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Abstract

Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Transmission of exter-
nal stimuli to intracellular effector proteins via signalling pathways is a highly regulated and controlled process that determines
muscle mass by balancing protein synthesis and protein degradation. An impaired balance between protein synthesis and
breakdown leads to the development of specific myopathies. Sarcopenia and cachexia represent two distinct muscle wasting
diseases characterized by inflammation and oxidative stress, where specific regulating molecules associated with wasting are
either activated (e.g. members of the ubiquitin-proteasome system and myostatin) or repressed (e.g. insulin-like growth factor
1 and PGC-1α). At present, no therapeutic interventions are established to successfully treat muscle wasting in sarcopenia and
cachexia. Exercise training, however, represents an intervention that can attenuate or even reverse the process of muscle
wasting, by exerting anti-inflammatory and anti-oxidative effects that are able to attenuate signalling pathways associated
with protein degradation and activate molecules associated with protein synthesis. This review will therefore discuss the mo-
lecular mechanisms associated with the pathology of muscle wasting in both sarcopenia and cachexia, as well as highlighting
the intracellular effects of exercise training in attenuating the debilitating loss of muscle mass in these specific conditions.
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Introduction

Skeletal muscle is fundamental for human functioning, en-
abling locomotion and respiration. That skeletal muscle con-
sists of the largest pool of proteins in the whole organism
highlights why this specific tissue is highly sensitive under
conditions that act to alter the balance between protein syn-
thesis and degradation—the key determinants of muscle
mass. Two common but distinct conditions characterized by
a loss of skeletal muscle mass are sarcopenia and cachexia.
Loss of muscle mass directly contributes to exercise intoler-
ance and impaired daily activities, which makes it a strong de-
terminant of quality of life and mortality.1,2 As such, a better
understanding of the mechanisms contributing to muscle
wasting in sarcopenia and cachexia, as well as elucidating op-
timal interventions to overcome this loss of muscle mass,
represents a critical therapeutic target.

Sarcopenia is characterized by the slow and progressive
loss of muscle mass that is associated with ageing in the ab-
sence of any underlying disease or condition.3 The prevalence
of sarcopenia ranges from 15% at 65 years to 50% at 80 years
in humans, with normal ageing associated with a 1–2% mus-
cle loss beyond the age of 50 years.4 Human evidence indi-
cates that a ~30% reduction in muscle cross-sectional area
and a ~40% decline in muscle strength are observed at
70 years.5 Furthermore, the rapidly expanding ageing popula-
tion will only exacerbate the health problems associated with
sarcopenia, which directly leads to increased hospitalizations
and disability, due in part, by contributing to falls, fractures,
and frailty in the elderly. In contrast to sarcopenia, cachexia
is a complex metabolic syndrome characterized by a severe
and involuntary loss of muscle mass with or without wasting
of fat mass (defined by a >5% involuntary loss of edema-free
body weight over 1 year6). Cachexia is associated not only
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with chronic diseases, most commonly cancer, but also with
other inflammatory conditions such as chronic obstructive
pulmonary disease, heart failure (HF), chronic kidney disease,
AIDS, and sepsis.7,8 The overall prevalence of cachexia is ap-
proximately 1% of the global patient population, which can
increase to 50–80% in cancer patients.9,8 Indeed, almost
80% of cancer patients suffering cachexia will be dead within
1 year of diagnosis.

It is important to note that sarcopenia and cachexia can
often run in parallel, with many elderly patients with
sarcopenia also diagnosed with a cachectic condition. This
not only acts to exacerbate muscle wasting but further com-
pounds these patients to the poorest quality of life and prog-
nosis. It is therefore important to better understand how
both of these distinct conditions may impair muscle mass
not only in separatum but also in combination. A further dis-
tinct condition that also is a major contributor to muscle
wasting is disuse, which is often caused by a lack of physical
activity. Physical inactivity is exacerbated by chronic disease
and increases with age, which means a complex interaction
between sarcopenia, cachexia, and disuse all may contribute
to muscle wasting in some patients. Increasing physical activ-
ity, therefore, may represent a key therapeutic intervention
that may help maintain skeletal muscle mass. In this review,
we will discuss the molecular mechanisms associated with
the pathology of muscle wasting in both sarcopenia and
cachexia, as well as highlighting how exercise training may
represent an effective therapeutic intervention to overcome
these impairments mediated at the molecular level, as
characterized in Figure 1.

