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Abstract

A detailed characterization of the chemical composition of complex substances, such as

products of petroleum refining and environmental mixtures, is greatly needed in exposure

assessment and manufacturing. The inherent complexity and variability in the composition

of complex substances obfuscate the choices for their detailed analytical characterization.

Yet, in lieu of exact chemical composition of complex substances, evaluation of the degree

of similarity is a sensible path toward decision-making in environmental health regulations.

Grouping of similar complex substances is a challenge that can be addressed via advanced

analytical methods and streamlined data analysis and visualization techniques. Here, we

propose a framework with unsupervised and supervised analyses to optimally group com-

plex substances based on their analytical features. We test two data sets of complex oil-

derived substances. The first data set is from gas chromatography-mass spectrometry (GC-

MS) analysis of 20 Standard Reference Materials representing crude oils and oil refining

products. The second data set consists of 15 samples of various gas oils analyzed using

three analytical techniques: GC-MS, GC×GC-flame ionization detection (FID), and ion

mobility spectrometry-mass spectrometry (IM-MS). We use hierarchical clustering using

Pearson correlation as a similarity metric for the unsupervised analysis and build classifica-

tion models using the Random Forest algorithm for the supervised analysis. We present a

quantitative comparative assessment of clustering results via Fowlkes–Mallows index, and

classification results via model accuracies in predicting the group of an unknown complex

substance. We demonstrate the effect of (i) different grouping methodologies, (ii) data set

size, and (iii) dimensionality reduction on the grouping quality, and (iv) different analytical

techniques on the characterization of the complex substances. While the complexity and
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variability in chemical composition are an inherent feature of complex substances, we dem-

onstrate how the choices of the data analysis and visualization methods can impact the

communication of their characteristics to delineate sufficient similarity.

1. Introduction

Products of petroleum refining are prototypical UVCB (Unknown or Variable composition,

Complex reaction products and Biological materials) substances [1]. UVCBs are some of the

most challenging substances for the industry and regulators, because there are few established

frameworks for evaluating UVCBs under current chemical regulatory policy and ensuring that

there is no underestimation of hazard to either workers or the general users of the end-prod-

ucts [2]. Indeed, the complexity of the chemical composition of petroleum substances [3, 4],

and in particular their multi-constituent nature and variability in product composition based

on the variability in crude oil stocks, poses unique challenges to the regulators and registrants

of these substances [5].

Typically, individual UVCB substances are assigned into a product category based on the

manufacturing processes, physical/chemical properties (including refining history and boiling

point/carbon number ranges), and limited analytical chemical information (such as hydrocar-

bon classes) [1, 2]. However, such broad similarity parameters may not always be considered

sufficient by the regulatory bodies, and new approaches to facilitate the grouping of UVCBs

are needed [6]. Recent developments in high-resolution and multi-dimensional analytical

techniques improve characterization of complex substances by providing greater resolution of

their chemical composition [7, 8]. Despite these advances, full chemical characterization of

complex substances, such as petroleum UVCB substances, is still largely unattainable [6]. This

presents a challenge for defining “sufficient similarity” for a substance of interest in compari-

son to those substances that may have already been tested for their potential human and eco-

logical effects [9, 10].

A variety of analytical methods can be used to rapidly profile chemical composition of envi-

ronmental samples and UVCBs, and all of them produce complex high-dimensional data sets

[6, 11]. Quantitative interpretation of high-dimensional data has been an active area of statis-

tics and a number of algorithms have been applied to classify unknown samples, or to derive

discriminating data features [8, 12]. For example, data integration, clustering and visualization

techniques using ion mobility-mass spectrometry (IM-MS) data of a subset of UVCBs have

been used to determine the group-specific similarities [13]. Comparative analyses have also

been performed. For example, de Carvalho Rocha, Schantz [14] has utilized principal compo-

nents analysis (MPCA), principal factors analysis (PARAFAC), and self-organizing maps

(SOM) analysis to differentiate among various types of fuels via pattern recognition. Although

SOMs produce visually appealing grouping maps (Fig 1), comparative assessment to deter-

mine the optimal grouping is a challenge [15, 16]. Additional pattern recognition analysis tech-

niques [1, 17–19] have also been explored to interpret the patterns in complex data sets;

however, the outcomes of these methods are largely qualitative in nature and rely on the sub-

jective visual evaluation of the grouping outcomes rather than quantitative comparative

metrics.

The work presented in this manuscript aims to bridge the gap between the quantitative

evaluation and visual communication of the grouping analysis outcomes to find the optimal

grouping of complex substances. In this study, we present a data-driven framework that
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includes two separate workflows for grouping of complex chemical substances. First, we pres-

ent an unsupervised data analysis workflow based on hierarchical clustering, where the results

are demonstrated through dendrograms, and the grouping quality is evaluated against existing

manufacturing classes using the Fowlkes-Mallows (F-M) index. Second, we use supervised

analysis. We have applied the Random Forest algorithm to train classification models to pre-

dict the manufacturing category information of these substances. The overall premise of the

proposed framework is to provide (i) optimal grouping of complex substances, (ii) improved

interpretation of the grouping results for decision-makers with the use of visualization tech-

niques and identification of the most informative features, and (iii) comparative assessment of

the grouping results by reporting quantitative metrics (i.e. the Fowlkes-Mallows index for clus-

tering, and accuracy for classification analysis).

