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ABSTRACT

To understand the function of the hundreds of RNA-binding proteins (RBPs) that are encoded in animal genomes it is important to
identify their target RNAs. Although it is generally accepted that the binding specificity of an RBP is well described in terms of the
nucleotide sequence of its binding sites, other factors such as the structural accessibility of binding sites or their clustering, to
enable binding of RBP multimers, are also believed to play a role. Here we focus on GLD-1, a translational regulator of
Caenorhabditis elegans, whose binding specificity and targets have been studied with a variety of methods such as CLIP (cross-
linking and immunoprecipitation), RIP-Chip (microarray measurement of RNAs associated with an immunoprecipitated
protein), profiling of polysome-associated mRNAs and biophysical determination of binding affinities of GLD-1 for short
nucleotide sequences. We show that a simple biophysical model explains the binding of GLD-1 to mRNA targets to a large
extent, and that taking into account the accessibility of putative target sites significantly improves the prediction of GLD-1
binding, particularly due to a more accurate prediction of binding in transcript coding regions. Relating GLD-1 binding to
translational repression and stabilization of its target transcripts we find that binding sites along the entire transcripts
contribute to functional responses, and that CDS-located sites contribute most to translational repression. Finally, biophysical
measurements of GLD-1 affinity for a small number of oligonucleotides appear to allow an accurate reconstruction of the
sequence specificity of the protein. This approach can be applied to uncover the specificity and function of other RBPs.
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INTRODUCTION

RNA-binding proteins (RBPs) control many post-transcrip-
tional steps of gene expression (e.g., mRNA localization,
stability, and translation rate) for a large number of target
RNAs. Tounravel this regulatory layer, it is important to iden-
tify target sites of individual RBPs, preferablyatnucleotide res-
olution. Both experimental and computational approaches
have been utilized to this end, each having its own advantages
as well as limitations. On the one hand, experimental high-
throughput methods are available, but they have restricted
sensitivity and are typically applied to one cell type at a time.
On the other hand, computational approaches can be applied
transcriptome-wide, irrespective of the expression profile of
transcripts, but it is not always clear how to represent the bind-
ing specificity of RBPs. RBPs typically bind single-stranded
RNAs in a sequence-specific manner (Auweter et al. 2006).

However, their cognate binding elements in the RNA are rath-
er short, and it is generally believed that other factors, such as
the accessibility of binding sites within folded RNAmolecules
or the clustering of binding sites which may allow for binding
of RBP multimers or multidomain RBPs contribute to their
specificity (Ray et al. 2009; Kazan et al. 2010; Zhang et al.
2010;Wang et al. 2011). Here, in the framework of a biophys-
icalmodel,we explore thesepossibilities forGLD-1, an impor-
tantRBP regulator in the germlineof thewormCaenorhabditis
elegans. GLD-1 contains an hnRNP K homology (KH) RNA-
binding domain and is a member of the STAR (signal trans-
ducer and activator of RNA metabolism) family of proteins,
which also includes the human and mouse Quaking (QKI)
proteins. GLD-1 has been shown to bind to 3′ and 5′UTRs, in-
ducing repression of translation and protection of target
mRNAs from decay (Lee and Schedl 2001, 2004). Recently,
GLD-1 targets have been determined with transcriptome-
wide experimental methods, such as CLIP (Jungkamp et al.
2011) andRIP-Chip (Wright et al. 2011).Moreover,measure-
ments of polysome-associated RNAs in wild-type and gld-1
mutant worms enabled the characterization of downstream
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effects of GLD-1 binding (Scheckel et al. 2012). These studies
expanded the number of GLD-1 target transcripts to around
450 (Jungkamp et al. 2011) and confirmed the dual role of
GLD-1 in translation repression and transcript stabilization
(Scheckel et al. 2012). Moreover, a quantitative binding score
for the prediction of GLD-1 binding sites based on 7-mermo-
tif frequencies was introduced (Wright et al. 2011). Thus,
GLD-1 offers a good opportunity to study alternative models
of RBP binding specificity, also in relation to the downstream
effects of protein binding to RNAs.

RESULTS

Inference of binding motifs from CLIP data and
measurements of oligonucleotide–protein binding
affinities

CLIP in combination with high-throughput sequencing is
becoming the state-of-the-art method for inferring the bind-
ing specificity of RBPs, and it has been applied successfully to
uncover the binding specificities of, among others, NOVA,
FOX2, IGF2BP, PUM, and QKI proteins (Ule et al. 2003;
Yeo et al. 2009; Hafner et al. 2010). For GLD-1, four CLIP li-
braries are already available, which have been obtained
through the so-called iPAR-CLIP (in vivo photoactivatable-
ribonucleoside-enhanced CLIP) method (Jungkamp et al.
2011). For three of these samples 4-thiouridine (4SU) was
used as the photoreactive nucleoside, and for the fourth it
was 6-thioguanosine (6SG). We complemented these with
one library prepared with the so-called HITS-CLIP method
(Darnell 2010; Kishore et al. 2011), in which no photoreac-
tive nucleosides are used and cross-linking is performed
with a 254-nmUV light. All CLIP data sets were preprocessed
on our CLIPZ server (www.clipz.unibas.ch) (Khorshid et al.
2010), and then the top 500 most frequently CLIPed sites in

