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Abstract

Genetic surveillance of malaria parasites supports malaria control programmes, treatment

guidelines and elimination strategies. Surveillance studies often pose questions about

malaria parasite ancestry (e.g. how antimalarial resistance has spread) and employ statisti-

cal methods that characterise parasite population structure. Many of the methods used to

characterise structure are unsupervised machine learning algorithms which depend on a

genetic distance matrix, notably principal coordinates analysis (PCoA) and hierarchical

agglomerative clustering (HAC). PCoA and HAC are sensitive to both the definition of

genetic distance and algorithmic specification. Importantly, neither algorithm infers malaria

parasite ancestry. As such, PCoA and HAC can inform (e.g. via exploratory data visualisa-

tion and hypothesis generation), but not answer comprehensively, key questions about

malaria parasite ancestry. We illustrate the sensitivity of PCoA and HAC using 393 Plasmo-

dium falciparum whole genome sequences collected from Cambodia and neighbouring

regions (where antimalarial resistance has emerged and spread recently) and we provide

tentative guidance for the use and interpretation of PCoA and HAC in malaria parasite

genetic epidemiology. This guidance includes a call for fully transparent and reproducible

analysis pipelines that feature (i) a clearly outlined scientific question; (ii) a clear justification

of analytical methods used to answer the scientific question along with discussion of any

inferential limitations; (iii) publicly available genetic distance matrices when downstream

analyses depend on them; and (iv) sensitivity analyses. To bridge the inferential disconnect

between the output of non-inferential unsupervised learning algorithms and the scientific

questions of interest, tailor-made statistical models are needed to infer malaria parasite

ancestry. In the absence of such models speculative reasoning should feature only as dis-

cussion but not as results.
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Author summary

Genetic epidemiology studies of malaria attempt to characterise what is happening in

malaria parasite populations. In particular, they are an important tool to track the spread

of drug resistance and to validate genetic markers of drug resistance. To make sense of

parasite genetic data, researchers usually characterise the population structure using statis-

tical methods. This is most often done as a two step process. The first is a data reduction

step, whereby the data are summarised into a distance matrix (each entry represents the

genetic distance between two isolates). The distance matrix is then input into an unsuper-

vised machine learning algorithm. Principal coordinates analysis and hierarchical agglom-

erative clustering are the two most popular unsupervised machine learning algorithms

used for this purpose in malaria genetic epidemiology. We highlight that this procedure is

sensitive to the choice of genetic distance and to the specification of the algorithms. These

unsupervised methods are useful for exploratory data analysis but cannot be used to infer

historical events. We provide some guidance on how to make genetic epidemiology analy-

ses more transparent and reproducible.

Introduction

As part of a global push to eliminate malaria, there are ongoing efforts to roll out routine

molecular surveillance to understand how the parasites causing malaria are spreading, to track

drug resistance and identify its emergence, and to understand where to target interventions

[1]. Malaria parasite genetic data have been accrued increasingly rapidly in recent years, but

the analytical methods for making sense of them lag behind. Many of the key questions posed

by studies of malaria parasite genetic epidemiology can be phrased in terms of population

structure and thus parasite ancestry. Seminal methods for characterising and quantifying pop-

ulation structure in general include algorithms such as EIGENSTRAT, STRUCTURE, fineS-

TRUCTURE and ADMIXTURE. EIGENSTRAT provides a continuous estimate of population

structure (a projection onto a linear combination of genetic variants) and is typically used in

the context of genome wide association studies to adjust for population stratification [2].

Methods such as STRUCTURE [3], fineSTRUCTURE [4] and ADMIXTURE [5] perform pop-

ulation assignment (i.e. assign individuals to one or more inferred ancestral populations).

These methods have been developed primarily in the context of human statistical genetics.

Their empirical success in human genetics does not directly imply that they are applicable to

population genetic analyses of malaria parasites: eukaryotic pathogens of the genus Plasmo-
dium that are transmitted by anopheline mosquitoes. Malaria parasites are haploid during the

human host stage of their life-cycle, but undergo an obligate stage of sexual recombination in

the mosquito. Although both humans and malaria parasites recombine sexually, the added

complexity of the malaria parasite life cycle complicates and confounds Plasmodium popula-

tion genetics. For example, unlike humans, malaria parasites can self (recombination between

genetically identical male and female gametes) [6], and the rate of selfing varies with transmis-

sion intensity [7]. There is a need to test the sensitivity of specific methods in the context of

malaria parasite genetics before making conclusive inferences.

Malaria parasite population genetics has borrowed methods from human genetics, but has

also heavily relied on context agnostic unsupervised learning algorithms primarily developed

in machine learning (e.g. [8–10]). Unsupervised learning algorithms can detect patterns and

structure in data without needing classifications or categories as inputs. Principal coordinates
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analysis (PCoA) and hierarchical agglomerative clustering (HAC) are the two most popular

classes of unsupervised learning algorithms used in genetic epidemiology studies of malaria.

PCoA is a generalisation of principal components analysis (PCA). PCA has deep connections

with statistical model-based clustering analysis (e.g. STRUCTURE and related methods) [4]

and, under certain assumptions, has a genealogical interpretation [11]. In contrast, unsuper-

vised clustering algorithms such as HAC do not, in general, have a genealogical interpretation

and are non-inferential (they do not have parameters whose values are inferred from data).

This limits the scope of the scientific questions they can answer. They are however important

stopgap methods and remain useful conceptual aids.

Both PCoA and HAC operate on a distance matrix. The construction of a genetic distance

matrix is a common feature of many computational analysis pipelines used in both human and

Plasmodium population genetics. Typically, the genetic data for all (or a subset of) polymorphic

loci for a set of n isolates are summarised into an n-by-n matrix of scalar distances or similari-

ties (distance is inversely related to similarity). The distance or similarity used is context spe-

cific and can either be computed directly as a function of the genetic data or inferred under a

statistical model fit to the data [12]. The use of genetic distance or similarity matrices goes

beyond PCoA and HAC. For example, fineSTRUCTURE performs statistical model-based

clustering of the co-ancestry matrix (a similarity matrix) generated by the chromosome paint-

ing algorithm (ChromoPainter) [4]. The assumption in fineSTRUCTURE is that the co-ances-

try matrix is a (nearly) sufficient statistic: i.e. all of the information in the data that is needed to

infer the parameters of the clustering model is contained in the co-ancestry matrix. In a similar

way, PCoA and HAC only use as input the summarised information in the distance matrix.