2. Materials & methods

2.1. Materials

In this study, we used two different sets of benchmark analytical chemistry data of: (i) 3 repli-

cates of 20 Standard Reference Materials (SRM) (Table 1), and (ii) several petroleum UVCB

substances, which were supplied by the European Petroleum Refiners Association AISBL,

Concawe division (Brussels, Belgium) and referred to as “Petroleum UVCB samples”

(Table 2). Specifically, SRMs are petroleum-related Certified Reference Materials and provided

by the National Institute of Standards and Technology (NIST) [14]. In contrast, Petroleum

UVCB samples were obtained from three separate refinement processes and categorized as

straight run gas oils (SRGOs), other gas oils (OGOs), and vacuum and hydro-treated gas oils

(VHGOs). Polycyclic-aromatic hydrocarbon (PAH), saturated hydrocarbon, and crude oil

standards were provided by the Texas A&M Geochemical and Environmental Research Group

(GERG) (College Station, TX).

Fig 1. SOM recreated from de Carvalho Rocha, Schantz (14).

https://doi.org/10.1371/journal.pone.0223517.g001
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2.2. Chemical fingerprinting and experimental data processing

The analytical chemistry profile of SRMs was derived via Gas Chromatography-Mass Spec-

trometry (GC-MS) [14], whereas the chemical fingerprint of Petroleum UVCB substances was

assessed with 3 different analytical chemistry techniques: (i) comprehensive two-dimensional

gas chromatography with flame ionization detector (GC×GC-FID), (ii) GC-MS, and (iii) Ion

Mobility Mass Spectrometry (IM-MS). The detailed experimental procedure is provided in

Ferguson [20].

The GC-MS data from de Carvalho Rocha, Schantz (14) is a three-dimensional array,

which consists of 23,248 elution times, and the 301 masses in the mass spectra for 60 Standard

Reference Materials (triplicate runs of 20 samples). To reduce the computational complexity of

the grouping analysis and the noise in the GC-MS data, we have selected 55 out of 301 m/z val-

ues (i.e. analytes) that correspond to Polycyclic Aromatic Hydrocarbons (PAHs) (S1 Table)

and summed over the entire elution time dimension. This yields a two-dimensional (60 × 55)

array, which is then used for grouping analysis.

2.3. Data analysis and visualization framework

We used two analysis workflows for grouping complex substances (Fig 2). In the unsupervised

analysis, complex substances are grouped based on the similarity between the characteristics

(i.e. analytical chemistry profiles) of the samples (complex substances) without prior knowl-

edge of sample labels or categories. To evaluate the outcome of such grouping, we included a

quantitative metric into the unsupervised analysis workflow to compare the outcome to a pre-

viously reported categorization of the samples (i.e. manufacturing classes). The details of the

Table 1. Standard Reference Materials (SRM) samples from de Carvalho Rocha, Schantz (14).

SRM ID 3-Class Grouping 9-Class Grouping 16-Class Grouping Sample IDs

SRM 2722 Crude Oil Crude Oil Crude Oil (Heavy-Sweet) petro203; petro204; petro205

SRM 2721 Crude Oil Crude Oil Crude Oil (Light-Sour) petro274; petro275; petro276

SRM 2779 Crude Oil Crude Oil Gulf of Mexico Crude Oil petro270; petro271; petro272

SRM 1615 Heavy Refinery Product Gas Oil Gas Oil petro207; petro208; petro209

SRM 1848 Heavy Refinery Product Motor Oil Motor Oil Additive petro218; petro219; petro220

SRM 2770 Heavy Refinery Product RFO S in Residual Fuel Oil petro234; petro235; petro236

SRM 1623c Heavy Refinery Product RFO S in Residual Fuel Oil petro238; petro239; petro240

SRM 1620c Heavy Refinery Product RFO S in Residual Fuel Oil petro278; petro279; petro280

SRM 2773 Light Refinery Product Biodiesel Biodiesel (Animal-based) petro230; petro231; petro232

SRM 2772 Light Refinery Product Biodiesel Biodiesel (Soy-based) petro266; petro267; petro268

SRM 2723b Light Refinery Product Diesel Low S Diesel petro226; petro227; petro228

SRM 1624d Light Refinery Product Diesel Sulfur in Diesel petro214; petro215; petro216

SRM 2771 Light Refinery Product Diesel Zero S Diesel petro222; petro223; petro224

Gasoline Light Refinery Product Gasoline 87 Octane Gasoline petro258; petro259; petro260

SRM 2299 Light Refinery Product Gasoline S in gasoline petro210; petro211; petro212

JP8 Light Refinery Product Jet Fuel Jet Fuel petro246; petro247; petro248

JP5 Light Refinery Product Jet Fuel Jet Fuel petro250; petro251; petro252

Jet Fuel A Light Refinery Product Jet Fuel Jet Fuel petro254; petro255; petro256

SRM 1617b Light Refinery Product Kerosene S in Kerosene (High Level) petro242; petro243; petro244