each library were used to infer over-represented sequence
motifs to which GLD-1 presumably binds with the
PhyloGibbs motif finder (Siddharthan et al. 2005). We varied
the length of the searched motif, but a length of 7 nucleotides
seemed to most consistently fit all of the data sets. The iPAR-
CLIP data sets yielded generally very similar motifs (Fig. 1),
except for the motif derived from iPAR-CLIP 4SU 2 being
shifted relative to the others by 1 nucleotide. The motif de-
rived from iPAR-CLIP 6SG had a lower probability for ade-
nine at position 5 as did the binding motif derived from
HITS-CLIP, which also differed from the others at position
2, at which the probability for an adenine was decreased,
and the last position, at which the probability for cytosine
reached almost 1. For reference, we inferred a GLD-1 binding
motif based on affinities of 43 7-meric sequences to GLD-1
(see Materials and Methods) that were measured by Wright
et al. (2011). The resulting binding motif was similar to those
inferred from CLIP, and it also showed less polarized nucle-
otide frequencies at the positions that differed between the
motifs inferred from various CLIP data sets. In particular,
the probabilities for adenines at positions 2 and 5 and for cy-
tosine at position 3 were much lower than in motifs derived
from iPAR-CLIP (Fig. 1, bottom, right). These results indi-
cate that differences in the motifs inferred from different
CLIP data sets probably reflect intrinsic biases in the cross-
linking methods (Sugimoto et al. 2012). The derived weight
matrices are given in the Supplemental Material.

Transcriptome-wide prediction of GLD-1 binding

To evaluate the predictive power of the inferred motifs for
GLD-1 binding, we used a framework that was previously
introduced for prediction of transcription-factor binding
sites (Rajewsky et al. 2002) to compute the expected number
of GLD-1 binding sites in a transcript (see Materials and

FIGURE 1. GLD-1 binding motifs. GLD-1 binding motifs from the 500 most frequently CLIPed sites of four iPAR-CLIP libraries (Jungkamp et al.
2011) and one HITS-CLIP library, inferred with PhyloGibbs (Siddharthan et al. 2005). Additionally, a motif was derived from measured binding af-
finities to 43 short oligonucleotides (Wright et al. 2011; see Materials and Methods).

Brümmer et al.

1318 RNA, Vol. 19, No. 10



Methods). We then correlated this number with the enrich-
ment of the transcript in GLD-1 RIP-Chip (Wright et al.
2011) and we used the Spearman correlation coefficient as a
measure for the predictive power of the binding motif (a sim-
ilar figurebased insteadon thePearson correlationcoefficients
is shown in the Supplemental Material). We included in the
analysis 1652 transcripts with germline tag >4 (Wang et al.
2009), which are considered “expressed” in the C. elegans
germ line. The Spearman correlation coefficient was some-
whathigherwhenmotifs from iPAR-CLIPwereused for target
prediction (0.43, 0.42, 0.43, 0.39 for iPAR-CLIP 4SU1,2,3 and
6SG, respectively) comparedwith predictions based onmotifs
derived from HITS-CLIP (0.34) and from measured bind-
ing affinities to oligonucleotides (0.38) (Fig. 2A, second bar
of each color). As a reference we calculated the average corre-
lation between RIP-Chip enrichment and the number of
expected binding sites predicted for randomized motifs

generatedbyshuffling the columnsof individualweightmatri-
ces. The poor correlation obtained in this setting indicates that
all motifs predict bona fide targets of GLD-1 (Fig. 2A, first bar
of each block).
Previous studies focused on the GLD-1 binding sites locat-

ed in 3′ or 5′ untranslated transcript regions (Lee and Schedl
2001, 2004; Ryder et al. 2004; Jungkamp et al. 2011; Wright
et al. 2011). Sites in the coding domain were not found to
contribute to the enrichment of transcripts in RIP-Chip
(Wright et al. 2011). The GLD-1 CLIP data, however, reveal
many binding sites in coding regions (Fig. 2C) and the model
that we introduced above predicts, in fact, more binding sites
in coding regions (CDS) than in 3′- and 5′-UTR regions
(UTRs), irrespective of the threshold on the number of bind-
ing sites (Fig. 2B, dashed lines).