Summarising the data in this succinct way has many advantages. For example, when dealing

with whole genome sequence (WGS) data, the number of isolates is usually many orders of

magnitude smaller than the number of loci. Thus the distance matrix is computationally easier

to analyse (proportional to the square of the number of isolates). In addition it is not possible

to reverse engineer the distance matrix to obtain the original genetic data, making it a privacy

preserving summary of the genetic data. Careful consideration of which genetic distances

should be used to construct this matrix is needed. Making the distance matrix fully available

along with the code renders all analyses dependent on this data summary fully reproducible.

Computational analysis pipelines in malaria genetic epidemiology studies

The computational analysis pipelines of many genetic epidemiology studies of Plasmodium
spp. roughly follow the steps shown in the schematic outline in Fig 1. Genetic data, for example

short read counts aligned to a reference genome are first pre-processed to give a (phased) vari-

ant matrix. Pre-processing of the raw data will typically involve many important analytic deci-

sions (how to impute missing data; choice of thresholds for low read counts or low-quality

isolates; what to do with polyclonal samples). The output variant matrix (each row is a phased

haplotype, each column is a genetic marker) is then summarised as a distance (similarity)

matrix, either using a statistical model or from a direct computation on the variant matrix.

The distance matrix is then input into methods which can help determine and visualise struc-

ture such as PCoA, or can help cluster haplotypes into groups such as fineSTRUCTURE or

HAC algorithms. Under this schema, the genetic distance matrix is used as a (nearly) sufficient

statistic for all downstream analyses. Box 1 gives an example of population genetic data that

have been analysed under this type of pipeline.

This work addresses the sensitivity of final outputs with respect to the choice of genetic dis-

tance and to the specification of algorithms that take as input a distance matrix. We do not

address the important question of sensitivity to pre-processing choices (this includes allele
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frequency thresholding, SNP detection algorithms, and imputation of missing values). An

important problem in most population genetic epidemiology studies of malaria is what to do

with complex infections (distinct parasite genomes present in the same human host). There

exists software for phasing complex infections which are usually composed of related parasites,

e.g. DEploidIBD [7], but this is not often done in practice and the implications of ignoring com-

plex infections are not fully understood ([13] uses simulation to quantify the impact of excluding

polyclonal isolates). We undertake an empirical sensitivity analysis of PCoA and HAC with

respect to the genetic distance measure used and to the algorithm specification. Our analysis uses

sequence data from P. falciparum parasites isolated from a subset of patients enrolled in the East-

ern GMS sites (Cambodia and neighbouring areas of Thailand, Laos and Vietnam) of a large

clinical trial that took place between 2011 and 2013 [14] (see Box 1 for some background provid-

ing the rationale for the use of these data). We provide some tentative guidance as to the use and

interpretation of PCoA and HAC in the context of Plasmodium population genetics, including

ways to increase the transparency and reproducibility of analytic pipelines (e.g. by sharing key

intermediate data summaries such as genetic distance matrices). In the discussion we make a call

for the development of more targeted statistical models for malaria parasite ancestry.

Results

Genetic distance between P. falciparum monoclonal isolates from

Southeast Asia

We computed three distance matrices for 393 whole genome sequences from parasites col-

lected in the Eastern GMS, using as genetic distance 1−IBS, 1−IBD, and −log2IBD, respectively

Fig 1. A rough schematic of a typical computational analysis pipeline in a malaria genetic epidemiology study, whereby the generation of a

genetic distance or similarity matrix is a key step in the data analysis. The main analysis pipeline is shown with the dark arrows. Additional

sensitivity analyses feed into the final interpretation and translation of results and are shown by the light arrows. Bullet points show examples of data

modalities, data processing algorithms or analytical approaches. �fineSTRUCTURE is itself a computational pipeline that takes as input phased

haplotypes (e.g. a phased variant matrix), computes a co-ancestry matrix and then performs clustering on this matrix. fineSTRUCTURE clustering

corresponds to the second stage of the fineSTRUCTURE pipeline.

https://doi.org/10.1371/journal.pgen.1009037.g001
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(see Methods for exact definitions). Fig 2 shows the distribution of the distances between pairs

of isolates for the three choices of distance measure, and the agreement between the 1-IBS and

1-IBD distances. For closely related pairs (IBD close to 1), 1−IBS and 1−IBD strongly agree.

However, when comparing unrelated pairs of parasites (e.g. 1−IBD greater than 0.95), there is

Box 1: Motivating example: The spread of multi-drug resistant P.
falciparum in the Greater Mekong subregion and the use of
unsupervised learning algorithms.

Unsupervised learning algorithms applied to genetic distance matrices have been used

extensively to characterise and quantify the current epidemic of multi-drug resistant P.
falciparum in the Greater Mekong subregion (GMS) [8–10, 15]. In the attempt to under-

stand how drug resistance has considerably worsened in the last decade, two observa-

tions and the corresponding analytical approaches had considerable importance in the

scientific debate.

The first observation, made before the discovery of the causative mutations in the

Pfkelch13 gene which confer artemisinin resistance, was the identification of multiple

apparently sympatric sub-populations in the Eastern GMS [8]. These sub-populations

were identified primarily by PCoA of a genetic distance matrix based on identity-by-

state (IBS; see Methods for definition) [8]. The second observation was the spread of a

single multi-drug resistant parasite lineage across the eastern GMS. This observation

was first made using a small panel of microsatellite markers flanking the Pfkelch13 gene

which showed that a single long haplotype (bearing the Pfkelch13 mutation C580Y and

named PfPailin, as it was observed first in the Pailin area of Western Cambodia) had

spread across Cambodia into North East Thailand, Southern Laos and Southern Viet-

nam [16, 17]. This parasite lineage also acquired resistance to piperaquine, manifest by

amplification in the Pfplasmepsin gene and mutations in Pfcrt. A subsequent study used

WGS data and presented qualitatively similar results; PfPailin was renamed the KEL1/

PLA1 lineage [9]. The KEL1/PLA1 lineage was based on HAC of a genetic distance

matrix derived from chromosome painting [9].

These two observations and associated studies [8–10, 15–17] are of considerable impor-

tance as it is in this same region of Southeast Asia that antimalarial drug resistance arose

previously, first to chloroquine and then to sulphadoxine-pyrimethamine, before

spreading to India and Africa at a cost of millions of lives. P. falciparum has now evolved

resistance to both artemisinin [14] and to piperaquine [18], the two active components

of the artemisinin combination therapy (ACT) dihydroartemisinin-piperaquine [19].