Molecular mechanisms of sarcopenia

Protein synthesis

Skeletal muscle mass is largely dependent upon fibre protein
content, which is regulated by the overall balance between
protein breakdown and synthesis. An important determinant
of protein synthesis is not only an adequate dietary protein
intake but also the signalling of anabolic molecules. A key
anabolic hormone induced by dietary ingestion is insulin,
which stimulates muscle hypertrophy via secreting insulin
growth factor 1 (IGF-1) followed by activation of the PI3K-
Akt-mTOR pathway. IGF-1 is an anabolic growth factor that
can stimulate protein synthesis and proliferation of satellite
cells10,11 whilst suppressing protein degradation.12-14 Muscle
protein synthesis is blunted in older compared with younger
adults following protein ingestion,15 which is suggested to be
consequent to a lower sensitivity of insulin.16 This may be
caused by impaired endothelial function, as commonly
manifested in the elderly,17 as insulin sensitivity can be re-
stored in older individuals following a protein rich meal by
co-administration of the vasodilator sodium nitroprusside.18

Alternatively, more recent data suggest that impaired insulin
sensitivity and reduced expression of Akt and mTOR in
ageing are caused by a reduction in the signalling of
PGC-1α: a key regulator of mitochondrial biogenesis in
skeletal muscle.19 Collectively, therefore, these data suggest
that impaired anabolic signalling likely plays an important
role in sarcopenia.

Protein degradation

At least four major skeletal muscle proteolytic pathways of
protein degradation exist. These include the ubiquitin–
proteasome system (UPS), the calpain pathway, the caspase
pathway, and autophagy-lysosomal pathway. The UPS has
received the most attention, but current evidence remains
contradictory on its specific role in sarcopenia. The E3-
ubiquitin ligases MuRF-1 and MAFbx (or atrogin-1) represent
two main ligases in skeletal muscle that identify proteins for
removal via the UPS.20 However, the expression of MuRF-1
and MAFbx in aged compared with younger skeletal muscle
has been inconsistent, with studies showing a modest in-
crease,21-24 no change,25,26 or even a decrease.27 Further-
more, the major peptidase activities of the UPS with
ageing have been reported to be reduced28 or un-
changed.21,29 These inconsistent findings likely suggest that
other proteolytic pathways are playing a more dominant
role in sarcopenia, namely the calpain and autophagy path-
ways. Indeed, the mRNA expression and activity of calpain
increase in skeletal muscle of old compared with young rats
at 24 and 3months of age, respectively, but this was
prevented with calpastatin administration.30 Calpains belong
to a large family of calcium-dependent cystein proteases
that may cleave myofibrillar proteins to disrupt the
sarcomere and are tightly controlled by their inhibitor
calpastatin.31,32 In addition, evidence also suggests that au-
tophagy function declines with age,33-35 resulting in a pro-
gressive accumulation of polyubiquitin protein aggregates
and subsequent destruction. Autophagy is present in all eu-
karyotic cells and represents a catabolic process that involves
the bulk degradation of cytoplasmic components through the
combination of autophagosomes and lysosomal digestion.36

Collectively, therefore, the present data suggest that protein
degradation in sarcopenia is likely mediated to a greater
degree by the calpain and autophagy pathways rather than
the UPS alone.