SRM 1616b Light Refinery Product Kerosene S in Kerosene (Low Level) petro262; petro263; petro264

�16-class grouping is based on designation by the National Institute of Standards and Technology (NIST), which was further grouped into 9 major classes. The 3-class

grouping reflects the major refining distinctions among the SRMs.

https://doi.org/10.1371/journal.pone.0223517.t001
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proposed unsupervised analysis workflow are described in Section 2.3.2. In the supervised

analysis, known categorizations/classes of the samples are used to build classification models,

which can then be used to predict the class for an unknown substance. This idea is based on

the read-across, where similar complex substances that are grouped together according to

their physical/chemical properties may have similar effects [2]. The details of the proposed

Table 2. Petroleum UVCB samples.

Sample ID Manufacturing class CAS RN CAS Name

CON07 OGO 64742-46-7 Distillates (petroleum), hydrotreated middle

CON09 OGO 64742-80-9 Distillates (petroleum), hydro-desulfurized middle

CON01 SRGO 64741-43-1 Gas oils (petroleum), straight-run

CON05 SRGO

CON02 SRGO 68814-87-9 Distillates (petroleum), full-range straight-run middle

CON03 SRGO

CON04 SRGO 68915-96-8 Distillates (petroleum), heavy straight-run

CON12 VHGO 64741-49-7 Condensates (petroleum), vacuum tower

CON13 VHGO 64741-58-8 Gas oils (petroleum), light vacuum

CON14 VHGO 64741-77-1 Distillates (petroleum), light hydrocracked

CON15 VHGO 64742-87-6 Gas oils (petroleum), hydrodesulfurized light vacuum

CON16 VHGO 68334-30-5 Fuels, diesel

CON17 VHGO 68476-30-2 Fuel oil, no. 2

CON18 VHGO 68476-31-3 Fuel oil, no. 4

CON20 VHGO 92045-24-4 Gas oils (petroleum), hydrotreated light vacuum

https://doi.org/10.1371/journal.pone.0223517.t002

Fig 2. Data processing and visualization workflow.

https://doi.org/10.1371/journal.pone.0223517.g002
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unsupervised analysis workflow are described in Section 2.3.3. Independent of which workflow

(unsupervised or supervised analysis), the initial common step is data pre-processing, which is

crucial to obtain robust and reliable grouping models (Section 2.3.1).

2.3.1. Data pre-processing. Data pre-processing steps include (i) data formatting, (ii)

handling missing data, and (iii) data cleaning and scaling. Following these steps ensures data

quality in order to build robust and reliable models. The application of these steps to each spe-

cific data set is provided below.

First the three-dimensional analytical chemistry data (the GC×GC-FID, GC-MS, and

IM-MS data sets) needed to be unfolded into a 2-dimensional matrix. The GC-MS data of

SRMs, after the experimental data processing step described in Section 2.2, is already two-

dimensional. The unfolding was performed so that, for the final matrix, rows correspond to

the complex substances, and columns are the analytical features (measurements), which are

the concatenated values of carbon number and molecular class composition. This process

yielded an array size of 15 × 310 for GC×GC-FID, 15 × 248 for GC-MS, and 15 × 403 for

IM-MS data sets of the Petroleum UVCB samples.

Next, the two-dimensional analytical chemistry data sets were examined to detect any miss-

ing points. Although advanced missing data handling methods are sometimes used in complex

data analysis [21], here the missing data points within analytical chemistry profiles indicate

undetected chemical composition for a specific molecular class. Thus, we replaced the corre-

sponding missing fields with zeros.

The data sets were further cleaned by removing the columns (carbon number–molecular

class compositions) if they show negligible variation. Here, we removed columns with a stan-

dard deviation (SD) of 0, or SD<0.05 for the smaller Petroleum UVCB data set. This step

reduced the number of features in GC×GC-FID from 310 to 192, GC-MS from 248 to 62, and

IM-MS data from 403 to 68. This step did not eliminate any measurements from the 60 x 55

matrix of SRM samples.

The final step prior to data analysis is the scaling of the data sets. The clean two-dimen-

sional arrays were scaled by using row-wise min-max scaling, where each row corresponds to

a new sample and each column is a new analytical feature. Each row value was scaled by sub-

tracting the minimum value of that row and then dividing it by the range of the corresponding

row. Row-wise scaling was not performed on Petroleum UVCB data sets, because the data was

already pre-processed within PetroOrg software [22] and row-wise scaled. Prior to the classifi-

cation analysis, we also performed column-wise min-max scaling on the row-wise scaled data

arrays. This additional scaling step is required to ensure that each measurement has approxi-

mately equal weight in training classification models.

2.3.2. Unsupervised analysis workflow. Unsupervised analysis examines the patterns of

data to draw conclusions for the grouping structure of the samples without the reference cate-

gorization information. The two most prevalent unsupervised analysis techniques used in the

literature are clustering analysis [23], as used in our workflow (Fig 2 left panel), and SOMs

[24]. The detailed steps of this workflow are given below. The R Markdown documentation of

this analysis for SRM samples is also provided in the Supplementary Material (S1 Text).