Accessibility of binding sites in the RNA is important
for GLD-1 binding

One possible explanation behind the discrepancies in the
number of predicted and identified sites in coding regions
resides in the relative accessibility of binding sites. RNA
molecules are not rigid, but fold into three-dimensional
structures that also interact with proteins. Consequently, dif-
ferent occurrences of a sequence motif in a transcript gener-
ally have different accessibilities for RBPs. Taking this into
account has been found to improve the detection of function-
almiRNA (Kertesz et al. 2007; Hausser et al. 2009) and siRNA
(Hofacker and Tafer 2010) binding sites. To explore whether
target-site accessibility is an important factor in GLD-1 bind-
ing, we used RNAplfold (Bernhart et al. 2006) to calculate the
probability that any subsequence of a specified length within a
transcript is single stranded and hence accessible for the RBP
to bind. Including this probability in the binding model (see
Materials andMethods) significantly improved the Spearman
correlation with RIP-Chip enrichment for all of the above de-
rived GLD-1 bindingmotifs (Fig. 2A, third bar of each color).
The highest concordance with the RIP-Chip enrichment
(Spearman correlation coefficient 0.47) was reached for the
motif derived from oligonucleotide binding affinities. This
may indicate that the sequence specificity that we inferred
fromCLIP datamay already be confounded by differential ac-
cessibility of different sequence motifs such that explicitly
taking into account the sequence-dependent accessibility of
GLD-1 binding sites only slightly improve the prediction of
the RIP-Chip data. We observed an additional increase in
the correlation between the binding score and the RIP-Chip
enrichment when we required that slightly wider regions (9,
11, or 13 nucleotides) centered on the GLD-1 binding motif
be in single-stranded conformation for GLD-1 to bind (Fig.
2A). These results suggest that the structural accessibility of
putative GLD-1 binding sites contributes to GLD-1 binding.
Wright et al. (2011) introduced a quantitative “GLD-1

binding code” based on a combination of linear regression
coefficients and weight matrix scores of 80 7-mers that were
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FIGURE 2. Predictive power of GLD-1 binding motifs. (A) Spearman
correlation coefficient of RIP-Chip enrichment (Wright et al. 2011)
with expected number of binding sites in whole transcripts (see
Materials and Methods) for all GLD-1 binding motifs derived from var-
ious CLIP experiments (indicated in the labels below the x-axis). The
Spearman correlation coefficient between RIP-Chip enrichment and
transcript scores computed by Wright et al. (2011) is shown in the first
column. For each weightmatrix, 10 permutations were generated, main-
taining the relative nucleotide frequencies within columns. The first bar
in a colored block corresponding to one motif shows the average corre-
lation coefficient obtained for the 10 randomized weight matrices. For
each individual motif, additional columns show the Spearman correla-
tion coefficient without and upon inclusion of the probability for a 7-
mer, 9-mer, 11-mer, 13-mer, 17-mer, or 27-mer centered on the bind-
ing site to be accessible, calculated with RNAplfold (Bernhart et al. 2006;
see Materials andMethods). (B) Number of predicted binding sites in 5′
and 3′ UTRs and CDSs in dependence of the total number of predicted
sites using the GLD-1 binding model with the motif inferred from bind-
ing affinities without (dashed lines) and with inclusion of the probability
for a 13-mer to be accessible (solid lines). (C) Ratio of CLIPed sites in
CDSs to UTRs in five CLIP libraries (color code same as in A) sorted
by the number of reads of CLIPed sites.
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enriched in transcripts that bind GLD-1. The Pearson corre-
lation coefficient between the binding score of a transcript and
its enrichment in GLD-1 RIP-Chip was found to be 0.64.
Reanalyzing these data we found that the Spearman correla-
tion coefficient was 0.49 (Fig. 2A, gray bar), comparable to
that given by our biophysicalmodel of GLD-1 binding that in-
cludes binding-site accessibility.

It is noteworthy that the relative numbers of predicted
GLD-1 binding sites in UTRs and CDSs changed substantially
upon inclusion of accessibility. Namely, independent on the
cutoff for the total number of predicted binding sites, the
number of binding sites in UTRs was always higher than
that inCDSs (Fig. 2B, solid lines)when the accessibility of sites
was taken into account. These results suggest that a biophysical
model that uses a weight matrix representation of GLD-1
binding specificity and takes into account the relative accessi-
bility of sequence motifs inside the structure of the host tran-
script has so far the best explanatory power for RIP-Chip data.

We further investigated whether a similar model can
describe the binding of the human homolog of GLD-1, the
Quaking (QKI) protein. Applying the GLD-1 binding model
to human transcripts reveals a good correlation between the
expected number of predicted binding sites and the enrich-
ment of transcripts in QKI RIP-Chip measured for 7819 hu-
man transcripts (Fig. 3A; Hafner et al. 2010). Thus, our
modelmay generalize to other RBPs of the STAR protein fam-
ily containing KH-binding domains.

Clustering of binding motifs in bipartite and dimer
binding sites

Like other RBPs of the STAR family, GLD-1 also contains two
Quakingdomains (Qua1andQua2).Of these,Qua1 serves as a
homodimerizationdomain (Beucket al. 2010), and it has been
suggested that GLD-1 dimers can recognize bipartite binding
sites consisting of the full 7-meric bindingmotif preceded, at a
variable distance, by an occurrence of a half (last four posi-
tions) bindingmotif (Galarneau andRichard 2009). Todeter-
mine whether such GLD-1 binding sites can improve the
prediction of GLD-1 binding data, we extended the binding
model by additionally allowing for the possibility of binding
of protein dimers.We tested three binding-site configurations
sketched in Figure 3B, namely, a dimeric site, a half site fol-
lowed by a full site, and a full site followed by a half site.
Reasoning that RNA molecules have some flexibility, we al-
lowed the number of linker nucleotides in the bipartite and
dimer motifs to vary between 0 and 20 nucleotides. The rela-
tive frequencies of binding sites with different linker lengths
were optimized with an expectation maximization algorithm
(vanNimwegen2007), and the relative frequencies atmaximal
Spearman correlation of expected number of binding sites
with RIP-Chip enrichment were used to predict GLD-1 bind-
ing sites.Wedid not find that inclusion of these types ofmotifs
improves the prediction of RIP-Chip enrichment of tran-
scripts (Spearman correlation coefficient 0.33–0.44 compared

with 0.34–0.43 when taking into account only the 7-meric
motif) (Fig. 3C), indicating that the specificity ofGLD-1 bind-
ing is not due to binding of protein dimers in the configura-
tions that we tested here.