Mitochondrial abnormalities

Mitochondria integrate a variety of key cell signals within
myocytes, including energy supply, reactive oxygen species
(ROS), and apoptosis, with many studies now providing
evidence that mitochondrial dysfunction is induced by
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ageing.37-42 Clearly, mitochondrial bioenergetics are re-
duced by ageing, with reports suggesting by as much as
50%.41,43 Yet a more potent mechanism for sarcopenia
may relate to an increased production of mitochondrial-
derived ROS and apoptotic cell death induction.44 Indeed,
measured muscle markers of apoptosis (including the re-
lease of mitochondrial cytochrome c,45 TUNEL staining,46

caspase-3 and caspase-9 activity,34,46 and DNA fragmenta-
tion34,47) are all significantly increased in older compared
with younger rats. This is further supported by a recent
study where overexpression of PGC-1α in aged mice atten-
uated mitochondrial impairments, apoptosis, autophagy,
and proteasome activity but importantly also muscle
wasting.19 As such, mitochondrial impairments, and partic-
ularly that to PGC-1α, can be considered a key mechanism
contributing to sarcopenia.

Inflammation

There is growing evidence that elevated inflammation is an
important mechanism associated with sarcopenia, with an
observational study of >2000 elderly people reporting that
elevated TNF-α was consistently associated with decrements
in muscle mass and strength.48 Results from the Health,
Aging and Body Composition (Health ABC) study even
showed that for each increase in the standard deviation of
IL-6 concentration, the grip strength of participants was re-
duced by 1.1 to 2.4 kg.49 This is also reinforced by an animal
study, where a reduction of low-grade inflammation by ibu-
profen in 20-month-old animals attenuated muscle mass
loss.50 Mechanistically, the induction of muscle breakdown
via the UPS has long been considered to be the major path-
way underlying the relationship between inflammation and

Figure 1 The effects of exercise on the signalling pathways associated with muscle growth and wasting in sarcopenia and cachexia. Muscle wasting
is commonly induced by elevated inflammation and reactive oxygen species (ROS), which increase signalling of protein degradation via a number of
key pathways—a key one mediated by the FoxO transcription factors, which activate the ubiquitin-proteasome system (UPS) and autophagy. In
addition, sarcopenia and cachexia are also associated with lower levels of the insulin-like growth factor 1 (IGF-1), which impairs protein synthesis
by suppressing the PI3K-Akt-mTOR pathway. This pathway can also be repressed by myostatin, which binds to its receptor activin A receptor type B
(ActRIIB) to further stimulate atrogene transcription via SMAD2 or SMAD3. Exercise, however, stimulates a number of pathways that can increase
protein synthesis whilst reducing degradation (as denoted by dashed lines), which attenuates muscle wasting and, in some circumstances, can lead
to muscle growth. Exercise can exert potent anti-inflammatory and anti-oxidative effects and also reduce myostatin signalling, which collectively
represses the transcription of atrogenes and consequent protein degradation. Simultaneously, exercise also increases IGF-1 levels to induce protein
synthesis, with the subsequent activation of mTOR concomitantly suppressing FoxO signalling. An important exercise-induced transcription factor is
PGC-1α, and also its isoform PGC-1α4, with the former down-regulating proteolysis and the latter increasing synthesis via the IGF-1 pathway.
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sarcopenia,21 although recent evidence suggests that inflam-
mation may also trigger mitochondrial abnormalities by
impairing mitochondrial turnover or biogenesis (for a de-
tailed review see51).

Regeneration of muscle tissue by satellite cells

In elderly humans and animals, a reduction in satellite cell
numbers52,53 and regenerative capacity54,55 are well corre-
lated to sarcopenia.56,57 As such, impaired satellite cell activa-
tion may be an important mechanism contributing to
sarcopenia. Skeletal muscle contains a resident population
of inactive satellite cells (stem cells), which represent the ma-
jor source of muscle regeneration. Satellite cells proliferate
after being activated by genes involved in the progression
of the cell cycle (e.g. Pax7 and MyoD52,58) and later exit the
cell cycle to differentiate. In ageing, impaired satellite cell re-
generation is supported by data showing that large propor-
tions of aged satellite cells switch from an inactive state
into one that prevents proliferation and self-renewal of the
satellite pool.55 In addition, the growth factor myostatin,
whose expression is increased with age, has also been
demonstrated to directly impair satellite cell regeneration.59

In contrast, however, a more recent lifelong animal study,
where young adult mice were initially depleted of satellite
cells (at least sufficient to impair muscle regeneration),
revealed that these mice when aged did not demonstrate a
reduced muscle mass (despite the satellite cells still being
reduced60). These data therefore challenge the notion that
lower satellite cells underpin sarcopenia.