Dihydroartemisinin-piperaquine was the first line treatment for falciparum malaria in

Eastern Thailand, Cambodia and Vietnam until worsening resistance forced a change in

policy. There has been controversy over the role of artemisinin resistance in facilitating

the emergence of partner drug resistance. Understanding whether artemisinin resistance

promoted the selection of piperaquine resistance in the Eastern GMS (or mefloquine

resistance on the Thailand-Myanmar border), and if so by how much, is of contempo-

rary relevance for antimalarial drug policies and practices. Identification of spatio-tem-

poral patterns and subpopulations via the analysis of genetic data using unsupervised

machine learning methods can help answer these questions. However, we believe that

there has been a disconnect between the scientific questions of interest and those that

methods such as PCoA and HAC can address.
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Fig 2. Comparison of three genetic distances. Each panel represents distances between 77028 pairs of 393 P. falciparum isolates from the Eastern

GMS. A: 1−IBS distance; B: 1−IBD distance; C: −log2 IBD distance; D: agreement between 1−IBS and 1−IBD. Note that the y-axes in panels A-C are on

a log10 scale. The set of distances such that −log2 IBD is approximately 12.5 are those with estimated IBD equal to zero, replaced by a lower limit of

quantification equal to the smallest IBD value greater than zero. Note that 1−IBD spans the zero to one range, whereas 1−IBS does not.

https://doi.org/10.1371/journal.pgen.1009037.g002
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considerable variation in the 1−IBS distance (variation across approximately 20% of its

observed range).

Sensitivity of PCoA to the genetic distance

PCoA applied to the three distance matrices gave qualitatively similar results for 1−IBS and 1

−IBD, but differed considerably for −log2 IBD (Fig 3). For both 1−IBS and 1−IBD, the first

principal component distinguishes clearly between Pfkelch13 wild type parasites (green) and

Pfkelch13 mutated parasites (not green and predominantly the artemisinin resistant C580Y

mutation shown in blue). This first principal component also distinguishes between Pfplas-
mepsin single copy (circles) and Pfplasmepsin amplified (triangles) parasites (associated with

piperaquine resistance). This pattern also emerges from the first principal component of the

PCoA of the −log2 IBD distance matrix, while the second shows the same level of variation

between the wild type parasites (green circles) as amongst multi-drug resistant parasites with

the C580Y mutation (blue triangles). It may be tempting to give an evolutionary interpretation

to the PCoA pattern shown in panel C. For example, this PCoA pattern could demonstrate

how what was initially a soft sweep became a hard sweep over time (leftmost contains almost

exclusively WT parasites, centre contains the many resistant alleles seen initially in the Eastern

GMS, rightmost contains almost exclusively C580Y isolates with amplification in Pfplasmep-
sin). This was the interpretation applied earlier to the Pfkelch13 flanking sequence haplotype

data [16]. However, there is no available mathematical theory supporting possible interpreta-

tions of the patterns observed in panels A-C of Fig 3. As an aside, there would be for 1-IBS

between isolates from disconnected populations that do not have the opportunity to recom-

bine (e.g. on different continents) or 1-IBS based on mitochondrial DNA (since mitochondrial

DNA does not recombine) and thus the coalescent model applies [11]. As a sensitivity analysis,

we computed the co-ancestry matrix output from the ChromoPainter algorithm (in the fineS-

TRUCTURE computational pipeline). Panel D of Fig 3 shows PCoA of the co-ancestry matrix

which is qualitatively very similar to PCoA on 1−IBS and 1−IBD distance matrices.

PCoA applied to arbitrary genetic distance matrices is a powerful visual tool, but the inter-

pretation of the output is sensitive to the choice of genetic distance.

Sensitivity of HAC-based discrete clustering

Dendrograms constructed using HAC algorithms do not, in general, approximate the

unknown pedigree or phylogeny of the isolates. Therefore the topology of the dendrogram is

not of primary interest. In addition, the clustering arrangement which underlies all possible

topologies is, in general, highly dependent on the genetic distance and on the HAC algorithm

specification. Comparing dendrogram topologies constructed using different genetic distances

or algorithm specifications for a large set of parasite isolates is difficult. For example, a com-

mon approach is to use tanglegrams (also known as co-phylo plots) which show a side-by-side

comparison of leaf placements with joining lines for two dendrograms [20]. The implicit

assumption is that the level of entanglement of the lines is proportional to the level of incon-

gruence between the dendrograms. However, the correlation between entanglement and den-

drogram incongruence is weak and so tanglegrams can be misleading [21]. A key reason for

this is that the ordering of the leaves within the dendrogram is arbitrary. Many leaf orderings

correspond to the same clustering arrangement, as shown in Fig 4. The visual topology of the

tree is therefore unstable. This is especially important as meta-data are often used to check the

coherency of a clustering structure found by HAC, for example by colouring the leaves or by

adding a coloured bar at the bottom of the tree. Fig 4 shows the same dendrogram under two

possible leaf orderings (given by random permutations). The coloured bars underneath the
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trees show the Pfkelch13 mutations and highlight how different the alternative orderings can

be. For this reason, it is important to note this sensitivity when superimposing meta-data onto

a tree structure. This issue can be avoided with the use of a formal statistical test between the

tree structure and meta-data as proposed in [22].

Fig 3. PCoA and PCA of summary n-by-n distance and similarity matrices for n = 393 isolates. Panels A-C show PCoA applied to the 1−IBS (A), 1

−IBD (B), and −log2 IBD (C) distance matrices. Panel D shows PCA applied to the co-ancestry matrix computed using fineSTRUCTURE version 4.

Isolates are plotted along the first two principal components. Colours correspond to the different known causative mutations in the Pfkelch13 gene,

where green is wild type (WT) and blue is C580Y. Triangles correspond to Pfplasmepsin amplified parasites, and circles correspond to parasites that are

WT in Pfplasmepsin.

https://doi.org/10.1371/journal.pgen.1009037.g003
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Our main focus now, is the sensitivity of discrete cluster assignments based on HAC. A

dendrogram (which is a visualisation of a set of nested clustering arrangements) can be col-

lapsed into discrete clusters by choosing a cut-point on the y-axis (a specific branch height).

For example, the KEL1 lineage reported in [9] was determined on the basis of cutting an HAC

dendrogram into a set of discrete clusters. The largest cluster (named KEL1) was shown to be

dispersed across Cambodia and Vietnam. This process of ‘cutting’ or ‘flattening’ a dendrogram

into a set of discrete clusters necessitates specifying either the level at which to cut the dendro-

gram (in terms of the distribution of distances) or the number of clusters desired. Both of

these choices are subjective. In this section, we show how the resulting cluster assignments are

sensitive to both the genetic distance and to the algorithm specification (linkage function).