Predicted GLD-1 target transcripts undergo
stabilization and translational inhibition

To assess the power of our model in identifying biologically
relevant targets of GLD-1, we sought to determine whether
the predicted targets undergo translational repression (mea-
sured as the ratio of the fraction of polysome-associated
RNA in wild-type compared with gld-1 mutant worms)
(Scheckel et al. 2012) or stabilization (measured as the enrich-
ment of mRNAs in the gonads of wild-type worms over gld-1
mutants) (Scheckel et al. 2012). For reference, we analyzed the
predictive power that the enrichment of a transcript in RIP-
Chip or the number of reads derived from the transcript in a
CLIP experiment have for translational inhibition and
mRNA stabilization. Figure 4 shows how well the prediction
score of transcripts reflects the degree of translational
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FIGURE 3. General specificity of KH-binding domains and dimer
binding motifs. (A) Spearman correlation coefficient of QKI RIP-
Chip enrichment (Hafner et al. 2010) with the expected number of
binding sites in human transcripts for all GLD-1 binding motifs. (B)
Sketch of dimeric, bipartite, and reverse bipartite binding motifs that
we considered in the model. (C) Spearman correlation coefficient of
GLD-1 RIP-Chip enrichment (Wright et al. 2011) with the expected
number of binding sites in whole transcripts calculated using a dimer,
bipartite, and reverse bipartite binding configuration for all 7-mer
GLD-1 binding motifs.
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repression or stabilization. More specifically, the y-axis indi-
cates the median prediction rank among the most stabilized
or translationally inhibited n transcripts as a function of n,
shown on the x-axis. We found that RIP-Chip enrichment
and, to a lesser extent, the number of CLIP reads explain
best the functional effects, whereas computational models
have a lower performance (Fig. 4A,B; cf. black and gray lines
with colored lines for computational models). Our GLD-1
binding model has a better performance in predicting the ex-
tent of translational inhibition than the model ofWright et al.
(2011) (Fig. 4A), which appears to only predict accurately the
∼100 most stabilized transcripts. Interestingly, discarding the
low-affinity sites from the computation of the expected num-
ber of sites per transcript strongly improves the prediction of
thesemost stabilized transcripts by our GLD-1 bindingmodel
(Fig. 4B, cf. orange and red lines). This suggests that mRNA
stabilization requires the interaction of GLD-1 with high-af-
finity sites orwith the 3′UTRs,wherehigh-affinity sites appear

to be preferentially located. Finally, we performed similar
analysis using different weight matrices with and without in-
clusion of the accessibility of binding sites.We found that sim-
ilarly to prediction of RIP-Chip data, accessibility strongly
improves the prediction of stabilized and translationally in-
hibited targets, and that bindingmotifsderived frommeasure-
ments of oligonucleotides affinity for GLD-1 lead to an overall
better prediction of GLD-1 functional effects compared with
binding motifs derived from CLIPed sites (Fig. 4C,D).

Binding sites located in different regions may have
distinct functional effects

The analysis described above suggested that in contrast to
transcript stabilization, which appears to be mainly mediated
through high-affinity GLD-1 binding sites, translational re-
pression does not depend solely on such sites. Prediction of
translational repression improved by considering ∼2500
binding sites, including thosewithmedium scores, as opposed
to considering only the top ∼500 binding sites, which we
found to be predictive of transcript stabilization (Fig. 4A,B).
Since the highest-affinity binding sites are located predomi-
nantly in the UTRs (Fig. 2B), we sought to determine whether
binding sites that are located in different transcript regions
have different functional effects. We used a linear regression
model and determined the fractions of variances of either
translational repression or mRNA stabilization, which could
be explained by the sum of posterior probabilities for binding
sites in 5′ UTRs, CDSs, or 3′ UTRs (Fig. 5A). For reference, we
applied the same method to explain the enrichment of tran-
scripts in RIP-Chip in terms of binding sites in different tran-
script regions. As previously described byWright et al. (2011),
RIP-Chip enrichment could be explained to a large extent by
GLD-1 binding to the 3′ UTRs (∼60% of the explained vari-
ance) and the total fraction of variance explained by themodel
was ∼28%. Similarly, transcript stabilization seems to also be
mostly dependent on GLD-1 binding sites in 3′ UTRs (∼30%
of explained variance), but binding sites in 5′ UTRs and CDSs
also contribute (each 15%–20%). In striking contrast, the
largest contribution to translational repression appears to
come fromGLD-1binding sites in theCDSs (>60%of the var-
iance explained), independent of the cutoff on the affinity of
binding sites. This is not due to the fact that CDSs are longer,
on average, thanUTRs, becausewe obtain the result even if we
use the density of sites in a given transcript region instead of
the expected number of sites (data not shown). A 10-fold
cross-validation, performed by determining regression coeffi-
cients from 90% of the data and calculating the contributions
to explained variances in the other 10% of the data, further
supports the role for binding sites in the coding region in
translational repression (Fig. 5B). Interestingly, in contrast
to the∼100 veryhigh affinity sites, that arepreferentially locat-
ed at the beginning and end of coding regions, most of the
CDS sites have a relatively uniform distribution along coding
regions (data not shown).

