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Orexin receptors (OXRs) play a critical regulatory role in central control of food intake,

maintenance of sleeping states, energy metabolism, and neuroendocrine homeostasis.

However, most previous studies have focused on the sleep-promoting functions of

OXRs in human beings, while their potential value in enhancing food intake for livestock

breeding has not been fully exploited. In this study, we successfully cloned porcine

orexin 2 receptor (pOX2R) complementary DNA and constructed four pOX2R mutants

(P10S, P11T, V308I, and T401I) by site-directed mutagenesis, and their functional

expressions were further confirmed through Western blotting analysis. Pharmacological

characteristics of pOX2R and their mutants were further investigated. These results

showed that the P10S, P11T, and T401I mutants had decreased cAMP signaling with

orexin A, whereas only the P11T mutant decreased under the stimulation of orexin

B. Besides, only P10S displayed a decreased calcium release in response to both

orexin ligands. Importantly, these mutants exhibited decreased phosphorylation levels of

ERK1/2, p38, and CREB to some degree compared with wild-type pOX2R. Collectively,

these findings highlight the critical role of these mutations in pOX2R signaling and expand

our understanding of molecular and pharmacological characterization of pOX2R.

Keywords: orexin 2 receptor, pig, mutations, cAMP, signaling pathway

INTRODUCTION

Orexins involve orexin A and B are a pair of lateral hypothalamic neuropeptides that were originally
identified as the endogenous ligands for two G-protein coupled receptors, namely orexin receptors
1 (OX1R) and 2 (OX2R) (1). Orexin A (OXA), a C-terminally amidated 33-residue peptide with
two intramolecular disulfide bridges and an N-terminal pyroglutamate residue, shows similarly
high potency for both OX1R and OX2R (2). Of note, the peptide sequences of orexin A are usually
highly conserved in human and other animals. Orexin B (OXB), a 28-amino-acid and C-terminally
amidated linear hydrophilic peptide, exhibits higher binding activity to OX2R than OX1R, with
about 10-fold difference. Unlike OXA, there are differences in the OXB derived from different
animals, such as the substitution of serine at position 2 and/or 18 in human by proline and/or
glutamine in other mammals (3). OX1R and OX2R belong to the rhodopsin-like receptor family
and show 64% identical amino acid sequences. Recent crystal structure analysis demonstrated that
human orexin receptor 2 (hOX2R) lacks a conserved amphipathic α-helix in the extracellular
N-terminal region compared to hOX1R (4, 5). It has also been proved that the interaction of
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Orexins and OX1R/OX2R would activate the three subunits of
the Gα protein, which in turn regulates various phospholipases,
non-selective cation channels, adenylate cyclase, proteins, and
lipid kinases, and finally modulates downstream signaling (6–
8). Specifically, the stimulation of OXA on OX1R was found to
trigger the release of 2-arachidonic acid, which further activates
p38 and ERK1/2 in a time- and concentration-dependent
manner, and the increased phosphorylation is closely related
to Gq/PLC/PKC signaling but is not involved in the PKA
pathway (9–11).

The physiological functions of orexin receptors, including
central control of food intake, regulation of sleep and wakefulness
(12, 13), energy metabolism (14, 15), and neuroendocrine
homeostasis (16), have already been fully demonstrated. For
example, mice that showed high levels of orexins could obtain
more weight increase under the same feeding conditions (17).
In contrast, orexin-deficient mice exhibited loss of appetite (18).
Under restricted feeding conditions, the expression of orexins
in animals significantly increased and further facilitated the
intake of food (19). In addition to food intake, orexins and
receptors were also found to participate in the regulation of
sleep (20). For instance, people with narcolepsy often have lower
levels of orexins in cerebrospinal fluid (21). This suggests that
the inhibition of orexin receptors in human may contribute
to the alleviation of insomnia (22). Indeed, an effective small-
molecule antagonist of orexin receptors termed Suvorexant
(23) was approved by the FDA for the treatment of insomnia
in 2014 (24). Despite these ongoing efforts in human, the
pharmacological characteristics and functions of orexin receptors
in pig are still largely unknown. Considering that the OX1
receptor is mainly involved in motivation/reward (25) and
the OX2 receptor is closely related to the modulation of the
sleep/wake cycle, energy homeostasis (26, 27), and food intake
(28), we reasoned that the OX2R in pig may be closely associated
with the rate of weight gain. As is well-known, the pig is
the most critical economic animal in China (29), and the rate
of weight gain is an important indicator of economic traits.
Therefore, promoting their breeding and increasing animal
weight are feasible measures to accelerate the development of the
aquaculture industry. However, the pharmacology and functional
characterization of pOX2R and its mutations have still not been
fully studied.