Oxidative stress

Reactive oxygen species are constantly generated in the cell
under normal circumstances by several different enzymes
(e.g. xanthine oxidase and NAD(P)H oxidase) but mostly as
a by-product of mitochondrial oxidative phosphorylation.
Several detoxifying mechanisms established in cells maintain
redox balance, namely the antioxidant enzyme network of su-
peroxide dismutase (SOD), catalase, and glutathione peroxi-
dase (GPX). In the ageing process, this tightly regulated
balance between pro-oxidant and antioxidant is altered be-
cause of a reduction in anti-oxidative enzymes,61 leading to
an increased ROS load and oxidative damage of mitochon-
drial DNA (mtDNA). This was documented in the skeletal
muscle of aged rodents62 and humans,63 where extensive
damage to mtDNA was detected. The involvement of oxida-
tive stress in sarcopenia has also been directly observed in
a SOD1�/� mouse model of ageing, where CuZnSOD overex-
pression in neurons of mice was sufficient to preserve skele-
tal muscle structure and function.64 Overall, these data

suggest that redox homeostasis (in skeletal muscle and even
motor neurons) may be a causal factor in sarcopenia.

Molecular mechanisms of cachexia

The ubiquitin-proteasome system

An increased activation of the UPS seems to play the most
important role for inducing muscle wasting in cachectic con-
ditions,65-67 with many studies using animal models of cancer,
HF, and sepsis to better understand the molecular mecha-
nisms underpinning muscle wasting.9,68,69 Skeletal muscle
seems appreciably susceptible to cachectic factors (e.g. pro-
inflammatory cytokines), with a highly selective targeting of
specific rather than general muscle proteins being degraded.
For example, cancer cachexia induced in mice by colon-26
tumours was shown to selectively reduce myosin heavy chain
above other general proteins, and this was correlated to
wasting.70 Similarly, respiratory muscle wasting with reduced
myosin heavy chain content was also recently reported using
the same animal model,71 suggesting cachexia also increases
the risk of respiratory failure. Patient studies further support
a role for the UPS, with muscle biopsies from cachectic gastric
cancer patients demonstrating an elevated expression of
ubiquitin mRNA and the 20S proteasome subunits72 and also
an increased activity in the muscle proteasome activity73

compared with controls. The elevated activity of the protea-
some pathway in cachexia seems to be mediated by activa-
tion of the FoxO and NFĸB transcription factors, which
induce the key atrogenes MuRF-1 and MAFbx leading to an
elevated proteasome activity. This greater catabolic signalling
is compounded by the FoxO transcription factors, which
additionally suppress the PI3K/Akt pathway and therefore
protein synthesis. Nevertheless, before the UPS can degrade
monomeric actin and myosin, the activation of caspase-3
via PI3K is essential for the dissociation of the actomyosin
complexes.74

The UPS has been shown to act in a number of cachectic
conditions, with an upregulation of proteins involved in the
proteasome pathway such as polyubiquitins, Ub fusion pro-
teins, the Ub ligases MAFbx, and MuRF-1, detected in animal
models of diabetes mellitus, uremia, and also cancer.75 How-
ever, whether the UPS plays a central role in HF seems less
clear, as some76 but not all77 patient studies have found mus-
cle biopsies to have an increased MuRF-1 and MAFbx expres-
sion. That a coronary artery ligation model of HF in rats has
also shown muscle wasting and higher proteasome activity
in the plantaris and soleus,78 reinforces the importance of
the UPS in cardiac cachexia. Alternatively, a down-regulation
of deubiquitinases (e.g. USP19 and USP14) in order to
promote ubiquitination could be another mechanism that
activates UPS-mediated protein degradation.79 A reduced
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mRNA expression of deubiquitinases has been documented
in multiple conditions associated with muscle atrophy such
as fasting, tumours, high-dose glucocorticoid therapy, and de-
nervation.80-82 Deubiquintinases may potentially be upregu-
lated in cachexia in order to regenerate free ubiquitin from
the ubiquitin chains. This would therefore ensure enough
free ubiquitin molecules are present for protein degradation
via the UPS.79 However, as only a limited number of studies
have investigated, this potential explanation suggests that
further investigation is warranted.