A B
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FIGURE 4. Translational repression and stabilization in target tran-
scripts. Median ranks in different data sets and computational models
of (A,C) the transcripts whose translation is most strongly inhibited
(translation rate was estimated as the ratio of the fraction of polysomal
to total mRNA in wild-type worms compared with this fraction in gld-1
mutants) and (B,D) the transcripts that undergo the strongest stabiliza-
tion (estimated as the ratio of mRNA levels in wild-type gonads com-
pared with gld-1 mutant gonads). (A,B) Experimental measurements,
RIP-Chip enrichment (black), and total number of CLIP reads per tran-
script (gray) better explain functional responses than computational
predictions. For clarity, only the curves for the most predictive CLIP
samples, which were the iPAR-CLIP 4SU 1 and HITS-CLIP, respective-
ly, are shown. The computational models shown are those fromWright
et al. (2011) (blue) and our biophysical GLD-1 binding model (red) that
used the sequence specificity inferred from binding affinities and includ-
ing the probability for accessibility of a 13-mer. The orange curve cor-
responds to the same biophysical model, but the expected number of
sites per transcript was computed only based on the indicated number
of highest affinity sites. The best improvement in the prediction of
(A) translational inhibition was achieved with a cutoff of ∼2500 binding
sites, while (B) a cutoff of ∼500 binding sites was best for stabilization.
(C,D) Prediction of functional target transcripts is improved upon in-
clusion of the probability that sites are accessible. For clarity, shown
are only the three best-performing binding motifs for each case.
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Relative to RIP-Chip enrichment and mRNA stabilization,
the fraction of the total variance in translational repression
measuredbypolysomeprofiling that is explainedby themodel
is relatively small (2%vs. 30%and6%).Todeterminewhether
this ismore generally the case,weperformed the same compu-
tation to explain translational repression and transcript desta-
bilization in human cells transfected with a microRNA.
MicroRNA-guided Argonaute proteins are also known to
bind both CDSs and 3′ UTRs (Hafner et al. 2010; Hausser
et al. 2013) and to affect both the stability and translation
rate of mRNAs (Bartel 2009). We used miR-155 binding sites
predicted in CDS and 3′ UTR by the ElMMo algorithm
(Gaidatzis et al. 2007) and the mRNA-seq and polysome pro-
file data provided by Guo et al. (2010). As shown in Figure 5C,
while transcript destabilizationmeasured bymRNA-seq is ex-
plained quitewell by binding sites in the 3′UTRs, translational
repression is explained again mostly by binding sites in the
CDSs. Furthermore, the total variance in translational repres-

sion that is explained by the model is also
much lower compared with the total var-
iance in transcript destabilization, as we
previously found for GLD-1. In contrast,
for the HuR protein that has been report-
ed to regulate alternative splicing, mRNA
localization, and polyadenylation and
could thus serve as a negative control,
the binding sites determined by Lebedeva
et al. (2011) explain a very small fraction
of the total variance in transcript stabiliza-
tion (0.77%) and translational repression
(0.64%) measured by Lebedeva et al.
(2011). A possibility that we cannot ex-
clude is that the estimates of translation
rates obtained through polysomal profil-
ing are inherently less accurate than the
estimates of mRNA stability obtained
through mRNA-seq.
To further illustrate the insight pro-

vided by our model, in Table 1 we sum-
marized the experimental observations
of model predictions for a few well-
known and well-studied GLD-1 target
transcripts. Our model appears to predict
very well the location of the GLD-1 bind-
ing sites, and when the relationship be-
tween the location of GLD-1 binding
sites and the downstream response was
explicitly drawn (e.g., for the tra-2, rme-
2, gna-2, and cep-1 genes), the finding
matches our model’s prediction. Addi-
tional interesting examples for a putative
differential function of binding sites in
UTRs and CDSs are as follows: GLD-1 is
predicted to bind to its own mRNA in
the 3′ UTR and gld-1 mRNA is strongly