In this study, we first successfully cloned pOX2R and
constructed four mutations thereof, namely P10S, P11T, V308I,
and T401I. Besides, we investigated the intracellular cAMP
generation of these receptors under the stimulation of OXA and
OXB through dual-luciferase reporter gene assay. Meanwhile,
the phosphorylation levels of extracellular regulated protein
kinases 1/2 (ERK1/2), p38, and cAMP-response element-
binding protein (CREB) induced with two agonists were
determined through Western blotting analysis. These results
showed that OXA and OXB would lead to increased intracellular
cAMP and calcium release in a dose-dependent manner
for both wild type and four mutants. However, the P11T
mutation significantly decreased cAMP production, while the
P10S mutation remarkably reduced the calcium release with
two ligands. In addition, we observed significantly increased

phosphorylation levels of ERK1/2, p38, and CREB in wild-
type pOX2R with OXA/OXB, whereas most mutations exhibited
decreased phosphorylation levels. Taken together, these results
demonstrated that these four mutations in pOX2R have a
potential effect on downstream protein phosphorylation and
related physiological functions.

MATERIALS AND METHODS

Materials
Expression vector pcDNA3.1(+) was purchased from Invitrogen
(Carlsbad, CA, USA). A fast mutagenesis system kit was
purchased from Transgen Biotech (Beijing, China). An Exfect
2000 transfection reagent was obtained from Vazyme Biotech
(Nanjing, China). DMEM/F-12 1:1 medium was purchased
from Thermo Fisher Scientific (Beverly, MA, USA). Reporter
gene plasmids pGL4.29[luc2P/CRE/Hygro] and pGMLR-TK
were purchased from Promega (Beijing, China). A dual-
luciferase reporter gene assay kit was purchased from Beyotime
Biotechnology (Shanghai, China). PMSF and protease inhibitors
were purchased from Solarbio Life Science (Beijing, China). c-
myc Rabbit mAb was obtained from Abcam (Cambridge, UK).
Goat anti-rabbit IgG-HRP was purchased from Cell Signaling
Technology (Boston, MA, USA).

Molecular Cloning of pOX2R
The pOX2R coding DNA sequence was amplified
directly from pig genomic DNA using sense primer 5′-
CCCAAGCTTATGTCCGGCACCAAACTGGAGGAC-3′

and antisense primer 5′- GCTCTAGACTACCAGTTTTGG
AGCTGCCCCGC-3′ based on the published nucleotide
sequence in the NCBI database (NM 001129951.1), incorporating
HindIII and XbaI restriction sites in sense and antisense primers
(underlined), respectively. PCR amplification was performed
based on the following cycling parameters: 5min at 94◦C for
one cycle, followed by 30 s at 94◦C, 30 s at 60◦C, and 60 s at
72◦C for 30 cycles, then a final extension at 72◦C for 5min.
After amplification, PCR products were separated and visualized
by agarose gel electrophoresis with ethidium bromide. Correct
PCR products were double-digested with HindIII and XbaI
(Promega, Shanghai, China) and ligated into the expression
vector pcDNA3.1(+) using T4 DNA ligase (Trans-Gen Biotech)
at 16◦C overnight.

Recombinant plasmids were transformed into competent
Escherichia coli DH5α cells, and cells were grown overnight
on an LB-agar plate containing 50µg/ml ampicillin. Plasmid
DNA of single colonies was extracted using a mini-preparation
kit (Axygen Biosciences, CA, USA) after digestion with
HindIII and XbaI. The nucleotide sequence of the cloned
pOX2R was determined by DNA sequencing, and Myc tag
(AAGCTGATCTCAGAAGAAGACCTATCCGGC) was added
at the N-terminus (Sangon Biotech, Shanghai, China). Plasmid
DNA containing a Myc epitope tag and the pOX2R sequence
(myc-pcDNA3.1-pOX2R) was extracted using a PlasmidMaxi kit
(Axygen Biosciences, CA, USA).
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Phylogenetic Analysis and Homology
Models
The phylogenetic relationship of cloned pOX2R and other
related genes from the NCBI database, including from human,
mouse, rat, cattle, sheep, dog, cat, chicken, and zebrafish
(GenBank accession number or NCBI reference sequence
number: NM_001526.4, NM_001364551.1, NM_013074.1,
NM_001192677.1, XM_004018732.4, NM_001002933.1,
XM_019830741.1, NM_001024584.1, and NM_001079868.1,
respectively) were compared. Multiple alignment of selected
sequences was conducted by ClustalX 2.1. Then, a maximum
likelihood tree was produced with MEGA 6.0 (30). The reliability
of the resulting trees was evaluated by bootstrapping with 1000
replications. Lastly, phylogenetic trees were visualized with iTOL
(31). For homology models of OX2Rs, SWISS-MODEL was
used to perform protein 3D structure prediction. The structural
figures were embellished by PyMOL (32).