Autophagy

In the last years, autophagy was recognized to play an impor-
tant role in the selective removal of damaged organelles and
degradation of misfolded proteins.83 The energy balance in
the cell, as detected by sensor molecules such as mammalian
target of rapamycin (mTOR) or AMP-activated protein kinase
(AMPK), is a key regulator of autophagy. Evidence from ge-
netic studies supports the view that a basal level of autoph-
agy is required for healthy cell functioning, as the deletion
of the muscle specific autophagy gene Atg7 results in severe
muscle atrophy, decreased force production, and an accumu-
lation of abnormal mitochondria.84,85 However, markers asso-
ciated with autophagy can be upregulated within skeletal
muscle cells during catabolic conditions,68,86-88 with FoxO3
established as an important transcription factor for activating
autophagy and controlling the expression of many
autophagy-related genes including LC3 and Bnip3.89,90 The
expression of Bnip3 also plays a major role in mediating the
effect of FoxO3 activation, because the induction of auto-
phagy is decreased in Bnip3 knockout animals.89 Collectively,
therefore, it seems that under-activation or over-activation of
autophagy can be equally detrimental for the muscle cell:
excess autophagy deprives the cell from components neces-
sary for normal metabolism and muscle contraction, whereas
significant reductions in autophagy can lead to the accumula-
tion of damaged and misfolded protein aggregates and
organelles.36,83

Oxidative stress

Oxidative stress is a state wherein the normal redox homeo-
stasis is impaired, resulting in a pro-oxidant state. The
sources of oxidants are numerous and include enzymatic
and chemical reactions producing superoxide anions, hydro-
gen peroxides, or nitric oxide. At basal levels, these molecules
are critical for important signalling tasks, but elevated con-
centrations are detrimental to the function and structure of
lipids, proteins, and DNA and can further stimulate apoptotic
cell death.91 Increased ROS mediate their action via pro-
inflammatory transcription factors, namely NFĸB, which

upregulates components of the UPS. Indeed, cell culture ex-
periments in C2C12 cells clearly document that ROS have
the potency to induce the expression of E3-ubiquitin li-
gases,92 and this is correlated with an increased ubiquitin-
conjugating activity and proteasome activity and decreased
myosin protein content.92,93 Causal support has also been
provided by a rat cancer cachexia model induced by Yoshida
AH-130 tumour cells, where ubiquitin-proteasome activity,
muscle wasting, and mortality were attenuated by the xan-
thine oxidase inhibitor allopurinol or oxypurinol.94

Inflammation

Serum levels of inflammatory cytokines such as IL-6 or TNF-α
are chronically elevated and associated with muscle wasting
in various diseases such as HF,95 sepsis,96 and cancer.97 The
role of inflammatory cytokines for inducing muscle mass loss
has been confirmed by transgenic studies, where the overex-
pression of IL-6 induced skeletal muscle atrophy,98 but the
administration of IL-6 receptor antagonists abolished this ef-
fect.99 Recent findings have also suggested that IL-6 mediates
skeletal muscle wasting in cancer cachexia by signalling
through its receptor (i.e. glycoprotein 130), which activates
STAT3, p38, FoxO3, and atrogenes.100 Furthermore, injecting
TNF-α into mice has been shown to activate the ubiquitin-
proteasome system and impair muscle function.101

Anabolic hormones and growth factor

Low testosterone levels have been observed in more than
70% of cancer cases exhibiting cachexia.102 Testosterone
and its derivatives bind to cytosolic receptors, which leads
to an increase in protein synthesis and muscle mass.103