stabilized (log2 enrichment of gonad mRNA in wild-type
over gld-1mutant worms 3.37; rank position in GLD-1 bind-
ing model 2), but it is not translationally repressed (log2 ratio
of fraction of polysome-associated RNA in wild-type com-
pared with gld-1 mutant worms 0.09; rank position 795).
On the other hand, the gak-1 (germline-enhanced AT-
HooK protein) transcript has predicted GLD-1 binding sites
in the CDS and, consistently with our prediction, it is strongly
repressed in translation (log2 ratio of fraction of polysome-as-
sociated RNA in wild-type compared with gld-1 mutant
worms -1.31; rankposition 18)but not stabilized (log2 enrich-
ment of gonad mRNA in wild-type over gld-1mutant worms
0.02; rankposition 823) uponbinding ofGLD-1.A list of tran-
scripts with their enrichment inRIP-Chip andCLIP, their lev-
el of stabilization and translational repression, as well as the
numberof binding sites in different transcript regions predict-
edbyourmodel (atmedium- andhigh-affinity cutoff) is avail-
able as a Supplemental Table.
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FIGURE 5. Differential contribution of binding sites in different transcript regions to function-
al responses, translation inhibition, and mRNA stabilization. (A) Contributions to the total var-
iance explained (black) of binding sites in 5′ UTR (cyan), CDS (red), and 3′ UTR (blue) in RIP-
Chip enrichment, translation repression, and transcript stabilization as a function of the total
number of predicted binding sites taken into account, calculated with a linear regression model.
(B) Average (solid) and standard deviation (dashed) of contributions of binding sites in 5′ UTR
(cyan), CDS (red), and 3′ UTR (blue) to the total variance explained (black) in 10% of the data,
when training the linear regression model on the other 90% of the data, averaged over 100 ran-
dom partitions of the data. (C) Contributions to the total variance explained (black) in trans-
lation repression and destabilization of human transcripts after miR-155 transfection (Guo
et al. 2010) of binding sites located in CDS and 3′ UTR, as a function of the total number
of predicted binding sites (using ElMMo) (Gaidatzis et al. 2007), calculated with a linear regres-
sion model. To better assess the contribution of site location to the functional response, we
limited the linear regression to transcripts with predicted miR-155 binding sites in both
CDS and 3′ UTR.
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DISCUSSION

Weproposed a bindingmodel to explain the binding specific-
ities of RBPs. Based on the sequence motif of the RBP and the
predicted position-specific probabilities of subsequences con-
taining putative binding sites to be in single-stranded confor-
mations, themodel allows us to estimate the expected number
of binding sites for the RBP in each transcript. The binding
model was applied to the C. elegans RBP GLD-1 that is in-
volved in post-transcriptional control in the germline of
worms. Binding sites of GLD-1 have already been studied pre-
viously, providing a large amount of transcriptome-wide data
to test and verify the proposed biophysical binding model.
We derived binding motifs for GLD-1 from CLIP data as

well as from binding affinities to short oligonucleotides. The
resulting binding motifs were similar to those previously re-
ported for GLD-1 and the predictive power of bindingmodels
that used different motifs were in a similar range. The highest
Spearman correlation coefficient between the expected num-
ber of binding sites in transcripts and their RIP-Chip enrich-
ment (0.52)was achievedwhen the probability of binding sites
being accessible (in single-stranded conformation)were taken
into account. The fact that the binding motif derived from
binding affinities performedbest inpredicting the enrichment
of transcripts in RIP-Chip may be a consequence of the fact
that the sites obtained through CLIP already reflect a number
of different properties that contribute to RBP binding, such as

the nucleotide sequence and the structural accessibility of a
binding site. Measuring binding affinities of an RBP to a set
of oligonucleotides allows one to separate sequence from
structural effects and may enable a more accurate quantifica-
tion of the relative contributions of each factor.
The inclusion of the accessibility of a putative binding site in

the binding model increased the correlation with measured
RIP-Chip enrichment, and appeared to specifically allow a
more accurate estimation of binding in transcript-coding
regions.
Our analysis does not support a model in which GLD-1

binds predominantly as an oligomer, since neither bipartite
nor dimer binding motifs improved the correlation with
RIP-Chip enrichment. A similar conclusion was reached by
Wright et al. (2011). In principle, it may still be that GLD-1
binds as a dimer to binding sites that are far apart on the linear
RNA sequence but are brought in close proximity through
RNA folding. Jungkamp et al. (2011) speculated about this
binding mode, in particular as a mechanism for blocking
translation initiation.
The functionality of predicted target transcripts was sup-

ported by their behavior in wild-type and gld-1 mutant
worms. Furthermore, in contrast to the previously proposed
“GLD-1 binding code,” the biophysical binding model can
predict not only GLD-1 targets that undergo stabilization,
but also targets that undergo translational repression. A linear
regressionmodel surprisingly revealed that binding sites in the

TABLE 1. Summary of model predictions made on previously validated GLD-1 targets

Target mRNA Reference Reported observation

Predicted binding sites
(at medium vs. high affinity

cutoff in 5′ UTR|CDS|3′ UTR)

tra-2 Jan et al. (1999) Binding sites in 3′ UTR; repression of translation and
stabilization

0|3|9 vs. 0|1|4

rme-2 Lee and Schedl (2001) Binding sites in 5′ coding region and 3′ UTR;
predominant translational repression

1|3|0 vs. 0|1|0

gna-2 Lee and Schedl (2004) Binding sites in 5′ UTR; stabilization by inhibition of
nonsense-mediated decay