Site-Directed Mutagenesis
Cloned wild-type pOX2R tagged with c-Myc at the N-
terminus based on a previous report (33) was used as the
template for subsequent mutagenesis. Four-point mutations were
constructed through designed primers (Table S1) with a site-
directed mutagenesis system kit (Transgen Biotech, Beijing,
China). In addition, the nucleotide sequences of four pOX2R
variants purified from the single clone were determined by DNA
sequencing to confirm the presence of the correct mutations.
Plasmid DNA containing four pOX2R mutations was prepared
by Plasmid Maxi kit (Axygen Biosciences, CA, USA) for
subsequent transfection.

Cell Culture and Transfection
Human embryonic kidney (HEK) 293T cells, purchased from
the American Type Culture Collection (Manassas, VA, USA),
were grown in a culture medium, containing 10% newborn calf
serum, 10 units/mL penicillin, and 0.1 mg/mL streptomycin
at 37◦C in an incubator in 5% CO2. For cAMP assays,
5.0 × 105 HEK293T cells were transiently transfected with
pOX2Rs and the reporter gene plasmids, including firefly and
renilla luciferase reporter plasmid pGL4.29[luc2P/CRE/Hygro]
and pRL-TK reporter plasmid (pOX2R: pGL4.29: pGMLR-
TK of 2:10:1), using ExFect 2000 reagent according to the
manufacturer’s instructions. For Western blotting analysis, 5.0×
105 cells were transiently transfected with pOX2R wild type or
mutant plasmids alone.

cAMP Assays
cAMP levels were determined using a dual-luciferase reporter
gene assay kit (Beyotime Biotech, Shanghai, China) according
to the manufacturer’s instructions. Briefly, after transient
transfection for 24 h (described in section Cell Culture and
Transfection), transfected HEK293T cells expressing pOX2R or
themutants were cultured into 24-well plates and stimulated with
buffer containing either 10−6–10−10 mol/L orexin A or orexin B
at 37◦C for 9 h. Then, cells were washed twice with DPBS and
lysed with 200 µL lysis buffer. A 20-µL volume of cell lysate was
mixed with 100 µL Luciferase Assay Reagent. Determination of

the illumination for each treatment was immediately performed
on a GloMax-Multi microplate reader (Promega, Madison, WI,
USA). All tests were performed in triplicate, EC50 (concentration
of ligand that causes 50%maximal cAMP production) values and
Rmax (maximal response) were calculated using Graphpad Prism
6.0 software.

Intracellular Calcium Determination
Intracellular calcium levels were detected using the Fluo-4 AM
assay kit (Beyotime Biotech, Shanghai, China) according to the
manufacturer’s instructions. Briefly, transfectedHEK293T cells at
a density of 105 cells/well were cultured for 24 h and stimulated
with orexin A or orexin B. Subsequently, cells were washed
twice with assay buffer, and 100 µL loading dye solution was
added. Cells were incubated at 37◦C for 30min and then at
room temperature for an additional 30min. Fluorescence was
measured using an Infinite M200 Microplate reader (Tecan,
Mannedorf, Switzerland) with an excitation wavelength of
485 nm and an emission wavelength of 525 nm.