Therefore, a loss of testosterone decreases muscle IGF-1
mRNA, the rate of myofibrillar protein synthesis, Akt phos-
phorylation, and the Akt-mediated phosphorylation of
GSK3ß, PRAS40, and FoxO3a.104 IGF-1 activates Akt via PI3K,
which then phosphorylates the FoxO transcription factors,
with the latter known to induce MAFbx and MuRF-1 expres-
sion.105-107 Thus, a consequence of the lower FoxO3 phos-
phorylation is an increased activation of the proteasome
system and thus increased muscle wasting.108,109 Indeed, that
transgenic overexpression of locally acting IGF-1 in skeletal
muscle inhibits ubiquitin-mediated muscle atrophy in chronic
left-ventricular dysfunction,110 reinforces that a down-
regulation of anabolic hormones plays a key role in cardiac
cachexia.

Myostatin

Myostatin expression is elevated in many cachectic condi-
tions.111 Myostatin suppresses skeletal muscle growth by
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attaching to the activin A receptor, type IIB (ActRIIB), and
this activates the transcription factors SMAD2 and SMAD3,
which upregulate atrogene transcription. Myostatin can
reduce protein synthesis by suppressing Akt or increase
degradation by elevating FoxO transcription, whilst also
impairing satellite cell formation. An inhibitor of myostatin is
follistatin, with experiments confirming overexpression of
the latter (or blocking of the ActRIIB) results in an increased
muscle mass.112 As such, myostatin and activin A have been
suggested to be the most promising targets to help reduce
muscle wasting in cachexia.111

Exercise training in cachexia and
sarcopenia

In order to circumvent the muscle wasting associated with
sarcopenia and cachexia, numerous interventions such as
pharmacological and nutritional aids have been used, but
most with limited efficacy.113 One alternative clinical inter-
vention that may provide the most benefits (both at a molec-
ular and functional level) is exercise training. Indeed, a major
contributor to muscle wasting in cachexia and sarcopenia is a
reduced physical activity, which is often associated with
chronic disease and age.114 As such, increasing physical activ-
ity may slow, prevent, or even reverse muscle wasting. How-
ever, it should also be noted that disuse is only one
component acting to reduce muscle mass in cachexia and
sarcopenia, with exercise training further able to target nu-
merous metabolic pathologies. Importantly, that exercise
training is associated with improved quality of life, reduced
hospitalizations, and prolonged survival115 suggests that
exercise should be considered a cornerstone in the treatment
of skeletal muscle wasting. In the succeeding text, we discuss
the numerous molecular alterations that exercise training
may have on skeletal muscle wasting in cachexia and
sarcopenia, as summarized in Figure 1.

Sarcopenia

Exercise training has generally been shown to help maintain
or improve muscle mass in healthy-elderly individuals, which
is also associated with functional improvements in muscle
strength and maximal aerobic capacity. A recent study where
~75-year-old adults performed 12weeks of aerobic exercise
found that quadriceps muscle volume was higher in parallel
with increased fibre cross-sectional area.116 Importantly, this
study suggested hypertrophic improvements by aerobic exer-
cise are independent of age, as older people were able to
demonstrate similar quantitative changes to those observed
in a younger cohort of ~20 year olds. In contrast, however,
it seems that whilst resistance exercise can also attenuate

age-related muscle loss in both elderly men and women,
the benefits seem limited once an individual progresses
>80 years.117,118