To illustrate the sensitivity of the discrete cluster assignment to the genetic distance, we

applied HAC with average linkage (the algorithmic choice used in [9]) to the 1-IBD, 1-IBS and

−log2 IBD distance matrices. Fig 5 tracks how cluster assignment for each isolate varies accord-

ing to the genetic distance used. The mix of colours present in the stacked barplots of panels B

& C of Fig 5 illustrates the sensitivity of cluster assignment to the genetic distance. If there

were perfect agreement between cluster assignments, the stacks should each contain one col-

our only. For each distance matrix, the discrete clusters were constructed using HAC with

average linkage. The cluster assignment differs even when the two distances compared are

exactly proportional to each other (1-IBD and −log2 IBD, panels A and C of Fig 5, respec-

tively). We note that cluster assignment using HAC with single linkage is invariant to mono-

tonic transformations of the distance (i.e. HAC with single linkage of a matrix of 1-IBD

distances would give an identical clustering arrangement as HAC with single linkage of the

matrix of −log2 IBD distances). However, the single linkage specification is not often used as it

produces highly unbalanced tree structures (left or right branching, resulting in unbalanced

clusters as shown in panel C of Fig 6). It is important to note that none of the linkage functions,

when applied to arbitrary genetic distance matrices have a theoretical basis. The resulting den-

drograms have no theoretical guarantees to approximate the unknown phylogenies or pedi-

grees. They only provide a graphical representation of the genetic distance matrix.

Fig 4. Two distinct dendrograms which depict the same underlying clustering arrangement. The ordering of the leaves was

changed by randomly rotating the internal nodes. The clustering arrangement was produced by applying HAC with average

linkage to the -log2 IBD distance matrix. The coloured bars below the dendrograms visualise the corresponding Pfkelch13
mutation of each isolate (green: wild type; blue: C580Y). This illustrates how the ordering of the meta-data is sensitive to

arbitrary choices for the dendrogram topology.

https://doi.org/10.1371/journal.pgen.1009037.g004
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To illustrate the sensitivity to the linkage function when constructing discrete clusters using

HAC algorithms, we computed HAC-based dendrograms using average, complete, and single

linkage, and Ward’s criterion, applied to the −log2 IBD distance matrix, which is similar but

not identical to the distance matrix used in [9]. We cut each of these dendrograms into nine

discrete clusters. Fig 6 tracks how the cluster assignment varies according to the linkage func-

tion specified. Fig 6 shows how the clusters discovered under the four algorithmic choices

have very few similarities highlighting the strong sensitivity to the algorithm specification.

Visualising distance matrices using heatmaps ordered with HAC

algorithms

HAC algorithms applied to genetic distance matrices are useful for certain tasks. Structure in

the genetic distance matrix can be visualised directly via a heatmap. However, the clarity of a

heatmap visualisation of the distance matrix is dependent on the ordering of the isolates in the

matrix. Finding optimal orderings (known as seriation) whereby all the small distances are

concentrated around the diagonal provides improved visualisation. Finding an optimal order-

ing (e.g. a perfect anti-Robinson matrix [23]) is an NP hard problem (can only be solved in

nondeterministic polynomial time) and so heuristic seriation approaches such as HAC are typ-

ically used [24]. HAC algorithms are fast and empirically determine a nearly optimal ordering

of isolates. As an illustration for how HAC can be used to demonstrate structure within a dis-

tance matrix, Fig 7 shows heatmaps for the 1-IBD, 1-IBS, and −log2 IBD distance matrices,

whereby the ordering was determined by HAC with average linkage.

Fig 5. Tracking the discrete cluster assignments derived from HAC (specification is average linkage) according to the genetic distance matrix

used. Each P. falciparum isolate was assigned a colour based on their cluster assignment according to a flattened dendrogram (a dendrogram cut at a

given y-axis point) of a clustering arrangement generated by HAC of the 1-IBD distance matrix. In this case the y-axis cut-point was chosen to produce

nine distinct clusters (panel A). These colours were then used to track cluster membership when the same HAC algorithm is applied to the 1-IBS and

−log2 IBD distance matrices (panels B and C, respectively).

https://doi.org/10.1371/journal.pgen.1009037.g005
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Reporting recommendations

Box 2 summarises our proposed recommendations around the use of unsupervised machine

learning for genetic epidemiology studies in malaria. A key recommendation is that HAC algo-

rithms should not be used to construct discrete clusters as they are sensitive to both the genetic

distance and to the algorithmic specification. Analyses that rely on genetic distance matrices

Fig 6. Tracking the discrete cluster assignment derived from HAC according to the linkage function used applied to the −log2 IBD distance

matrix. Each P. falciparum isolate is assigned a colour based on their cluster assignment from the average linkage algorithm whereby the y-axis cut-

point was chosen to produce nine distinct clusters (panel A). Average linkage was arbitrarily chosen as the ‘reference’ method (any of four linkage

functions could be used). These colours are then used to produce stacked barplots for cluster membership derived from three other algorithm

specifications (complete, single and Ward’s criterion, panels B-D, respectively).

https://doi.org/10.1371/journal.pgen.1009037.g006

Fig 7. Heatmaps of genetic distance matrices, whereby isolates have been ordered with the output of the HAC algorithm (average linkage

specified here). The colour shading was chosen by applying nine shades of purple to a uniform grid over the range of observed values (see panels A-C

of Fig 2) in the distance matrix. The visual effect of the clustering in the heatmap is sensitive to this specification, for example, a grid over observed

quantiles would produce a different visual effect.

https://doi.org/10.1371/journal.pgen.1009037.g007
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Box 2: Overview of the proposed guidelines for the use of
unsupervised learning algorithms in population genetic
epidemiology studies of Plasmodium.

Introduction

• State the overarching scientific question(s) of interest.

Methods

• Justification of unsupervised learning algorithms. Clearly state why the unsupervised

algorithms used were chosen (indeed, the use of any method should be justified) and

state precisely the scientific questions they can answer. If the questions that can be

answered differ to the overarching question above, we suggest explaining why an infer-

ential method was not used (e.g. because of computational complexity).

• Hierarchical agglomerative clustering algorithms. These should not be used to construct

discrete population clustering assignments.

• Sensitivity analysis. If clustering analyses have been performed, and the presence of

biologically meaningful sub-populations are reported, there needs to be a robust analy-

sis examining sensitivity to the genetic distance definition and sensitivity to the under-

lying methods (both the method used and specification of the method).

