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Abstract 
Human being living in constant contact with microbes and pathogen and in the process has developed a recognition pattern 

of pathogenic structure in the immune cells. The gut lumen has high density of microbes thus the immune response is 

slightly tolerable to certain microbes, known as commensal flora. These microbes along with other innocuous agents do 

not cause any inflammation response normally, and are considered as harmless by the immune cells. In immune 

hypersensitivity condition, such as colitis or food allergy, this mechanism is disturbed.  T cell immunoglobulin and mucin 

domain (TIM)-4 is a phosphatidylserine receptor expressed in mature antigen presenting cells. It is shown that TIM-4 and 

its ligand TIM-1 are associated in intestinal immune response. However the characteristic of TIM-4 sometimes seems to be 

two-faced and there is a possibility that TIM-4 also bind to other ligands. 
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Thriving in a sea of microbes 
All along in millions of years, the interaction between 

immune cells and the micro environment intertwined each 

other in an inseparable relationship. Human immune cells 

build up their recognition database of microbe’s antigens 

as well as how to cease pathogenic microorganism 

invasion then pass it on to the next generations. Similarly 

microbes at times changes their antigenic structure to 

evade recognition and destruction from immune cells, and 

those that survived the screening process also pass on their 

genomic structure as a new strain of species [1]. This 

relationship goes on and on for as long as the human 

history and, like a scale, it skewed each time changes 

happened in either side of the hand. However, not all 

microbes are harmful to the body; some microbes are 

classified as commensal or harmless residents, this 

population even offers protection from other pathogenic 

microbes[2,3].Interestingly, the commensal microorganism 

sometimes shares the same general antigenic features like 

any other pathogenic microbes but was not attacked by the 

immune cells [4]. The mechanism of how the immune 

cells differentiate between pathogen and harmless 

microbes need more in depth exploration, but the cause 

behind the phenomena is that the pathogenic microbes 

express a structure called pathogen-associated molecular 

patterns (PAMPs) which are easily recognized by the 

immune cells [5, 6].  

 

The immune system is consists of innate and adaptive 

immune responses. Innate immune response works as a 

first liner in confronting pathogen invasion, these cells 

responds very fast and kill anything that is marked as 

threat to the body; adaptive immune response is more 

antigen-specific, however, works slower and takes time to 

be developed. Pattern recognition receptor (PRR), a 

compartment that binds to PAMPS, from the innate 

immune system responded to antigens then triggered 

adaptive immune response through multiple pathways [5, 

7-9]. In general, adaptive immune response will be halted 

if innate pathway is sufficient to cover the damage caused 

by pathogens immediately and usually the response is not 

a systemic one. If the damage cannot be compensated by 

these cells, then these immune cells will eventually send 

signals and release cytokines to recruit more cells to the 

site; meanwhile antigen presenting cells (APCs) which 

also express PRR will be responsible to carry on the 

antigenic information to T lymphocytes and start the 
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adaptive immune response. Once those T cells receive the 

antigenic information it can be activated and proliferate 

with an antigenic-specific site expressed on their surface. 

Some of them will induce B lymphocytes activation to 

produce antigenic-specific antibodies, and some will 

migrate out to the infected sites for pathogen 

eradication[10, 11]. Mostly activated cells will become 

apoptotic soon after they finish their task, only a small 

amount of these cells will become memory cells and keep 

all the antigenic information for later use. So when there is 

a second exposure with the same antigen in the future, 

rapid response will follow and more cells will be released 

to the site [12, 13].
 

 

In the gut: more tolerable 
Immune protection in the gut is considered to be more 

tolerable compared to other places [3, 8]. There are 

billions of microbes ingested into the intestinal lumen 

daily. To protect the intestinal mucosa from harmful 

pathogen, a tight junction is built in the surface of the 

lumen by the intestinal epithelial cells (IECs). These cells 

also produce mucus to lubricate and trap the pathogen on 

the surface preventing it to cross the barrier. Apart from 

physical barrier, an ample amount of soluble 

Immunoglobulin A (IgA) is secreted to the lumen daily to 

keep control of the microorganism population. IECs also 

express PRR and have the ability to recruit immune cells 

when bind to PAMPs from the pathogen inside the lumen 

[7, 14, 15]. However the professional APCs in the gut, 

dendritic cells (DCs) and macrophage, seemingly more 

tolerant to luminal microbes in sending alert and 

phagocyting them compared to APCs from other sites.  It 

is even thought that when the immune cells are no longer 

tolerant to commensal microbes then unwanted 

inflammation occurs, such as that in colitis [3, 16]. 