Western Blotting Analysis
Phosphorylation levels of ERK1/2, p38, and CREB were detected
by Western blotting. Transfected HEK293T cells processed as
detailed in section Site-Directed Mutagenesis were cultured in a
six-well plate and were grown to 70–80% confluency. After 24 h
of serum starvation, the cells were treated with either 10−7 M
orexin A or 10−6 M orexin B for 5min (p-ERK1/2) or 30min
(p-p38 and p-CREB) based on our preliminary experiments.
Following treatment, cells were washed with ice-cold PBS and
immediately lysed in lysis buffer containing a 1:50 dilution
of protease inhibitor cocktail and a 1:100 dilution of PMSF
(Solarbio Life Science, Beijing, China). The cell lysates were
centrifuged at 10,000 rpm at 4◦C for 10min. The supernatant
was transferred into a new tube and then stored at −20◦C.
Proteins were separated by 12% SDS-PAGE acrylamide gel
electrophoresis and transferred onto PVDF membranes at 200V
for 30min. Non-specific binding was reduced by incubating
membranes for 2 h in blocking buffer [5% non-fat milk in
TBS/Tween 20 (0.1%)] at RT. Primary antibodies (Cell Signaling
Technology, Danvers, MA, USA) were diluted with 5% non-fat
milk in TBS/Tween 20 (0.1%) (1:3,000) and incubated with the
membrane at 4◦C overnight with shaking. The membrane was
washed three times with 0.1% Triton X-PBS for 10min, and the
secondary antibody (Cell Signaling Technology, Danvers, MA,
USA) was diluted 1:10,000 in TBST (Tris buffer saline with 0.1%
Tween-20) and incubated with membrane with shaking. Finally,
protein bands were detected using NcmECL Ultra Reagent (New
Cell & Molecular Biotech, Suzhou, China) and quantified by
ImageJ software.

Data Analysis
Digital images of Western blots were analyzed by densitometry
using Image J, and the dose-response analysis was performed
using GraphPad Prism 6 software. Each result represents the
mean ± SEM of at least three experiments. Unpaired t-test
between two groups or one-way ANOVA among multiple
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groups were used to calculate P-values (∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001).

RESULTS

Phylogenetic and Protein Structure
Analysis
According to the putative pOX2R gene in the NCBI database,
we designed primers to amplify the full-length pOX2R sequence
(described in section Molecular Cloning of pOX2R). To
compare the similarity of OX2R genes from different species,
nucleotide sequence alignment of OX2R genes from human,
mouse, rat, cattle, sheep, dog, cat, chicken, and zebrafish was
performed. As shown in Figure 1A, we found that OX2R
from pig showed higher homology with cattle and sheep (99%
similarity) compared with other species. Unsurprisingly, the
lowest similarity with zebrafish was observed due to kinship
being distant. To better evaluate the differences between hOX2R
and pOX2R in whole conformation level, homology modeling
was performed based on their amino acid sequences (Figure 1B).
Although OX2R from human and pig showed high spatial
structural similarity, there are still some differences between
them. For example, intracellular parts (lower structure) in
hOX2R possess an additional α-helix compared with pOX2R.

Construction of Mutants and Basal Activity
Determination in HEK293T Cells
To investigate the role of some key amino acids in pOX2R cellular
signaling, we constructed four mutants that have been found
to be critical in human beings (34) (see Discussion section),
namely P10S, P11T, V308I, and T401I (Figure S1). To further
evaluate the expression of pOX2R and its four mutants in
HEK293T cells, the Myc sequence at the N terminal as a label
and eukaryotic expression vector (pcDNA3.1) were uploaded,
and correspondingWestern blotting analysis was performed. The

results showed that both wild type and the four mutants could
successfully express about 50 kDa protein, whereas no expressed
protein was detected in empty vector and non-transfected cells
(Figure S2). It has been indicated that some receptors could
still be activated without ligand. To test this, we determined
the basal activity of all receptors in the absence of ligands by
dual-reporter gene assay. As shown in Figure S3, we found that
the intracellular basal cAMP levels of the four mutants had no
significant differences compared with the wild type, suggesting
that these mutations have no effect on the basal activity of
receptors in cAMP production.

Signaling Properties of pOX2R and Their
Mutants With Ligands
To determine the response of cloned pOX2R and the four
mutants to ligand stimulation in cAMP generation, the relative
luciferase activities with two agonists from 10−6 to 10−10 mol/L
OXA/OXB were evaluated. The results showed that pOX2R
and the four mutants caused a dose-dependent increase of
intracellular cAMP under the stimulation of two agonists,
indicating that the expressed receptors are functional (Figure 2).
Through analyzing the calculated EC50 (Table S2), we found that
three of the mutants (P10S, P11T, and T401I) have an increased
EC50 with OXA, suggesting that these mutants have a lower
affinity to OXA compared with pOX2R and V308I (Figure 2A).
However, under the stimulation of OXB, only P11T mutant
showed a mildly decreased response (Figure 2B and Table S2).
In addition, calcium release in HEK293T cells transfected with
the cloned pOX2R and mutants following stimulation with OXA
or OXB was determined. We found that only P10S showed
decreased calcium release following stimulation with OXA or
OXB, while the other three mutants exhibited no significant
changes with the two ligands (Figures 3A,B and Table S2). These
results demonstrated that the proline at position 10 and 11
plays an important role in the pOX2R signaling with OXA