The molecular mechanisms underlying how exercise pre-
vents age-related loss of muscle mass are still poorly under-
stood. One mechanism may be related to the anti-oxidative
benefits associated with exercise training, with overexpres-
sion of CuZn-SOD in mice shown to prevent age-related
skeletal muscle impairments.64 These data are also supported
by a patient study, where lifelong trained older adults were
shown to have an increased catalase expression and reduced
markers of oxidative stress compared with their untrained
counterparts in muscle biopsies.119 Lower levels of oxidative
stress following exercise training may therefore slow the
wasting of muscle, by limiting the activation of protein degra-
dation.92 Exercise may also help increase protein synthesis, as
supported by an animal study where rats trained on a tread-
mill had increased anabolic signalling.120 Perhaps, however,
the key determinant of how exercise prevents age-related
loss of muscle mass is related to an increased signalling of
the transcription co-activator PGC-1α. Indeed, the increased
expression of PGC-1α in ageing mice has been found to pre-
vent sarcopenia, which was also associated with lower oxida-
tive stress, inflammation, apoptosis, autophagy, proteasome
activation, and an increase in mitochondrial biogenesis,
which collectively prolonged survival.19 Mitochondrial bio-
genesis and respiration are stimulated by PGC-1α through
the induction of nuclear respiration factor (NRF)-1 and
NRF-2.121 Another factor influencing the expression of PGC-1α
is nitric oxide (NO), generated either by endothelial or neuro-
nal nitric oxide synthase (eNOS or nNOS, respectively). Cell cul-
ture experiments in L6 or C2C12 myoblasts/myotubes have
provided evidence that NO increases PGC-1α in an AMPK de-
pendent fashion.122 However, neither pharmacological inhibi-
tion nor genetic deletion of eNOS or nNOS in mice prevented
endurance training induced PGC-1α expression.123,124 This
suggests that an exercise induced-increase in PGC-1α likely
has widespread signalling benefits that would be predicted
to limit sarcopenia by modulating apoptosis, the UPS, autoph-
agy, and mitochondrial biogenesis. The importance of PGC-1α
in ageing has mostly been shown using aerobic exercise.
Indeed, a study where PGC-1α was down-regulated demon-
strated that 12weeks of treadmill exercise was able to
attenuate the fall in PGC-1α in aged rats. Other meditators
of muscle loss that exercise may target during ageing are
myostatin and FoxO3a, as these have been reported to be
reduced following aerobic exercise training.125 Overall, there-
fore, it seems aerobic exercise training attenuates sarcopenia
mainly though the widespread benefits associated with in-
creasing PGC-1α signalling. Resistance exercise training (RET)
in combination with a nutritional intervention has also been
documented to significantly improve muscle mass and
strength in older persons.126,127 It is generally accepted that
RET improves muscle mass and strength by increasing fibre
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cross-sectional area, protein synthesis (via activation of the
mTOR pathway128) and the number of myofibrils.129 Further-
more, more recent data indicate that RET may additionally tar-
get an increase in the PGC-1α isoform, PGC-1α4, as this was
shown to induce IGF-1 and repress myostatin, which led to
muscle hypertrophy.130

Cachexia

Exercise seems able to maintain muscle mass in numerous ca-
chectic conditions such as cancer, renal failure, rheumatoid
arthritis, mainly by lowering inflammation, oxidative stress,
and proteolysis (reviewed in 131-134). Our research over the
last decade has mainly focused on HF patients, investigating
whether aerobic exercise training can be used as an effective
intervention to limit skeletal muscle wasting. Muscle wasting
in HF is strongly correlated to survival,1 making this a key
therapeutic target in this particular disease. Overall, studies
from our laboratory have consistently shown the efficacy of
aerobic exercise in HF patients. For example, we have shown
exercise exerts an anti-inflammatory and anti-oxidative
effect, by reducing local expression of TNF-α, IL-1ß, and
IL-6135,136 whilst increasing antioxidant enzyme activity of
GPX and catalase.136 These changes may underlie, at least
in part, why MuRF-1 mRNA and protein expression were
reduced after only 4weeks of training in our HF patients,137

suggesting ET in HF lowers activation of the UPS.138 Importantly,
the lower MuRF-1 levels following exercise (4–12weeks) have
been associated with an increased thigh muscle cross-
sectional area compared with sedentary HF patients.77,139

That we have consistently been unable to detect changes in
the E3 ligase MAFbx suggests that this does not play a major
role in improving muscle mass during exercise training in HF.
However, exercise may further exert a benefit through lower-
ing myostatin signalling, as we additionally found myostatin
was reduced in post-exercise training in HF patients.140 This
latter point is reinforced by a genetic deletion model of
myostatin in HF, which was able to prevent muscle wasting.141