Under the unsupervised workflow, we performed cluster analyses using the data as

described, and also after producing a reduced-rank data set, in order to judge the effect of

using reduced-rank data (i.e., after “de-noising” the data). The original unscaled SRM and

Petroleum UVCB data sets were linearly scaled and centered in a row-wise fashion (i.e. z-score

normalization). The resultant data was then decomposed using singular value decomposition

(SVD) [25, 26] in R to produce a reduced-rank data set corresponding to 85% of the variation

in the original data.
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Pearson correlations of both the original and reduced-rank analytical chemistry data were

used as a similarity index for hierarchical cluster analysis of the samples using hclust in R with

average linkage [27, 28].

A quantitative comparison of the clustering to the known substance categories (treated here

as a “gold standard”) was performed using the Fowlkes-Mallows (F-M) index [29]. The F-M

index is traditionally used to compare two dendrograms but can also be used to compare a sin-

gle dendrogram to a fixed categorization. We created two sets of hierarchical clustering den-

drograms for both the Petroleum UVCB and SRM samples. First, an artificial dendrogram was

generated by calculating the Euclidean distance between the indices (0/1) of a reference catego-

rization. Second, the correlation matrices of the Petroleum UVCB and SRM samples were

used to generate a dendrogram. Next, the dendrograms were both cut into the known number

of manufacturing classes (i.e. 3 for Petroleum UVCB samples, and 3, 9, or 16 for SRM samples)

to assess the number of the common complex substances in the obtained clusters. This number

was then used to calculate the F-M index for the two groupings (i.e., comparing known catego-

rization to the data-based grouping). The F-M index can be expressed as the geometric mean

of precision and recall, two machine learning metrics that are widely used in data-driven

modeling [23]. Expressed mathematically, we have

FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FP

:
TP

TP þ FN

r

where TP is True Positive, FP is False Positive, and FN is False Negative. TP indicates the num-

ber of complex substances that are grouped under category A in terms of manufacturing cate-

gory and are also grouped under category A in terms of analytical chemistry profile. In

contrast, FP and FN denote the number of complex substances that are grouped differently.

The F-M index varies between 0 and 1, where 0 indicates the absence of any similarity, and 1

indicates 100% identity between reference categorization and clustering results. More details

on the F-M index and other metrics for clustering comparison can be found in Wagner &

Wagner [30]. The F-M index was calculated via the FM_index function of the dendextend

package in R.

To test the statistical significance of the grouping results, we also calculated the distribution

of the F-M index under the null hypothesis of no relation between two clustering dendro-

grams. This null distribution was generated by shuffling the group labels of samples using

1000 permutations, with an empirical p-value determined by the proportion of permuted F-M

index values exceeding the observed. We used α = 0.05 as a false-positive threshold. The null

F-M index calculation with 1000 permutations of the group labels was performed via the

Bk_permutations function of the dendextend package in R.

2.3.3. Supervised analysis workflow. Although unsupervised analysis can elucidate previ-

ously unknown structures in the data, supervised methods can identify the features most influ-

ential in classification. Moreover, in this context, supervised analysis may highlight substances

that show comparatively poor similarity to the other members of the manufacturing category.

Supervised learning algorithms are widely used in various engineering and sciences problems

[31–40]. Here, we used the Random Forest decision-tree algorithm [41] to train models to pre-

dict manufacturing category from the features. The models were evaluated by their classifica-

tion accuracy, and the results were visualized via ToxPi representation [42] for enhanced

interpretation (Fig 2 right). The steps of the proposed supervised analysis workflow are pro-

vided below and applied to both Petroleum UVCB and SRM data sets. The documentation of

the analysis through SRM samples was created using R Markdown and provided in the Supple-

mentary Material (S1 Text).
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In our implementation of the Random Forests, the number of analytical features was tuned

via grid search using the trainControl function of the caret package in R, where each model

training was performed using leave-one-out cross validation with 500 decision trees. The final

Random Forest classifier was then built on the whole data set with 500 decision trees, where

each tree was modeled by using the optimal number of analytical features. In addition, the

ranking of the analytical features was obtained by calculating the mean decrease in classifica-

tion accuracy among the 500 decision trees. This analysis was done via the randomForest func-

tion of the randomForest package.

To evaluate the classification model accuracy, an initial step was to extract the confusion

matrix of the model, i.e. the number of true and falsely predicted samples for each class. Next,

the classification accuracy was calculated, which is the percentage of true predicted number of

samples from all classes with respect to the total number of samples.

In addition to the quantification of the classification models, we produced Toxicological

Prioritization Index (ToxPi) profiles of complex substances by using the ranked analytical fea-

ture list from the classification analysis [42–44]. By integrating multiple data sources into an

overall, weight-of-evidence score, and transforming them into clear visual rankings, ToxPi

provides an effective way for visual communication of high-dimensional data sets. Here we

integrated the top 10 most informative chromatographic features that were extracted during

classification modeling step, to obtain the ToxPi visualization of complex substances.