• Publicly available code. Computational analysis pipelines processing high-dimensional

genetic data are usually complex with multiple filtering and data processing steps. The

best way to ensure that the analysis is fully reproducible and transparent is to provide

readable code. For readability we recommend the use of computational notebooks

(e.g. RMarkdown, Jupyter). Although it may not be possible to provide all the raw data

used to generate the results, a minimum working example (for example using simu-

lated data or a small subset of isolates) is essential.

• Publicly available intermediate output/input and meta-data. Many computational anal-

ysis pipelines follow the schematic steps shown in Fig 1. All downstream and sensitiv-

ity analyses are thus fully reproducible if the intermediate output/input are provided.

Examples of intermediate data summaries include matrices of genetic distances

(1-IBS, 1-IBD, -log2 IBD); IBD segments for all pairs of isolates as output by e.g.

hmmIBD [25], isoRelate [26], DEploidIBD [7]; co-ancestry matrix as output by chro-

mosome painting [4]. These intermediate data summaries are privacy-preserving: it is

not possible to reverse engineer them and retrieve the genetic data.

• Publicly available raw data. Full reproducibility implies access to raw primary data

(e.g. non-aligned short reads). Laws and regulations of some countries (e.g. Indonesia)

make the availability of raw data impossible. However, intermediate data formats,

such as VCF, have been used to ensure reproducibility [27].

Results

• Dendrograms. HAC dendrograms shown as a main result should be accompanied by

captions clearly stating that they are not representative of ancestry. We recommend

using them primarily as a data visualisation and exploration tool. It should be made
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can be made fully reproducible by making the distance matrices available along with the analy-

sis code. In particular we recommend the use of statistical notebooks, such as RMarkdown or

Jupyter, which allow for entire analyses to be re-run with little burden to the analyst. Visualisa-

tion of the analytic output of clustering methods applied to distance matrices is best done via

heatmaps. Dendrograms should not be used as the main analytic output unless they are

labelled properly, as their structure is unstable.

We also propose that genetic epidemiology studies that use unsupervised learning

algorithms justify explicitly their algorithmic choice(s). Algorithms such as PCoA and

HAC are non inferential. The interpretation of their output is restricted. They can be used

only to support answers to a given clinical or biological question; they cannot compute the

evidence (in a statistical sense) for a particular question. There is therefore a disconnect

between the restricted scientific questions that these algorithms can answer and the difficult

scientific questions that genetic studies usually pose. It should be made very clear when

speculative reasoning is appended to quantitative results from these algorithms to bridge

this disconnect. This is analogous to the use of causal reasoning in observational studies:

most analyses of observational data have as their ultimate goal providing an answer to a

causal question but they are inherently limited to characterising correlation and not causa-

tion. For this reason, medical journals usually impose associative language in the results

(what the study can answer) and restrict causal reasoning to the discussion of the results

(speculation: what the study desires to answer). We propose that genetic epidemiological

studies of malaria that feature use of non-inferential algorithms should be subject to analo-

gous restrictions.

Discussion

The last decade has seen a huge increase in available malaria parasite genetic data, offering pro-

found insights into the genetic epidemiology of both P. falciparum and P. vivax malaria. How-

ever, bespoke analytical tools with which to analyse and interpret these data are still in their

infancy. Summarizing dense genetic marker data such as WGS data into a genetic distance

clear (e.g. in Figure captions) that dendrograms do not approximate the underlying

phylogeny (or pedigree).

• Heatmaps. Genetic distance (similarity) matrices are best represented using heatmaps

whereby isolates are ordered using seriation algorithms (this includes HAC algorithms

which empirically work well for this purpose).

• Clustering agreement. Agreement between clustering algorithms should be represented

graphically. We recommend against using tanglegrams for comparing clustering

arrangements. Colour coded stacked barplots can help to understand agreement and

dis-agreement between discrete cluster membership (e.g. Figs 5 & 6).

Discussion

• Speculative reasoning If the overarching scientific question(s) of interest do not align

with the scientific questions answered by the analysis methods, any speculative com-

ponents to the interpretation should be made clear. This is analogous to causal reason-

ing based on observational data.
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matrix is a key step in many analytical pipelines. The utility of such dimensionality reduction

has been demonstrated clearly in human genetics. The method fineSTRUCTURE (operating

on the co-ancestry matrix) has provided key insights into recent human evolution, e.g. [28]. In

malaria parasite population genetics the choice of genetic distance has been given less consid-

eration than in human population genetics. Recent work has demonstrated the utility of assess-

ing genetic relatedness based on IBD (and its correlate IBS) and using this to measure genetic

distance between proximal malaria parasite populations [29, 30]. Output of analyses using an

IBD-based genetic distance are interpretable insofar as IBD-based genetic distance explicitly

references recent evolutionary events driven by recombination. As for which methods should

be applied to parasite genetic distance matrices, our work illustrates that PCoA is a useful

exploratory tool. Other alternatives, such as network analytic methods (e.g. [30]) were not

explored in this work. We suggest researchers apply PCoA to multiple distance matrices (e.g.

1-IBS, 1-IBD and −log2 IBD) to characterise sensitivity to the genetic distance. This study high-

lights why HAC, although useful for ordering samples and visualising distance matrices,

should not be used to construct discrete clusters of samples. PCoA and HAC provide a basis

from which to explore the key biological questions of interest in the malaria parasite popula-

tions under study (e.g. “what is the most likely sequence of events that led to the spread of a

single multi-drug resistant P. falciparum lineage across Southeast Asia?”), but they do not pro-

vide the complete answer.

A possible exception is the program Relate which uses a modification of the chromosome

painting algorithm and a bespoke HAC algorithm to construct local phylogenies at focal posi-

tions along the genome [31]. The output tree structures approximate the unknown local phy-

logeny under some simplifying assumptions, notably recombination happening strictly at a

subset of position (hotspots) and mutations producing the observed derived alleles only occur-

ring once. Heuristic modifications in the HAC algorithm accommodates some departures

from these assumptions. However, the utility of the Relate program for malaria parasite genetic

epidemiology remains to be shown. The scalability of Relate is particularly appealing. Under-

standing how departures from the underlying assumptions can effect the output (the local phy-

logenetic trees) is essential. The issues with HAC algorithms highlighted in this work should

be considered when applying Relate to malaria parasite whole genome data.