Another important notion suggests that exercise modulates
protein synthesis via the IGF-1-PI3K-AKt pathway. Our re-
search supports that exercise influences anabolic signalling
via IGF-1, as we found 6months of aerobic exercise training
increased mRNA expression of IGF-1 in skeletal muscle biop-
sies from HF patients.142 A reduced IGF-1 expression is also
supported by other data, which showed HF patients to have
a reduced Akt phosphorylation.143 Overall, therefore, exercise
seems to attenuate cardiac cachexia by targeting both the
protein synthesis and degradation pathways.

Exercise training is also a valuable intervention in cancer
cachexia (reviewed in144), although most studies have been
limited to animal models. Treadmill running has been shown
to prevent cachexia induced by a mouse model of colon can-
cer.145 This study also showed Akt activation was increased in

trained mice, supporting the benefits of exercise on upregu-
lating protein synthesis but also suppressing protein degrada-
tion. Although evidence is lacking, exercise in cachexia is
highly likely to exert many of its benefits via PGC-1α. The
overexpression of PGC-1α in cachexia was shown to prevent
muscle wasting in mice, via suppression of FoxO3 and
atrogenes,107 whereas the overexpression of an isoform
PGC-1α4 was shown to prevent cancer cachexia in mice by
activating IGF-1 and repressing myostatin. Of note, exercise
has also been shown to be protective against muscle wasting
induced by chemotherapy treatments such as doxorubicin,
with exercise training in rats shown to prevent doxorubicin-
induced increases in oxidative stress, proteolysis, and autoph-
agy expression.146 In contrast to aerobic exercise training,
only a limited number of studies have investigated whether
resistance exercise may be a more effective treatment strat-
egy. A recent study in HF patients identified that RET over
18weeks was able to improve lower limb muscle strength;
however, this was not associated with improvements in
whole muscle size or single muscle fibre cross-sectional area
but rather myofilament function.147 RET has also been inves-
tigated in other chronic wasting diseases such as chronic
renal insufficiency,148 rheumatoid arthritis,149 and AIDS,150

with muscle strength generally increased between 30% and
50% in the RET group concomitant with types I and II muscle
fibre hypertrophy.148 Collectively, therefore, the benefits
associated with exercise training (aerobic and resistance) in
cachexia seem to target specific signalling pathways that help
increase protein synthesis but also that largely attenuate
proteolysis.

Conclusion and future perspectives

Despite encouraging advances in our understanding of the
molecular basis of muscle wasting in both sarcopenia and
cachexia, further research is required, particularly using
patients to confirm the vast experimental evidence gathered
from animal models. In addition, as ageing is commonly asso-
ciated with the development of cachectic conditions, it is es-
sential that a better understanding is gained on how these
conditions overlap and interact in order to promote muscle
wasting as this cohort will likely have the highest risk of mor-
bidity and mortality. This point is further complicated by the
contribution of a reduced physical activity, which therefore
results in a complex interplay between sarcopenia,
cachexia, and disuse in many patients. Exercise training,
however, represents a promising intervention that can
attenuate or even reverse the process of muscle wasting
in sarcopenia and cachexia. Nevertheless, the lack of stud-
ies in this area has limited our molecular understanding of
how muscle wasting in sarcopenia and cachexia is attenu-
ated. Little evidence is available regarding the optimal
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duration, mode, or intensity of exercise, although recent
evidence favours high-intensity interval training, which
warrants further research. Nevertheless, current evidence
from animal studies indicates PGC-1α may be the key
molecule responsible for many of the intracellular improve-
ments associated with exercise training in sarcopenia and
cachexia. One key challenge which still remains unclear,
however, is whether exercise can be incorporated into the
daily activities of many cachectic patients who are character-
ized by severe fatigue and muscle weakness. Nevertheless,
exercise training should at least be considered an interven-
tion capable of elucidating the mechanisms of muscle
wasting, which can then be pharmacologically targeted to
help benefit patients.
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