3. Results & discussion

3.1. Quantifying the Unsupervised analysis

A recent study [14] has shown that GC-MS combined with unsupervised chemometric analy-

sis can be used to differentiate among complex substances and mixtures. The authors have

concluded that the SOM non-linear method proved to be effective in generating a separation

model. However, the model is more difficult to interpret than the linear models such as MPCA

and PARAFAC [45, 46]. The unified distance matrix of the SOM analysis of the 20 SRMs

(Table 1) from de Carvalho Rocha, Schantz (14) is shown in Fig 1. The visualization of the data

using SOM makes it apparent that the replicates of the same sample were clustered well (15 of

20 samples have all 3 replicates in close proximity to each other) (Fig 1). However, it is less

obvious that the SOM analysis can discriminate among the broader categories of samples (3

classes: crude oils, heavy and light refinery products; 9 classes: crude oils, residual fuel oils, gas

oil, motor oil, biodiesels, diesels, gasolines, kerosenes and jet fuels). Only jet fuels and gasoline

samples of light refinery products were clustered close to each other (Fig 1).

To explore additional visualization methods, we used the data from de Carvalho Rocha,

Schantz (14) to perform unsupervised clustering analysis of the samples (Fig 3). The results

showed that all technical replicates of 20 substances were clustered tightly, which indicates

high reproducibility of the analytical data from GC-MS analysis of these complex substances.

However, when 3 or 9 broader manufacturing classes were considered, the samples were not

clustered as closely as they were in the 16 manufacturing classes. For 9 class grouping, replicate

samples of gas oils, biodiesels, and motor oils were grouped together in distinct clusters. In 3

class grouping results, only crude oil samples were grouped under one of the three clusters.

Even though most of the light refinery products (one gasoline, three diesel, two jet fuels, and

two kerosene samples) were clustered together in one of the three groups, one gasoline and

two biodiesel samples fall into separate clusters (Fig 3). These analyses demonstrated that the

analytical features derived from GC-MS were, by themselves, insufficient for justifying group-

ing of these complex substances into the manufacturing categories.
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Next, we aimed to quantitatively compare the outcomes of SOM and clustering analyses to

the manufacturing class categories of these samples. We used the Fowlkes-Mallows (F-M)

index to provide a quantitative metric for such comparisons [29]. Although there is no direct

method to assess the grouping quality using the SOM analysis, we have extracted the x and y

coordinates of each SRM sample on the SOM map as reported by de Carvalho Rocha, Schantz

(14) (Fig 1) and used the Euclidean distance-based similarity matrix to obtain the F-M index

for the SOM-based grouping analysis. The F-M index was also used to assess the effect of

dimensionality reduction on the outcomes of clustering analyses.

Fig 4 displays the F-M indices for SOM-based analysis, as well as the presented unsuper-

vised analysis workflow on full data set of 55 GC-MS features and a reduced set of 7 features

after SVD. The p-values for the significance of the correspondence of the clustering compared

to the known class assignment are also reported (Fig 4). The p-values obtained for 3-class

grouping were higher than 0.05 for the SOM-based and original data set of SRM samples,

implying these results were not statistically significant. Subtle differences differentiate these

materials into 16 categories. When grouped under 3 categories, these differences presented

Fig 3. Dendrograms for the SRM samples clustering from the reduced data set into 3, 9 and 16 categories. LRP:

Light Refinery Product, HRP: Heavy Refinery Product.

https://doi.org/10.1371/journal.pone.0223517.g003
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themselves as noise. Hence, the random permutation of these samples led to higher F-M indi-

ces by chance. In contrast, the p-values for 3-class grouping with the reduced data sets were

lower than 0.05. This indicates evidence that dimensionality reduction eliminates redundant

analytical features from the data sets (from 55 to 7) which further reduces the noise, leading to

statistically significant results with a similar (and slightly improved) F-M index.

Based on 9 and 16-class groupings of SRMs, one can clearly observe that hierarchical clus-

tering outperformed SOM analysis. The F-M index increased from 0.33 to 0.44, and 0.42 to

0.57 for 9 and 16-class groupings, respectively. Although the dimensionality reduction did not

further increase the F-M index for 9 and 16 class groupings, it also did not hinder the grouping

quality and provided equally good results with lower number features (7 out of 55).

3.2. Importance of substance sample size during supervised analysis

Here, we benefit from the read-across hypothesis that “complex substances that group simi-

larly based on manufacturing may exhibit similar hazard profiles,” and move from unsuper-

vised to supervised analysis. To this end, we are building classification models using analytical

chemistry profiles of samples. For each of the 20 SRM substances, GC-MS was run three times,

which made the final GC-MS data set larger in terms of the number of samples. Thus, an inter-

esting question that we can examine is that how many sample replicates would be adequate to

develop data-driven models that can precisely differentiate class patterns.