The emergence and spread of a single multidrug resistant P. falciparum lineage across four

countries in the eastern Greater Mekong sub-region (GMS) [16, 17] (Box 1) is of serious public

health concern. It leaves few options for effective antimalarial therapy in the region. Under-

standing how drug resistance originates and evolves assists in developing strategies to prevent

or curb its spread. The GMS is an area of particular interest for global malaria control and

elimination because resistance of P. falciparum to all the major antimalarial drugs (chloro-

quine, sulfadoxine, pyrimethamine, mefloquine, atovaquone, piperaquine and the artemisi-

nins) has originated there and, in the case of chloroquine and sulfadoxine-pyrimethamine,

spread across India and Africa with devastating consequences. We believe there are opportuni-

ties to improve and extend the use of the available genetic data to answer important questions

such as “did artemisinin resistance promote the spread of piperaquine resistance (and if so, by

how much)?”. Tailor-made statistical methods need to be developed that best utilise the avail-

able data to answer these important questions.

Unsupervised machine learning algorithms are powerful tools that can extract structure

from vast quantities of complex data and thus generate hypotheses regarding ancestral events.

On their own, these methods can neither prove nor disprove an evolutionary model. It is

important to note that model-based clustering developed specifically for population genetics—

e.g. STRUCTURE—are also easily mis-used. As for PCA, multiple evolutionary models can

give rise to identical patterns in the admixture bar plots which are the main analytic output of
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these models. The output patterns are also affected by uneven sampling [32]. These bar plots

are often mis-interpreted and the strong underlying model assumptions ignored [33]. For the

majority of applications, there is no true K (the number of clusters inferred by STRUCTURE).

It is highly plausible that Plasmodium spp. populations strongly diverge from the restrictive

model assumptions of the program STRUCTURE. This calls into question its applicability to

malaria phylogenetics beyond exploratory data analysis (STRUCTURE is often used in the

context of microsatellites, e.g. [34]).

A large class of unsupervised learning algorithms take as input a distance matrix (genetic in

our context) and output a summary of the data structure. These algorithms are powerful as

they are fast and versatile. However, they have important analytical limitations which may

have been under appreciated. In this work we show that two popular methods, PCoA and

HAC, are sensitive to the definition of genetic distance and to the algorithmic specification. It

is also important to understand the interpretative limitations of the algorithm outputs, which

restricts the inferences possible from the data. In some cases the methods used are unable to

answer the study questions ([35] gives an example in viral population genetics). It is important

that genetic epidemiology studies convey clearly the interpretative limitations of methods

applied to the data. The analogy with the use of causal reasoning when analysing observational

data is useful. Speculative causality based on associations is an essential scientific exercise, but

convention usually restricts this to the discussion of results. At present, in genetic epidemiol-

ogy studies, speculation often bridges the disconnect between valid interpretation of the ana-

lytic output and desired answers to the clinical or epidemiological questions of interest. When

this speculation does not make the disconnect clear, it has been described colourfully as

‘cargo-cult’ science [36, 37], or ‘trans-science’ [38]; in other words, the use of quantitative

methods to give a scientific veneer to speculative results without highlighting the analytical

and inferential limitations. Ideally, inferential interpretation would replace speculative inter-

pretation. Statistical models articulated around specific hypotheses allow inferential interpreta-

tion but, in many cases, fitting these models is not feasible due to computational limitations

(e.g. intractable likelihoods). By using unsupervised clustering algorithms first (to convert a

possibly obscure signal in the data into a summary from which a manageable set of hypotheses

can be generated), and statistical models second (to do statistical inference under a manageable

set of hypotheses), we can offset the advantages and disadvantages of both unsupervised clus-

tering algorithms and statistical models (fast and versatile but non-inferential versus slow and

constrained but inferential) and thus address appropriately the questions of interest. The

development of statistical models to characterise malaria parasite population ancestry is an

open area of research with many exciting methodological challenges (resulting from the com-

plexity of the malaria parasite life cycle). Importantly, if the signal in the data is strong (e.g. as

it is in the malaria studies that we use here as running examples), our calls for more sensitivity

checks (to address algorithmic sensitivity) and more statistical models (to bridge the inferential

disconnect) are not likely to change the overall narrative, but they will make the narrative

more robust and, critically, falsifiable (i.e. scientific).

Materials and methods

Data

The P. falciparum data used in this study are from isolates obtained from patients presenting

to rural clinics and health centres in Eastern Thailand (Sri Saket province), Western and

North Eastern Cambodia, Southern Lao PDR and Southern Vietnam between 2011 and 2013

during the Tracking Resistance to Artemisinin (TRAC) study [14]. This is a subset of all iso-

lates collected during the TRAC study. It was chosen for simplicity: the parasite isolates come
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from a subset of locations that represent a small (and thought to be interconnected in terms of

transmission) geographic area of low seasonal malaria transmission. The subset contains WGS

data on 52308 single nucleotide polymorphisms (SNPs) that vary across 393 P. falciparum iso-

lates that were deemed mononclonal based on a measure of within-host diversity [39] (cutoff

at 0.95 of the within-host diversity measure). Only high-quality SNPs from WGS data are rou-

tinely used in population genetic analyses due to technical limitations (e.g. see README file

https://www.malariagen.net/resource/26). Other polymorphisms, such as indels are useful in

highly clonal populations due to their greater mutation rate [40] but currently are not accu-

rately called from short read data.

The data were used to construct matrices of genetic distances between pairs of monoclonal

isolates (see next section). Strictly speaking, each ‘monoclonal’ isolate represents a collection of

malaria parasites that can be represented by a single parasite genotype with minimal loss of

information. The impact of excluding all infections with complexity above a certain threshold

is unclear but has been explored using simulation [13]. In addition, each infection is a subpop-

ulation of parasites with its own ancestry structure. Aggregating this population into a single

haplotype (which in fact may not represent any of parasites within the infection) again

obscures and possibly biases the estimates of pairwise distance. A better computational pipe-

line would first phase each infection, and then compute pairwise distances between the n0 � n
haplotypes.

Matrices of genetic distances between pairs of monoclonal isolates

WGS data are high dimensional. Many computational analysis pipelines first proceed by

applying a data processing step to reduce dimensionality. This often takes the form of the con-

struction of a genetic distance or similarity matrix: a n-by-n matrix that is much smaller than

the original n-by-p data matrix (where n is the number of isolates and p� n is the number of

loci sequenced). Hereafter we refer explicitly to distances only, noting that similarities can be

derived from distances and vice versa. A distance or similarity matrix is not necessarily sym-

metric, e.g. the co-ancestry matrix produced by chromosome painting is in general asymmet-

ric [4] (i.e. the distance is not necessarily a metric in the mathematical sense).

The genetic distances that feature within the distance matrix can be either computed

directly as a function of the genetic data (e.g. the fraction of loci where observed alleles differ)

or inferred under a statistical model (e.g. the model underpinning chromosome painting [4]).