FIGURE 1 | Phylogenetic analysis and homology model of cloned pOX2R. (A) Phylogenetic tree of OX2R nucleotide sequences from 10 species. (B) Comparison of

predicted protein structures of OX2Rs from human and pig. The significant differences are marked by purple or pink circles. Valine at position of 308 in pOX2R is

labeled in green.
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FIGURE 2 | cAMP production of pOX2R wild type (WT) and four mutants under the stimulation of OXA (A) and OXB (B). HEK293T cells were transiently transfected

with the cloned pOX2R and mutants, and then cAMP production with two ligands was performed by dual-luciferase reporter gene assay. The maximum signaling of

wild type was normalized as 100%, and the corresponding percentages are presented.

FIGURE 3 | Intracellular calcium mobilization of pOX2R wild type (WT) and four mutants following stimulation with OXA (A) and OXB (B). HEK293T cells were

transiently transfected with the cloned pOX2R and mutants, and then calcium release with two ligands was measured by Fluo-4 AM assay.

and OXB. Notably, although the ligand binding assays revealed
that some mutants had relatively lower affinity compared with
wild type, both receptors and mutants shared comparable
maximal responses.

pERK1/2, p38, and pCREB Levels of
pOX2R and Their Mutants
To investigate the physiological activities of pOX2R wild type
and mutants in the MAPK signaling pathway, Western blotting
analysis to assess the phosphorylation levels of ERK1/2 and p38
was performed (Figure 4). We found that OXA/OXB caused
significant phosphorylation of ERK1/2 for pOX2R wild type.
Among the mutants, only V308I with OXA and T401I with
OXB could not be activated and exhibited lower phosphorylation
compared with the activated wild type.

Under the stimulation of OXA and OXB, the phosphorylation
levels of p38 were significantly increased for pOX2R wild type.
However, no remarkable phosphorylation levels of p38 protein
were found in the P10S, P11T, and V308I mutants with agonist
OXA. Compared with the activated pOX2R, two mutants, P11T
and V308I, showed a significant decrease in the expression level

of p-p38 under the action of the agonist OXB, and the mutant
P11T was not significantly different from that when it was not
stimulated. We then determined the phosphorylation levels of
CREB under the stimulation of OXA/OXB (Figure 4). Consistent
with previous reports for hOX2R (35, 36), the phosphorylation
level of CREB in pOX2R significantly increased. Meanwhile,
we found that the four mutants displayed a response to OXA
stimulation with increased p-CREB. However, unlike OXA,
OXB has no promotion effect on the four mutants in the
phosphorylation of CREB.

DISCUSSION

In this study, we successfully cloned the pOX2R and obtained its
full-length coding sequence. Phylogenetic analysis demonstrated
that pOX2R showed the highest similarity with livestock
sequences such as cattle and sheep and lowest similarity with
zebrafish, followed by chicken. Homology models of OX2R from
human and pig showed that only a few differences in protein
3D structures were observed, such as an additional α-helix in
the non-transmembrane region for hOX2R. Consistent with
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FIGURE 4 | Phosphorylation levels of ERK1/2, p38, and CREB signaling of pOX2R wild type (WT) and mutants in the absence and presence of OXA (A) or OXB (B).

Transiently transfected HEK293T cells with receptors were stimulated with OXA or OXB, and the activation of three signals was determined by Western blot.

*P < 0.05, significant difference compared to basal unstimulated receptor (normalized as 100%); #P < 0.05, significant difference compared to the effect of

orexin-stimulated wild type receptor.

several previous reports (37, 38), these findings suggested that
mammalian OX2Rs have high conservation, particularly for the
transmembrane region.

To elucidate the functions of some specific amino acids
on the pharmacology of pOX2R, we constructed four mutants
by PCR-mediated site-directed mutagenesis. Compared with
the traditional methods, this method based on homologous
recombination is more cost-effective and shows higher efficacy.
Thus far, six hOX2R variants that are associated with early-
onset narcolepsy in humans, P10S, P11T, C193S, I293V, V308I,
and T401I, have been found (34, 39), but the pharmacological
and physiological properties of these polymorphisms have