Figs 5 and 6 demonstrate the confusion matrices obtained from the trained Random Forest

classifiers. These matrices report known (“true”) and predicted (through the trained Random

Forest classifier) classes for each SRM sample. The results showed that we achieved 100% clas-

sification accuracy when we used all replicates provided in Table 1 (Table 3, Fig 5). The classifi-

cation accuracy decreased to 65%, 35%, and 15% for 3, 9, and 16-class groupings when we only

used 1 out 3 replicates (Table 3, Fig 6). The main reason for this fact is that the number of sam-

ples per group decreases as the number of classes increases. In particular, 14 out of 16 classes

were represented with only a single sample during model training for the 16-class predictions

(Fig 6C). Similarly, 5 out 9 classes were represented with only a single sample during model

training for the 9-class predictions (Fig 6B). This decrease in the amount of information per

Fig 4. Fowlkes-Mallows index for the outcomes of clustering of SRM samples. � indicates that the results are statistically significant at the 0.05 level.

https://doi.org/10.1371/journal.pone.0223517.g004
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Fig 5. Confusion matrices for SRM sample classification with 3 replicates. (A) 3-class, (B) 9-class, and (C) 16-class grouping.

https://doi.org/10.1371/journal.pone.0223517.g005
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class makes model learning significantly challenging (Table 3). Hence, we can conclude that

single sample per class does not provide adequate information to capture the individual class

characteristics. Moreover, the high-dimensional nature of the GC-MS data with 55 features

further hindered the classification accuracy of SRM materials when using only one sample per

Fig 6. Confusion matrices for SRM sample classification with 1 replicate. (A) 3-class, (B) 9-class, and (C) 16-class grouping.

https://doi.org/10.1371/journal.pone.0223517.g006
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category. Yet, the prediction accuracies of the classifiers for each analysis were higher than

those for random prediction, indicating they were statistically significant (Table 3). This was

validated through p-value calculations by using the original and 1000 random permutation

grouping results (Table 3). The confusion matrices generated from the average of 1000 permu-

tations of SRM samples are provided in S1 Fig and S2 Fig for 3 and 1 replicates, respectively.

Similar trend was observed with Petroleum UVCB samples, where we built classification

models using only 1 replicate of each sample (Table 4, S3 Fig). The results demonstrated that

classification model accuracies for the Petroleum UVCB samples were not satisfactory, where

the only statistically significant result was obtained from IM-MS data with 60% classification

accuracy. Therefore, in order to build an accurate classification model, we need higher number

of experimental replicates for each particular complex substance to capture and learn the non-

linear characteristics of their chemical complexity. Although clustering can group the samples

accurately independent of the sample size, given that measurements are significantly distinct

from each other, sufficient data sample size is essential during the classification model build-

ing. Nonetheless, each experimental replicate leads to an additional cost and requires extra

time, and resources. Thus, minimizing the number of sample replicates while achieving accu-

rate predictive classifiers is of utmost importance. In this work, we observed that, given high

quality analytical chemistry data, 3 replicates were sufficient to build accurate and robust clas-

sifiers. It is important to note that the sample size is critical during the model training phase,

where the models benefit from higher number of samples. However, this is not the case for the

testing phase where a single experiment is sufficient to predict its class information of an

unknown complex substance.

3.3. Importance of substance number to class ratio during supervised

analysis

Another important question that needs to be answered is the following: How precisely can we

categorize a new, unknown, substance with a data-driven model which is trained with an ana-

lytical chemistry profile database of categorized substances with no prior labeled samples of

the tested substance? Hypothetically, one can accurately classify an unknown substance when

provided a classifier trained with an analytical chemistry profile database that includes a high

number of substances per class. In other words, a new substance can be precisely labeled if the

Table 3. Classification accuracy of SRM samples using sample replicates.

Prediction class type Number of sample replicates used Classification accuracy Classification accuracy (permuted) p-value

3-class 3 100% 44.8±7.0% 0.000

1 65% 48.0±9.2% 0.023

9-class 3 100% 10.9±5.1% 0.000

1 35% 6.6±6.9% 0.000

16-class 3 100% 6.5±4.1% 0.000

1 15% 4.2±5.1% 0.019

https://doi.org/10.1371/journal.pone.0223517.t003

Table 4. Classification accuracy of Petroleum UVCB samples.

Prediction class type Analytical technique used Classification accuracy Classification accuracy (permuted) p-value

3-class

(VHGO,

SRGO,

OGO)

GC-MS 40.0% 39.9±13.5% 0.395

GC×GC-FID 46.7% 39.4±13.9% 0.222

IM-MS 60.0% 41.4±12.0% 0.047

https://doi.org/10.1371/journal.pone.0223517.t004
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analytical chemistry profile database provides an accurate mean profile of particular classes.

Here, we used 20 SRM substances to understand whether the number of substance-to-class

ratio of the data set can enable accurate categorization of each SRM substance. To this end, we

developed one Random Forest classification model per each of the 20 SRM substances and

reported the overall classification accuracy. In particular, we excluded the analytical chemistry

profile information from all 3 replicates of the selected SRM substance during model training,

and then predicted the category of with the trained model.

For 3-class predictions, the classification accuracy was obtained as 75% (Table 5), where the

confusion matrices for original and average of 1000 permutations of SRM substance group

labels are provided in S4 Fig. However, the calculated p-value (Table 5) showed that the devel-

oped data-driven models were statistically insignificant, which we attribute to a low number of

substance-to-class ratio. This ratio deteriorates as the number of categorizes increase for 20

SRM substances. As a confirmation of our observation, we also ran a random forest model in

which we calculated an average feature profile per substance, collapsing the replicates in to one

artificial feature vector. The resulting classification accuracy was very similar (in the range of

70%-75%, not shown).