4|1|0 vs. 2|0|0

oma-1 Lee and Schedl (2004) Binding sites in 5′ UTR and 3′ UTR 2|0|4 vs. 1|0|2
oma-2 Lee and Schedl (2004) Target 4|0|4 vs. 2|0|2
mes-3 Xu et al. (2001) Binding sites in 3′ UTR; reduced protein expression 0|3|5 vs. 0|0|2
pal-1 Mootz et al. (2004) Binding sites in 3′ UTR 0|0|4 vs. 0|0|2
glp-1 Marin and Evans (2003) Binding sites in 3′ UTR 0|1|1 vs. 0|0|0
cep-1 Schumacher et al. (2005) Binding sites in 3′ UTR; lower affinity than tra-2,

rme-2, gna-2
0|0|2 vs. 0|0|0

cye-1 Biedermann et al. (2009) Binding sites in 3′ UTR; repression of translation 0|2|0 vs. 0|0|0
puf-5 Lee and Schedl (2001) Target 1|0|0 vs. 1|0|0
lin-45 Lee and Schedl (2004) Binding sites in 3′ UTR; stabilization by inhibition

of nonsense-mediated decay
0|1|5 vs. 0|1|2

bir-1 Wright et al. (2011) Target 0|1|2 vs. 0|0|1
dpf-3 Wright et al. (2011) Target 0|4|3 vs. 0|1|0
rmd-1 Wright et al. (2011) Target 0|3|1 vs. 0|1|1
C01G8.1 Wright et al. (2011) Target 0|0|3 vs. 0|0|2
C36B1.11 Wright et al. (2011) Target 0|0|1 vs. 0|0|0
F59A3.4 Wright et al. (2011) Target 0|1|2 vs. 0|0|0
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CDS contribute most to translational repression. The under-
lying mechanismmay simply be by blocking translation elon-
gation (Petersen et al. 2006), but it needs to be further
investigated. In contrast, thehigh-affinity binding sites located
primarily in 3′ UTRs appear to mediate predominantly tran-
script stabilization. It should be pointed out that we only
had indirect measurements of mRNA stabilization (mRNA
levels in wild-type compared with mutant gonads) and trans-
lation (abundance of polysome-bound fragments inwild-type
and mutant, correcting for the difference in mRNA abun-
dance). Ideally, one would like to use direct estimates of
mRNA decay rates and translation rates. These may yield a
higher fraction of explained variance, particularly for transla-
tion, for which this fraction is small. It will be very interesting
to learn whether binding to transcript coding regions is a gen-
eral mechanism through which RBPs affect the rate of
translation.

MATERIALS AND METHODS

Deriving binding energies of individual nucleotides
from binding affinities

The total binding energy of an RNA–RBP complex is composed of
binding energy contributions of nucleotides at each position in the
binding site. If these contributions are assumed to be independent of
each other, the total binding energy can be written as the sum of the
binding energies of the individual nucleotides in the binding motif
of length N:

ETotal =
∑N

i=1
Ei.

We derive the binding energy contributions of each nucleotide at
each position of a binding motif from a set S of measured binding
affinities of an RBP to short nucleotide sequences s by minimizing
the difference between the predicted binding energy (the sum of in-
dividual energy contributions of each nucleotide in the sequence
E jsj) and the measured energy, E(s), over all sequences in set S:

min
Eia

x2 = min
Eia

E(s) −
∑N
j=1

E js
j

( )2

.

At the minimum, the derivatives with respect to all individual bind-
ing energy contributions Eiα, where α denotes the nucleotide (A, C,
G, or U) at position i in the motif, are 0:

∂x2

∂Eia
= −2

∑
s[S

(E(s) −
∑N
j=1

E jsj ) dsia,

where δ is the Kronecker delta function, which takes the value 1 if
nucleotide Si is α and 0 otherwise. Rearranging this equation leads
to the following expression:

∑
s[S

E(s)dsia =
∑
s[S

∑N
j=1

E jsjdsia =
∑
s[S

∑
b[{A,C,G,U}

E jbdsjbdsia.

Dividing both sides by the total number of sequences that have nu-
cleotide α at position i:

∑
s[S

E(s)dsia∑
s[S

dsia
=

∑
s[S

∑
b[{A,C,G,U}

E jbdsjbdsia∑
s[S

dsia

leads, on the left-hand side, to the average binding energy of all se-
quences that have nucleotide α at position i, while the right-hand
side represents a multiplication of the matrix whose entries are
the fraction of sequences with nucleotide α at position i that also
have nucleotide β at position j, with the vector of the unknown in-
dividual binding energy contributions of each nucleotide at each po-
sition:

kEial =
∑
s[S

∑N
j=1

Mia,jbE jb.

The individual contribution to the total binding energy of nucleo-
tide β at position j is obtained as

E jb =
∑
i,a

M−1
ia,jbkEial

and it can be converted into the probability vj
b for nucleotide β at

position j by

v
j
b = e−E jb/RT∑

b′[{A,C,G,T}
e−E jb′ /RT

.