not been determined in heterologous expression studies. In
particular, the majority of GPCR polymorphisms are found in
the loops and in the N- and C-terminal. Compared with the
transmembrane core of GPCRs, the loops linking helices are
much more variable and are considered not to be essential for
the functions of the receptors (40). However, more evidence
has demonstrated that amino acids located outside the binding
cavity may also have consequences on the binding affinities
between receptors and ligands. For example, P10S and P11T
at the N-terminal may affect ligand and receptor binding or
intracellular signal transduction through altering the receptor
structure (41). Specifically, Thompson et al. found that response
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sensitivity of mutant P10S to OXA and OXB decreased 1.6-
and 2.7-fold in COS-7 cells, respectively (41). Based on these
results, we also constructed the P10S and P11T mutants of
pOX2R in HEK293T. Of the six reported variants, only V308
at transmembrane region 6 is closer to the intracellular side
and within the predicted transmembrane helix domain forming
this cavity (42). Meanwhile, T401, located downstream of the
palmitoylation site, may impact kinase or other protein binding.
Combined with these facts and predictions, we speculated that
these four amino acids may correlate with the binding activity
of receptors or downstream signal transduction machinery.
Therefore, these four pOX2R mutations, P10S, P11T, V308I, and
T401I, were chosen for our subsequent investigations.

As a member of the GPCR superfamily, the conventional
signaling pathway of OX2R involves stimulation of adenylyl
cyclase activity, protein kinase A activation via cAMP coupling
with Gs protein, and intracellular calcium mobilization coupled
with Gq protein. Thus, we next determined the cAMP production
and intracellular calcium concentrations.

Dual-luciferase reporter gene methods were performed to
determine the cAMP production because they have higher
sensitivity than the ELISA method (43). The results showed
that three out of the four mutations displayed decreased cAMP
production with OXA stimulation. However, only P11T had
a lower cAMP production following stimulation with OXB,
implying that OXB has a higher anti-interference ability than
OXA. With respect to calcium release, consistent with previous
results in hOX2R (41), P10S exhibited a decreased calcium
release in response to both OXA and OXB. In addition to
the classical Gs-cAMP and Gq-calcium signaling pathway,
several other pathways, including the mitogen-activated protein
kinase (MAPK) and proteinkinase (PKC) signaling pathways,
may also be activated under OX2R stimulation. Among the
MAPK pathways, the ERK1/2 pathway plays an important
role in cell proliferation, differentiation, migration senescence,
and apoptosis (44). However, p38 protein exerts analgesic
effects on neuropathic pain and other chronic pain through
triggering various intracellular responses (45). It has been
proven that OXA/OXB could activate the phosphorylation
of ERK1/2 and p38 in a dose- and time-dependent manner
and that this process is independent of Gq/PLC/PKC and
PKA pathways (46). Our subsequent Western blotting analysis
demonstrated that OXA and OXB activated ERK1/2 and p38
proteins of pOX2R and increased their phosphorylated protein
expression, which was consistent with the hOX2R. Considering
the decreased cAMP generation and p-p38 for P11T, we thus
concluded that this mutant may affect the conduction of the
Gs/AC/cAMP/PKA pathway.

It has been indicated that the activation of CREB protein
is highly dependent on PKC; thus, the level of p-CREB
can reflect the activation of PKC to some extent (35). It
should be noted that CREB could be activated by various
intracellular signaling pathways, including the cAMP, Ca2+-
CaMK, Ras/ERK, and P13/AKt signaling pathways; thus, its

activation does not always reflect the intracellular cAMP levels
(47, 48). In CHO cells, OXA and OXB have been proven
to cause the phosphorylation of CREB for 40min. Of note,
higher concentrations of agonists were required for p-CREB
compared to pERK1/2 (36). Our results showed that the cloned
pOX2R also induced the phosphorylation of CREB under the
stimulation of OXA/OXB. However, the expression of p-CREB in
four mutations significantly decreased compared with wild type,
indicating that these mutations seriously affected the activation
of CREB with ligands. We reasoned that these four mutants may
affect PKC upstream kinase activity. However, in the current state
of knowledge, the underlying mechanisms are still unknown and
need more investigation.

In conclusion, functional pOX2R and four mutants were
successfully constructed and expressed in HEK293T cells.
Subsequently, we investigated their signaling properties
involving cAMP generation, calcium release, and the
phosphorylation of ERK1/2, p38, and CREB and their
signaling efficacies under the stimulation of two ligands.
Results demonstrated that these mutants displayed decreased
reactivity in varying degrees, suggesting the critical roles of these
amino acids in the binding activity of receptors. Taken together,
these findings provide new insight into the structure–activity
relationship and physiological roles of pOX2R.
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