The distance tends to be more interpretable when inferred under a statistical model that refer-

ences a particular evolutionary process [12], however the inferential process is more involved,

and thus possibly less transparent.

A genetic distance can reflect one or more evolutionary processes: mutation, recombina-

tion, or both. For example, between a pair of non-recombining organisms (e.g. some viruses,

or distinct species), the fraction of loci where observed alleles differ is measured in units of

mutation since the most recent common ancestor (MRCA), and can be used to infer the time

since the MRCA, e.g. under a model that assumes constant rate mutation. Between a pair of

recombining organisms (e.g. malaria parasites), the fraction of loci where observed alleles dif-

fer can be measured in units of mutation using data on regions of the genome that do not

recombine, e.g. mitochondrial DNA. Otherwise, both mutation and recombination contribute

to observed differences. A genetic distance that explicitly references recombination can be

obtained via inference under a statistical model.

The best choice of genetic distance depends on which process generates variation over the

time-scale most relevant to the scientific question of interest (targeted by the choice of analyti-

cal method). For example, among malaria parasites that outcross frequently, distances (either
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inferred or not) to which recombination contributes tend to reflect the recent past, as recombi-

nation introduces variation at each outcrossing event. Mutation-based distances reflect the

more distant past because the region of the genome that does not recombine is small and the

mutation rate is relatively low (e.g. compared to that of rapidly evolving viruses). As an aside,

population genetic distance measures based on allele frequencies (e.g. FST) can also reflect the

more distant past for similar reasons; however, our current focus is on distances that are

defined between pairs of isolates, not populations, and measures such as FST are available only

on a population level. The aspect of time-scale is sometimes ignored in genetic analyses of Plas-
modia but it is essential. S1 Text discusses how pairwise distance measures can be converted

into inter-population distances and the implications for the use and limitations of molecular

barcodes.

In this study, we use data on 52308 biallelic SNPs from the core P. falciparum genome and

consider three distinct genetic distances. In the following, i, j index parasite isolates, k indexes

the p sequenced loci, and yik denotes the observed allele for i-th isolate at the k-th locus.

1. The fraction of loci where observed alleles differ (denoted 1-IBS hereafter):

1 � dIBSij ¼ 1 �
1

p
Xp

k¼1

IBSijk; ð1Þ

where IBSijk = 1 if yik = yjk and 0 otherwise. In other words, IBSijk = 1 if observed alleles yik
and yjk are identical-by-state (IBS). Each IBSijk is observed. As such, 1 � dIBSij can be com-

puted directly as a function of genetic data. Note that Eq (1) does not feature a linkage dise-

quilbrium correction (used elsewhere e.g. [41]). It does not feature allele frequencies and it

does not reference any particular process. As stated above, both mutation and recombina-

tion contribute to its value. Although it is not inferred, 1-IBS is thus a distance to which

recombination contributes. Its expectation is a linear function of relatedness [12].

2. Unrelatedness estimate (denoted 1-IBD):

1 � r̂ ij ¼ 1 � PðIBDijk ¼ 1Þ for all k ¼ 1; . . . ; p; ð2Þ

where IBDijk = 1 if yik = yjk and are both descended from a recent common ancestor, 0 oth-

erwise. In other words, IBDijk = 1 if observed alleles yik and yjk are identical-by-descent

(IBD). Each IBDijk is unobserved. As such, each relatedness estimate, r̂ ij, is inferred under a

statistical model. The statistical model is typically a hidden Markov model (HMM) that fea-

tures allele frequencies and explicitly references sexual recombination to some extent, e.g.

[25]. We used R code available via [12] to estimate relatedness. Unrelatedness is thus an

inferred genetic distance to which recombination contributes.

3. An approximation of the number of outcrossed generations since the MRCA (denoted

−log2IBD):

� log 2r̂ ij: ð3Þ

This approximation is based on the expectation that relatedness is halved each time fully

outbred parasites recombine sexually. The number of outcrossed generations is less than

or equal to the number of life cycle generations: although the malaria parasite life cycle

involves an obligate stage of sexual recombination, malaria parasites can self. When there is

outcrossing at each life-cycle, this distance measure is a linear function of the number of

life-cycles.
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As a sensitivity analysis, we compared the PCoA of these three genetic distance matrices

with a PCoA of the co-ancestry matrix output from the program fineSTRUCTURE [4]. The

co-ancestry matrix is a similarity matrix (increasing values show increasing similarity between

pairs). Each entry xij of the co-ancestry matrix is proportional to the number of ‘chunks’ in the

genome donated from isolate j to isolate i. fineSTRUCTURE estimates the co-ancestry matrix

with the chromosome painting algorithm. This uses a hidden Markov model to paint each iso-

late as a piece-wise combination of all other n − 1 isolates. A chunk is defined as a contiguous

region of the genome unbroken by recombination between i and j.

Unsupervised machine learning algorithms in statistical genetics

Unsupervised learning encompasses many different algorithms and model families, most of

which are considered to be machine learning methods but originally developed in statistics. In

this work we consider two main algorithmic classes, PCoA and HAC. PCoA is the linear ver-

sion of the more general approach to dimensionality reduction, known as multidimensional

scaling. Some analyses of malaria parasite population genetics have used non-linear multidi-

mensional scaling (e.g. [42] uses t-distributed stochastic neighbour embedding [43]) but the

advantages of non-linear methods over the linear counterparts are unclear, therefore we con-

sider only PCoA. Supervised learning methods have also been suggested for population genet-

ics [44] but these have been rarely applied to parasite population genetics and are outside the

scope of this work. PCoA and HAC are both non-inferential (i.e. they do not have parameters

inferred from data via a likelihood function), but we note that some unsupervised learning

methods are inferential, e.g. STRUCTURE.

Principal coordinates analysis. Principal components analysis (PCA), also referred to as

eigenanalysis, is an essential method for the assessment of population structure [2]. PCA usu-

ally refers to an eigenanalysis of the sequence covariance matrix. However, it is possible to do

an eigenanalysis on any genetic distance matrix, for any user-defined genetic distance. This is

referred to as principal coordinates analysis (PCoA).

PCA on the covariance matrix has a solid theoretical footing in statistical genetics [11, 45].

Different patterns of divergent evolution and admixture lead to specific patterns in the top

principal components. A genealogical interpretation can be given to the output of a PCA

under the coalescent model, but with limitations [11]. Multiple histories may lead to the same

PCA structure and uneven sampling can skew the output severely [11, 46]. There does not

exist currently the same theoretical footing for PCoA on arbitrary genetic distances matrices.