The Python code for the inference of a weight matrix from a set of
binding affinities is available in the Supplemental Material.

Predicting binding sites in a sequence with and without
accessibility

As described in vanNimwegen (2007), the expected number of bind-
ing sites in a sequence can be calculated as the sum of posterior prob-
abilities of binding sites at every position in a transcript. Theposterior
probability for a binding site at a certain position i is given by

Fi−1p
∏l
j=1

vsji−1+j
Ri+l

FL
,

where F and R are the forward and backward partition sums that are
calculated by iteratively summing up the probabilities of all possible
configurations of bound sites and free nucleotides starting from the
first or from the last nucleotide in the given sequence, respectively.
For example, the forward sum at position L is given by

FL = FL−1(1− p)bsL + FL−ip
∏l
j=1

vi
sL−l+j

,

where π is the prior probability for a binding site, bsL is the back-
ground probability of the nucleotide found in the sequence s at posi-
tion L, andvi

sL−l+i
is the probability of observing the nucleotide SL−l+i

at position i of the binding site.
The expected number of binding sites is then calculated by sum-

ming up the posterior probabilities for binding sites at every
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position in a transcript divided by the forward sum over the entire
transcript:

knl =
∑L
i=1

Fip
∏l
j=1

v
j
si+jRi+l+1

FL
.

The accessibility of predicted binding sites is taken into account in
the computation by multiplying the likelihood of a subsequence giv-
en the weight matrix with the probability that the subsequence is in
single-stranded conformation. The probability of any subsequence
of length l to be in single-stranded conformation, Paccessible(i… i
+ l ), are calculated for every position in the transcript using
RNAplfold (Bernhart et al. 2006) with the options window length
W = 80 and span for base-pairing L = 40.
The formula for the expected number of binding sites is addition-

ally divided by the prior probability for nonbinding nucleotides, re-
placing the prior probability of binding sites by a concentration c of
the RBP:

knl =
∑L
i=1

FicPaccessible(i+ 1 . . . i+ l) ∏l
j=1

v j
si+j
Ri+l+1

FL

and the iterative forward sum is given by

FL = FL−1bsL + FL−lcPaccessible(L− l + 1 . . . L)
∏l
i=1

vi
sL−l+i

.

The concentration of the RBP needs to be estimated. Here, we used
the maximization of the Spearman correlation of expected number
of binding sites with RIP-Chip enrichment as an optimization
criterion.

HITS-CLIP

C. elegans animals from strain WS5777 carrying the rescuing trans-
gene gld-1(op236); opIs455 (Pgld-1::gld-1(genomic)::STREP/HA::
gld-1 3′UTR) were bleached and their progeny grown on plates
for 68 h at 20°C until they reached the L4/adult stage where transla-
tional regulation has been observed to be most prominent. Worms
were harvested and irradiated with UV-B (3 kJ/m2) as described
(Zisoulis et al. 2011). Approximately 200,000 worms were used
for one HITS-CLIP experiment. Following irradiation, washing
the worms, and centrifugation, worm pellets were lysed by sonica-
tion in RIPA buffer (25 mM HEPES-K at pH 7.5, 100 mM KCl,
1% [v/v] NP-40, 0.25% [v/v] Sodium Deoxycholate, 0.1% [v/v]
SDS, 0.5 mMDTT, protease inhibitor cocktail [Roche]). Cleared ly-
sates were treated with RNase T1 (Fermentas) (final concentration 1
unit/μL) for 15 min at 22°C. Subsequently, GLD-1::STREP/HA
fusion proteins were immunoprecipitated with Strep-Tactin
Sepharose (IBA) for 1 h at 4°C. RNA labeling and library preparation
were carried out according to the PAR-CLIP protocol (Hafner et al.
2010). cDNA libraries were sequenced with Genome Analyzer IIx
(Illumina).

Analyzed data sets

Raw sequencing data of four GLD-1 iPAR-CLIP experiments from
Jungkamp et al. (2011) were downloaded from Gene Expression

Omnibus (GEO; www.ncbi.nlm.nih.gov/geo; accession number:
GSE33569) and uploaded to our CLIPZ server (www.clipz.unibas.
ch) (Khorshid et al. 2010) for mapping and annotation of sequence
reads. The top 500 CLIPed sites selected based on copy number were
subjected to a motif analysis using PhyloGibbs with the parameters:
-D 0 -m 7 -N 0 -r -z 2 -y 250 (Siddharthan et al. 2005).
RIP-Chip enrichment of transcripts and measured binding affin-

ities to short oligonucleotide sequences were taken from the
Supplemental data of Wright et al. (2011) and log2 array expression
levels of total mRNA, mRNA in gonads, and polysomal mRNA in
wild-type and gld-1 mutant worms were found in the Supporting
Information of Scheckel et al. (2012). The translational repression
of an mRNA was calculated as: log2(polysomal mRNA level in
wild type)− log2(total mRNA level in wild type)− log2(polysomal
mRNA level in gld-1mutant) + log2(total mRNA level in gld-1mu-
tant) and stabilization of a transcript as: log2(gonad mRNA level in
wild type)− log2(gonad mRNA level in gld-1 mutant).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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