S2 Table tabulates the number of substances and sample replicates per each class for 3-class,

9-class, and 16-class categorization. As can be seen from the S2 Table, removing all 3 replicates

of a substance often corresponds to removing all samples of a class in several instances of a

9-class and 16-class analysis, thus hinders us to develop classification models for 2 (Category 4

and 7), and 14 categories (excluding only Category 6 and 15) for 9-class, and 16-class analysis,

respectively. Therefore, we cannot report an overall classification accuracy for 9, and 16-class

analysis. These results indicate that a high number for the substance-to-class ratio is crucial for

accurate classification of an unknown substance with data-driven models that are trained with-

out any previous samples of the tested substance. Therefore, we conclude that (i) continuous

improvement of the analytical chemistry profile database used for model training with the

addition of categorized substances per each class, and (ii) continuous update of the data-driven

model are essential and necessary for accurate categorization of a new, unknown substance.

3.4. Facilitation of data interpretation via ToxPi representation

In addition to developing highly accurate classifier models to predict group/class information

of an unknown complex substance using the sample replicates of categorized substances, we

also reported the top 10 most informative features that distinctively identify the class patterns

of SRM materials (Table 6). These informative features help us to facilitate the visual commu-

nication of the findings via ToxPi visualization as shown in Fig 7.

The ToxPi profiles of SRM samples successfully demonstrated the distinct nature of gas/

motor oils, biodiesels, and crude oils (with the exception of SRM 2722) with respect to the rest

of SRMs. Specifically for crude oils, all of the top 10 chromatographic features helped to iden-

tify crude oils among SRMs. Whereas for gas/motor oils, the profiles revealed the importance

of C2-napthobenzothiophenes for further identification between them. Moreover, the ToxPi

profiles showed that C3-phenanthrene/anthracenes, C2-naphthobenzothiophenes, and ben-

zothiophene measurements were the characteristics of biodiesel samples and can differentiate

them from the rest of the SRMs. We also observed the high similarity among a subgroup of

Table 5. 3-class classification accuracy of SRM substances excluding sample replicates.

Prediction class type Classification accuracy Classification accuracy (permuted) p-value

3-class 75% 71.8±3.6% 0.092

https://doi.org/10.1371/journal.pone.0223517.t005
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light refinery products that includes jet fuels, kerosenes and gasolines, where the weight of ben-

zothiophene remained to be the unique characteristic among all of them. This proves that the

GC-MS data could not provide clear distinction among these substances. Finally, we noted the

Table 6. Top 10 most informative GC-MS chromatographic features with respect to the classification accuracy of the petroleum substances. See S3–S5 Tables for

the list of all chromatographic features and their respective ranks in each analysis.

3-Class prediction 9-Class prediction 16-Class prediction

GC-MS Chromatographic Feature Rank� Mean decrease in accuracy (%)# Rank Mean decrease in accuracy (%) Rank Mean decrease in accuracy (%)

C4-Naphthalenes 6 6.82 13 8.68 1 10.38

Naphthobenzothiophene 10 6.54 14 8.56 7 9.44

C2-Naphthobenzothiophenes 24 6.12 2 9.09 10 9.40

Benzothiophene 21 6.25 3 9.08 14 9.25

C3-Phenanthrene/anthracenes 5 6.90 6 8.86 33 8.55

C4-Phenanthrene/anthracenes 8 6.58 35 7.76 3 9.57

Benzo(b)fluoranthene 19 6.28 20 8.42 8 9.42

Dibenzothiophene 41 5.76 4 9.02 4 9.56

C1-Dibenzothiophenes 2 7.10 22 8.35 26 8.69

Benzo(k)fluoranthene 27 6.06 16 8.53 11 9.34

�Rank of the feature among 55 total for each classification analysis (3-, 9-, or 16-class prediction). Top 10 features with the overall highest rank in all three analyses were

selected.
#Mean decrease in the accuracy of classification when this feature is removed from the analysis.

https://doi.org/10.1371/journal.pone.0223517.t006

Fig 7. ToxPi visualization of SRM samples using top 10 most informative chromatographic features.

https://doi.org/10.1371/journal.pone.0223517.g007
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major difference between diesel samples. Unlike the other two diesel samples, SRM 2723b and

SRM 2771, most of the top 10 selected analytical features were significant for identifying SRM

1624d. In particular, dibenzothiophene, C1-dibenzothiophenes and C4-naphthalenes were the

distinct measurements that differentiate SRM 1624d from the rest of the SRMs the most. Fur-

thermore, the PCA of the extracted ToxPi scores helps us to depict the distinction between the

complex substances by using the most informative analytical feature information (Fig 8).