Therefore PCoA is primarily a technique for visualising structure in the genetic distance

matrix and for reducing dimensionality of the distance matrix to a few eigenvectors with the

largest eigenvalues (proportion of variance explained) that approximates the number of

dimensions on which the data vary. The detection of clusters from PCoA or PCA is sometimes

estimated directly from the first two (or more) principal components of the distance matrix, as

reported recently in a large analysis of P. falciparum parasites from the African continent [42].

Hierarchical agglomerative clustering. Unsupervised clustering methods are important

tools in machine learning and statistics more broadly. The goal of an unsupervised clustering

algorithm is to partition a set of observations (agnostic of the data type, whether genetic or

other) into a discrete number of subsets (clusters). This partition should in theory minimise

the distances between members of the same clusters (intra-cluster), and maximise the dis-

tances between members of different clusters (inter-cluster). The main class of unsupervised

clustering algorithms used in malaria genetic epidemiology is hierarchical agglomerative clus-

tering (HAC). This is a class of bottom-up clustering algorithms which operate directly on dis-

tance matrices. HAC includes as special cases UPGMA (UPGMA stands for unweighted pair
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group method with arithmetic mean), and neighbour-joining. By bottom-up, we mean that at

the first iteration of the algorithm, each observation is in its own cluster. At subsequent itera-

tions, the two ‘nearest’ distinct clusters are merged. At the first iteration of the algorithm,

‘nearest’ is defined by the distance matrix, subsequently it is defined by the linkage function

applied to the distance matrix (see below). Therefore, a HAC algorithm necessitates specifica-

tion of the following:

• A definition of distance between pairs of observations,

• A linkage function that determines the distance between sets of observations (the inter-clus-

ter distance), which is used to assess a proposed joining of clusters.

HAC algorithms are ‘greedy’ (greedy in computer science refers to the process of local opti-

misation, i.e. only looking one step ahead at each iteration of the algorithm). The linkage func-

tion determines the update at each iteration and is key to the specification of the algorithm.

The most common choices reported in the literature are to use average linkage (average inter-

cluster distance), single linkage (the minimum inter-cluster distance, known as closest neigh-

bours), complete linkage (the maximum inter-cluster distance, known as furthest neighbours),

or Ward’s criterion (the total within cluster variance, applicable to cases where the distance

matrix is given by squared Euclidean distances). HAC algorithms do not output a set of dis-

crete clusters explicitly but instead they provide a set of nested clustering arrangements. This

nested clustering arrangement can be visualised as a dendrogram which depicts a possible
underlying data structure based on the distance matrix. The y-axis scale on the dendrogram

(corresponding to the branch lengths) is proportional to the inter-cluster distance. It is possi-

ble to ‘flatten’ this dendrogram by choosing a cut-off point on the y-axis. This cut is either

done by specifying a number of desired clusters and thus finding an appropriate value on the

y-axis to obtain this number, or by just specifying a particular value on the y-axis (in units of

inter-cluster distance). Importantly, both are arbitrary choices. We note that recent work pro-

vides a method that can test for a dependence between the tree structure and a given leaf vari-

able (e.g. isolate phenotype coded as a binary or continuous variable) [22]. This explicitly takes

into account all possible clustering structures and avoids having to arbitrarily choose a cut-off

threshold.

We note that in general it is not possible to give an evolutionary interpretation to the output

of HAC for a particular choice of distance metric and linkage function. We know of one excep-

tion, however: the program Relate [31]. Relate uses a modified version of the Li and Stephens

hidden Markov model such that for a given position on the genome, each entry (i, j) of the out-

put distance matrix corresponds to the number of derived alleles present in sample i and not

sample j (by derived allele we mean a mutation that happened on the branch between i and the

MRCA of i, j, this necessitates specifying which allele is ancestral and which is derived). The

bespoke HAC algorithm used by Relate makes use of this interpretation in order to construct a

binary coalescence tree, guaranteed to be correct if the assumptions of the model are met. The

influence of the simplifying assumptions in the model (recombination occurring only at hot-

spots, and mutations only occurring once) is likely to vary across organisms.

Neighbour-joining is a special case of a HAC algorithm [47]. This was designed specifically

for the construction of non-rooted trees based on an evolutionary distance measured in units

of mutation. The motivation for the neighbour-joining algorithm is finding the most parsimo-

nious tree with respect to the data, whereby parsimonious means that the fewest number of

evolutionary events (e.g. mutation events) are needed to explain the differences between obser-

vations. We note that even in absence of recombination, neighbour-joining trees cannot be

interpreted as phylogenetic trees. Construction of a phylogenetic tree necessitates the
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specification of the direction of change (ancestral versus derived alleles), thus a phylogenetic

tree is by definition rooted [48]. The neighbour-joining algorithm starts from a star-like tree

structure and then iteratively joins ‘neighbours’ where neighbours are determined by a joining

event that minimises the total length of all the tree branches in the subsequent tree (the mini-

mum total branch length here implies the most parsimonious tree representation). When

attempting to determine ancestry the objective is to build a phylogenetic structure. But in

absence of rooting (usually done by incorporating an out-group) and where differences are

mainly driven by recombination and not mutation or drift (e.g. sexually recombining malaria

parasites), genetic distance based on IBD (or its correlate, IBS) is not linearly proportional to

evolutionary genetic distance driven by mutation.

Statistical analysis

All statistical analyses were performed in R version 3.6.0 [49]. PCoA and HAC were applied to

three distance matrices each featuring different distances outlined above: 1−IBS (Eq (1)),

1−IBD (Eq (2)), and −log2 IBD (Eq (3)). For the −log2 IBD genetic distance, if relatedness was

estimated to be exactly zero (i.e. 1-IBD = 1), then we replaced it by the approximated lower

limit of quantification of IBD (the lowest observed non-zero IBD value). The PCoA was per-

formed using the R function cmdscale. HAC was performed using the R package fastcluster
[50]. Four separate specifications of the HAC algorithm were considered, each using a differ-

ent linkage function: average linkage, complete linkage, single linkage, and Ward’s criterion.

The function cutree (R package dendextend [51]) was used to collapse the resulting dendro-

grams into nine discrete clusters. The choice of nine was arbitrary: there is no principled

approach for choosing the number of clusters into which to cut the dendrograms. The co-

ancestry matrix was computed using fineSTRUCTURE version 4.1.0. This was computed

using an effective population size parameter equal to 1000 (argument -n in fineSTRUCTURE).

The three genetic distance matrices (data summaries) and code used to generate the results

reported here are openly available at the following github repository: https://github.com/

jwatowatson/sensitive-plasmodium-structure.

Supporting information
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