Immune over-reactivity is a condition where immune cells 

over-react toward innocuous agents, whether self cells or 

harmless microbes [1]. Food allergy is another type of 

intestinal immune over-reactivity. It happens when an 

incompletely digested protein breaks through a leak in the 

intestinal barrier, captured by an APC and flagged as an 

antigen then presented to the T cells, henceforth that 

certain proteins will be classified as pathogens and thus at 

the second exposure antigen-specific antibodies flood the 

intestinal lumen to cause unwanted protection and 

inflammation [17, 18]. 
 

In 2001, McIntire et al found a gene family related to a 

Mendelian trait known as T cell and Airway phenotype 

regulator (Tapr) which has a restricted immunoglobulin 

variable domain and mucin domain. The gene family is 

found expressed on T cells so hence called T cell 

immunoglobulin and mucin domain (TIM) [19]. Up until 

now there are 3 TIM subtype discovered in human (TIM-1, 

TIM-3, and TIM-4), and 8 in mice (TIM1 to TIM8) [20]. 

In this review, we will discuss mainly about TIM-4 and 

another member related to it. In the association with 

natural selection over thousands of years, TIM-4 molecule 

has been through positive natural selection pressure along 

with other immunoglobulin superfamily gene like CD3, 

CD4, CD48 and several others [21], indicating that TIM-4 

plays a role in either innate or adaptive immune response. 
 

Role of TIM-4 in immunity 

TIM-4, previously known as SMUCKLER, gene is 

conserved in human and mouse APCs unlike other TIM 

gene family which is expressed mainly in T cells. TIM-4 

expression in APCs is restricted only to certain subtypes 

that express CD11c+ and CD11b+ [22, 23]. TIM-4 has the 

ability to engage TIM-1 and co-stimulate T cell 

proliferation in activated T cells[24-26]. TIM-1 expression 

is present in any activated T cells, especially TH2[24, 27]. 

Feng et al. found that disruption of TIM-1 and TIM-4 

binding with anti-TIM-1 antibody and with TIM-4 

interfered gene expression can deplete TH2 and allergic 

response in peanut allergy mice model [28]. However in 

another study, Meyer at al discovered that TIM-4 fusion 

protein induce an increase of T cells proliferation but in 

lower concentration it inhibited T cells response [24]. 

Other findings show that in vivo administration of TIM-4 

antibody apparently induced TH1 cells proliferation and 

that TIM-4 fusion protein is able to induce an increase of 

interferon gamma (IFN-g) and tumor necrosis factor-alpha 

(TNF-a) rate in vitro [22, 29, 30]. Albacker et al found that 

over-expressed TIM-4 in APCs decreased antigenic 

specific T cell activity [29], while Mizui et al found that 

blocking TIM-4 will increase antigenic specific T cell 

activity but decrease inflammation and T cell proliferation 

rate [30].  

 

Apart from that, like other members of the TIM gene, 

TIM-4 is also a phosphatidylserine (PS) receptor that 

enhances phagocytosing activity of apoptotic cells by 

macrophages to maintain the homeostasis [12, 29, 31]. For 

instance, blocking of the PS receptor in APCs will 

consequently produce negative effect in peritoneal 

macrophage phagocytosing activity. PS expressed on the 

surface of an apoptotic cell is a signal that attracts APCs 

for immediate clearance or else too much linger will 

eventually cause auto-immunity reaction and chronic 

inflammation[13]. After phagocytosing, APCs will release 

transforming growth factor beta (TGF-b) that plays a part 

in inducing regulatory T (Treg) cells proliferation. In the 

gut, Treg cells are responsible to maintain immune 

tolerance to commensal flora and acts as a negative 

feedback for hyperactive pro-inflammatory response hence 

keeping the immune response in balance[32-34].  

 

Xiao et al discovered that a fusion protein using TIM-4 

monoclonal antibody with the immunoglobulin region 

only could increase T cell proliferation but another fusion 

protein which has both the immunoglobulin and mucin 

domain in contrast inhibit T cell proliferation [35]. 