3.5. Comparison of GC×GC-FID, GC-MS, and IM-MS techniques via

Fowlkes-Mallows index

In addition to quantifying the grouping quality and class information, it is imperative to inves-

tigate the appropriate analytical chemistry technique that produces the optimal grouping for

substances with complex chemistries. The majority of regulatory and standardized chemical

compositional analysis protocols utilize GC-MS as the instrument of choice to fingerprint

UVCB substances. Generally, a GC-MS instrument employs a capillary column, heated by an

oven at a predetermined temperature gradient in order to separate compounds by boiling

point and polarity. The eluting compounds are then ionized and analyzed by a detector. Since

molecules of specific molecular classes maintain distinct mass ion fracture patterns, GC-MS is

able to differentiate ion signals from multiple compounds. However, the column peak capacity

of a GC-MS can become overloaded, causing a baseline hump termed as an unresolved com-

plex mixture (UCM). In such cases, the column no longer has the resolving power to separate

all the compounds within the sample, which is typically observed in petroleum substance anal-

ysis, since an individual petroleum substance contains more than 10,000 different chemical

compounds. This may limit the number of molecules that can be effectively differentiated by

the instrument and hinder a robust chemical fingerprint production.

However, in recent years, instrument resolution power and sensitivity has increased, allow-

ing for more detailed characterization of complex substances. The incorporation of two gas

chromatography columns with different selectivity (GC×GC-FID) increases the peak capacity

of the instrument and allows for improved separation of molecules that form a UCM under

GC-MS analysis. Moreover, ion mobility mass spectrometry (IM-MS) incorporates unique

ionization methods, electron spray (ESI) or atmospheric photo ionization (APPI), along with

separation techniques based on size, shape, and charge of the ionized molecule. This further

increases the analytical sensitivity and enables improved chemical fingerprinting. Although

these two techniques further enhance the ability to characterize complex substances like petro-

leum products, their application is still novel and not widely studied within the scientific, regu-

latory, or industrial communities [14, 47]. Despite the technological advances that are

introduced by GC×GC-FID, and IM-MS techniques over GC-MS, there is no evidence exam-

ining any potential improvements on complex substance grouping. Therefore, we utilized the

Fowlkes-Mallows index to provide comparative assessment between these three analytical

chemistry techniques using the Petroleum UVCB samples.

Fig 9 demonstrates that GC×GC-FID and GC-MS yielded statistically insignificant F-M

indices due to the limited sample size. IM-MS was the only one yielding statistically significant

results, only after dimensionality reduction, which provided the most useful information to

reveal the class differences among the Petroleum UVCB samples. Their corresponding cluster-

ing dendrograms are provided in Fig 10. Specifically, the F-M index of the grouping of Petro-

leum UVCB samples with 8 features generated via the IM-MS technique was 0.49. Although

we could not draw specific conclusions among GC×GC-FID and GC-MS, we can report that

IM-MS performed superior than the other two techniques in terms of capturing the chemical

characteristics of complex substances.
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4. Conclusion

In this study, we established a data-driven framework for optimal grouping complex chemical

substances based on their chemical characteristics, and provided quantitative and visual

Fig 8. PCA of ToxPi scores.

https://doi.org/10.1371/journal.pone.0223517.g008

Fig 9. F-M index for the outcomes of clustering of Petroleum UVCB samples analyzed using 3 different techniques. � indicates that the results are

statistically significant.

https://doi.org/10.1371/journal.pone.0223517.g009
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evaluation to facilitate the interpretation of the complex chemical nature of substances/mix-

tures. The designed framework consists of two analysis workflows with two different perspec-

tives. In unsupervised analysis workflow, we examined the grouping of the complex

substances by using their chemical fingerprints derived from various analytical techniques,

and quantitatively compared the grouping hierarchy to a reference categorization through

F-M index. In contrast, in a supervised analysis workflow, we benefited from the “read-across”

hypothesis, that is similar complex substances that are grouped together based on their chemi-

cal structure (i.e. manufacturing category) are prone to behave similarly in terms of environ-

mental health risk assessment. Hence, we can train highly accurate classification models by

Fig 10. Dendrograms for Petroleum UVCB samples clustering from the reduced data set analyzed using 3 different techniques.

https://doi.org/10.1371/journal.pone.0223517.g010
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using the available information on categorization of known complex substances. The gener-

ated models can then be used to predict the environmental health impact of future unknown

complex substances. The common highlight of both workflows was on the quantitative met-

rics, which immensely facilitated the comparative assessment of different parameters, such as

distinct analytical techniques, data set sizes, or different number of categorization of samples

to elucidate the optimal grouping of complex substances. Additionally, we incorporated the

ToxPi representation of complex substances with the most informative analytical features to

further deliver insights from the developed data-driven classification models.

Our results have shown that in order to assess the statistical significance of grouping results,

it is highly important to permute category labels of complex substances and to calculate p-
value for the obtained results regardless of the selected workflow. In addition, the dimensional-

ity reduction played a key role in reducing the noise in the extracted high-dimensional analyti-

cal chemistry profiles. Dimensionality reduction allowed similar or higher grouping quality

with significantly reduced number of measurements. The selection of the most informative

features further improved data interpretation significantly through advanced data visualization

techniques, such as the ToxPi representation. This further facilitated the communication of

complex substance characteristics with regulatory decision-makers.
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