nervous system, neural-immune system,
neuroendocrine system, and central nervous system
(CNS) [84]. The gut microbiome produces most neuro-
transmitters found in the human brain [85, 86]. Recent
studies have shown that the CNS and ENS can interact
with gut microbiota to regulate nutrient metabolism. The
vagal nerve system facilitates communication between the
CNS and ENS to control gastrointestinal tract functions
and feeding behavior. Vagal afferent neurons also express
receptors for gut peptides that are secreted from enteroen-
docrine cells such as cholecystokinin (CCK), ghrelin,
leptin, peptide tyrosine tyrosine (PYY), glucagon-like
peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; sero-
tonin). The gut microbiome can regulate the levels of
these peptides to influence the vagal afferent pathway and
thus regulate intestinal metabolism via the microbiota-
gut-brain axis. Serotonin functions as a key neurotrans-
mitter at both terminals of this network. Local alterations
in serotonin concentrations with subsequent relay of sig-
nals along the brain-gut axis influence CNS neurotrans-
mission and regulate the function of neural processes in
the gastrointestinal tract [87]. Gut microbiota dysbiosis
can result in changes in serotonin levels. In triple-negative
breast cancer, it has been shown that serotonin promotes
cancer progression through autocrine serotonin signaling
[48, 49, 88]. Dysbacteriosis-mediated expression of the
glucagon-like peptide-1 has been shown to affect autoph-
agy in endometrial cancer and is related to the occurrence
of pancreatic cancer [89, 90].

Gut microbiota dysbiosis affects cancer through the gut-
liver axis
The gut microbiome may contribute to cancer patho-
genesis and progression through the gut-liver axis [91].
The two-way relationship between the intestine,
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microbiota, and liver integrates signals generated by
dietary, genetic, and environmental factors [92]. This re-
ciprocal interaction is facilitated by the portal vein [93].
Dysbiosis of gut microbiota leads to the progression of
chronic inflammation and liver disease, thereby increas-
ing the risk of HCC [35, 42]. Of note, bile acid and LPS
provide an important link between the liver, bacterial
microbiota, and the intestine. Intestinal microbiome-
mediated bile acid metabolism regulates liver cancer
through natural killer cells [27]. In a mouse model with
dysbiotic intestinal flora, the synthesis of long-chain fatty
acids is reduced, accompanied by oxidative stress and
inflammation [94]. Bile acid, short-chain fatty acids
(SCFAs), trimethylamine-N-oxide (TMAO), and im-
munoglobulin A (IgA) can also exert metabolic control
through the microbiota-gut-liver axis. Further research
should focus on the role of gut microbiota in the neuro-
endocrine regulation of nutrient metabolism via the
microbiota-gut-brain-liver axis [95–97]. Intestinal mi-
crobes can promote cancer progression by changing the
balance between host cell proliferation and death, and
by affecting the immune system (Fig. 3).

Gut microbiota dysbiosis affects cancer through the gut-
lung axis
The human respiratory tract is the main and continuous
entrance for many microorganisms and particles (such
as viruses and bacteria), and the lung is an environment
rich in flora [98, 99]. The intestinal flora may also have
an impact on lung health. Changes in the microbial
composition and function of the intestine are related to
the development of lung diseases [100]. Metabolites such
as SCFAs are produced by the microbiota and may regu-
late inflammation in the lungs [101, 102]. It appears that
chronic lung diseases, such as cancer, are linked to dys-
biotic airway microbiota and commonly occur alongside
GI disorders [103, 104].
There is increasing evidence of a close relationship be-

tween the gastrointestinal tract and the respiratory tract.
The exacerbation of chronic intestinal and lung diseases
has key conceptual features related to the disorder and
imbalance of the microbial ecosystem [105]. The surviv-
ing bacteria, cell wall fragments, or protein fragments of
dead bacteria escape along with the cytokines and che-
mokines produced in the intestine, and then enter the

Fig. 3 The dysbacteriosis leads to continuous destruction of the barrier and delayed restoration of homeostasis. In these cases, the microbiota
can affect canceration by changing the proliferation and apoptosis of host cells, disrupting the function of the immune system, and affecting the
metabolism of the host
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general circulation. Entering the pulmonary circulation
may lead to the activation of dendritic cells and macro-
phages and differentiation of T cells [106]. The concen-
tration of circulating SCFAs in the intestine affects IL-6
and IL-8 in lung cancer and is related to the occurrence
and development of lung cancer [107, 108]. In addition,
patients with non-small-cell lung cancer experience gut
butyrate-producing bacterial dysbiosis [109]. A signifi-
cant relationship has also been found between Mycobac-
terium tuberculosis (TB) and lung cancer [43, 44]. A
possible reason is that persistent tuberculosis infection
can cause the production of tumor necrosis factor and
cause lung inflammation. In addition, pulmonary fibrosis
caused by TB leads to the synthesis of extracellular
matrix, which is involved in the development of lung
cancer [110, 111].

Conclusion and perspectives
Dysregulation of the gut microbiota and its interaction
with the host may be important in tumorigenesis. First,
we need to identify relevant bacteria in humans, study
their abundance and the impact of their products on
cancer progression, and elucidate their interactions with
the human immune system as well as their ultimate im-
pact on the mechanism of tumor occurrence and devel-
opment. We then need to identify novel therapeutic
microbial interventions and combine them with conven-
tional therapies to treat tumors and other multifactorial
human diseases.
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