Whereas Park et al. discovered that without its 

cytoplasmic tail and the transmembrane region, TIM-4 is 

still capable of enhancing phagocyting activity in the 

APCs [36]. The immunoglobulin region of TIM-4 is 

responsible in recognizing apoptotic cells through PS 

receptor binding and this binding site is also the same site 

for anti-TIM-4 monoclonal antibodies binding [31]. 
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Yamanishi et al. has discovered that the leucocyte 

mono-immunoglobulin-like receptor 5 (LMIR5) can bind 

to TIM-1 at the PS binding site and the binding does not 

interfere with the phagocyting ability of TIM-4 [37]. 

Interestingly, Wong et al. found that TIM-4 knock-out 

resident peritoneal macrophages are able to phagocytose 

necrotic and other opsonised targets but incompetent in 

phagocytosing apoptotic cells either in vitro or in vivo [38]. 

Regarding TIM-1 - TIM-4 binding site, it requires both 

TIMs intact glycosylated mucin stalk but mucin stalk 

alone is not yet sufficient for binding [39]. Miyanishi et al. 

found that TIM-1 - TIM-4 binding may be a kind of 

intercellular signalling via exosome that exposed PS [40]. 

However, TIM-4 may also bind with ligand other than 

TIM-1 and causing inhibition of naive T cells activation 

[30, 36, 38]. Several findings indicated that TIM-4 plays a 

significant role in intestinal allergic response and 

interaction with TIM-1 is related to T cell antigen-specific 

proliferation not only in the gut but also elsewhere, like 

the liver and kidney [29, 31, 41-43].  

 

When an IEC encounters a commensal flora, it will release 

cytokines such as IL-10 and TGF-b to induce tolerance 

[44]. However in the case of inflammation, IECs in the 

mucosa layer are damaged and the continuity of the 

structure is broken hence giving pathogens more chances 

to break into the lamina propria [3, 8, 45]. In colitis, 

apoptotic IECs may probably relate to the pathogenesis of 

the disease leading to a TH1 immune response [46]. From 

our own unpublished data, we found that TIM-4 

expression is significantly higher in colitis patients 

compared to healthy adults imposing that through PS 

receptor signalling pathway TIM-4 expressing APCs will 

direct proliferation toward TH1 response.  

 

It is known that T helper type 2 (TH2) cells are responsible 

in the development of allergic response. In several in vivo 

and in vitro experiments, exposure to resident flora toxin 

markedly increases antigenic-specific response to allergen 

through increase of TH2 polarization and mast cells 

degranulation [28, 47, 48]. After administration of 

anti-TIM-4 and/or anti-TIM-1 antibodies, the allergic 

response decreases with a lesser level of TH2 polarization 

[49]. The antibody blocking works at the PS binding site at 

the immunoglobulin region, then apoptotic cells 

phagocytosing activity of TIM-4 expressing APCs should 

have been diminished [26]. If TIM-4 expressing APCs are 

still able to phagocytose necrotic cells and pathogens 

without PS signalling through other glycosylated ligands, 

then the inhibition of naive T cells proliferation seen by 

Mizui et al probably caused by a pathway other than 

TIM-1 binding [30, 36, 38]. Albacker et al. found that 

TIM-4 phagocyting activity of apoptotic cells markedly 

increase in the antigen-specific T cell population in 

inflammation but then help control the number of the 

remain antigen-specific T cells after the clearance [29]. 

Interestingly, a group of apoptosis resistant DCs have the 

ability to skew the immune response to TH2 polarization. 

This population can be isolated from antigen-primed mice 

then cultured with antigen-specific T cells; those that 

survived are able to induce TH2 differentiation from naive 

T cells either in vivo or in vitro[50].  

 

Conclusion 
TIM-4 ability to recognize apoptotic cells is dependent to 

the PS receptor on its immunoglobulin region and possibly 

with the help of TIM-1 that also has the same receptor. 

However without TIM-1 interaction, TIM-4 is able to bind 

with other glycosylated ligands. This versatile feature may 

be responsible for the bimodal character that somewhat 

contradicting each other. A future study is needed to see 

whether TIM-4 is present in mature APCs that are 

apoptotic resistant population and the phagocytosing 

activity in apoptotic T cell antigen-specific cells are aided 

by TIM-1 through PS receptor which favours the TH2 

response. Regarding the induction of TH1 response such 

as that in colitis, TIM-4 may also play a role in the process 

either through other ligands or signalling pathways. 
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