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with electroencephalography (MEG/EEG). A battery of behavioral 
and cognitive tests will also be included along with the collection 
of genetic material. This endeavor will yield valuable informa-
tion about brain connectivity, its relationship to behavior, and 
the contributions of genetic and environmental factors to indi-
vidual differences in brain circuitry. The data generated by the 
WU-Minn HCP consortium will be openly shared with the sci-
entific community.

The HCP has a broad informatics vision that includes support 
for the acquisition, analysis, visualization, mining, and sharing of 
connectome-related data. As it implements this agenda, the con-
sortium seeks to engage the neuroinformatics community through 
open source software, open programming interfaces, open-access 
data-sharing, and standards-based development. The HCP infor-
matics approach includes three basic domains.

•	 Data support components include tools and services that 
manage data (e.g., data uploads from scanners and other data 
collection devices); execution and monitoring of quality assu-
rance, image processing, and analysis pipelines and routines; 
secure long-term storage of acquired and processed data; 
search services to identify and select subsets of the data; and 
download mechanisms to distribute data to users around the 
globe.

IntroductIon
The past decade has seen great progress in the refinement of non-
invasive neuroimaging methods for assessing long-distance con-
nections in the human brain. This has given rise to the tantalizing 
prospect of systematically characterizing human brain connectivity, 
i.e., mapping the connectome (Sporns et al., 2005). The eventual 
elucidation of this amazingly complex wiring diagram should reveal 
much about what makes us uniquely human and what makes each 
person different from all others.

The NIH recently funded two consortia under the Human 
Connectome Project (HCP)1. One is led by Washington University 
and University of Minnesota and involves seven other institu-
tions (the “WU-Minn HCP consortium”)2. The other, led by 
Massachusetts General Hospital and UCLA (the MGH/UCLA HCP 
consortium), focuses on building and refining a next-generation 3T 
MR scanner for improved sensitivity and spatial resolution. Here, 
we discuss informatics aspects of the WU-Minn HCP consortium’s 
plan to map human brain circuitry in 1,200 healthy young adults 
using cutting-edge non-invasive neuroimaging methods. Key 
imaging modalities will include diffusion imaging,  resting-state 
fMRI, task-evoked fMRI, and  magnetoencephalography combined 
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•	 Visualization components include a spectrum of tools to view 
anatomic and functional brain data in volumetric and surface 
representations and also using network and graph-theoretic 
representations of the connectome.

•	 Discovery components are an especially important category of 
the HCP’s informatics requirements, including user interfaces 
(UI) for formulating database queries, linking between related 
knowledge/database systems, and exploring the relationship of 
an individual’s connectome to population norms.

The HCP is expected to generate approximately 1 PB of data, which 
will be made accessible via a tiered data-sharing strategy. Besides 
the sheer amount of data, there will be major challenges associated 
with handling the diversity of data types derived from the various 
modalities of data acquisition, the complex analysis streams asso-
ciated with each modality, and the need to cope with individual 
variability in brain shape as well as brain connectivity, which is 
especially dramatic for cerebral cortex.

To support these needs, the HCP is developing a comprehensive 
informatics platform centered on two interoperable components: 
ConnectomeDB, a data management system, and Connectome 
Workbench (CWB), a software suite that provides visualization 
and discovery capabilities.

ConnectomeDB is based on the XNAT imaging informatics plat-
form, a widely used open source system for managing and sharing 
imaging and related data (Marcus et al., 2007)3. XNAT includes an 
open web services application programming interface (API) that 
enables external client applications to query and exchange data with 
XNAT hosts. This API will be leveraged within the HCP informatics 
platform and will also help externally developed applications con-
nect to the HCP. CWB is based on Caret software, a visualization 
and analysis platform that handles structural and functional data 
represented on surfaces and volumes and on individuals and atlases 
(Van Essen et al., 2001). The HCP also benefits from a variety of 
processing and analysis software tools, including FreeSurfer, FSL, 
and FieldTrip.

Here, we provide a brief overview of the HCP, then describe 
the HCP informatics platform in some detail. We also provide a 
sampling of the types of scientific exploration and discovery that 
it will enable.

overvIew of the human connectome Project
InferrIng long-dIstance connectIvIty from in vivo ImagIng
The two primary modalities for acquiring information about 
human brain connectivity in vivo are diffusion imaging (dMRI), 
which provides information about structural connectivity, and 
resting-state functional MRI (R-fRMI), which provides informa-
tion about functional connectivity. The two approaches are comple-
mentary, and each is very promising. However, each has significant 
limitations that warrant brief comment.

Diffusion imaging relies on anisotropies in water diffusion to 
determine the orientation of fiber bundles within white matter. 
Using High Angular Resolution Diffusion Imaging (HARDI), mul-
tiple fiber orientations can be identified within individual voxels. 
This enables tracking of connections even in regions where  multiple 

fiber bundles cross one another. Probabilistic tractography inte-
grates information throughout the white matter and can reveal 
detailed information about long-distance connectivity patterns 
between gray-matter regions (Johansen-Berg and Behrens, 2009; 
Johansen-Berg and Rushworth, 2009). However, uncertainties aris-
ing at different levels of analysis can lead to both false positives 
and false negatives in tracking connections. Hence, it is impor-
tant to continue refining the methods for dMRI data acquisition 
and analysis.

R-fMRI is based on spatial correlations of the slow fluctuations 
in the BOLD fMRI signal that occur at rest or even under anesthesia 
(Fox and Raichle, 2007). Studies in the macaque monkey demon-
strate that R-fMRI correlations tend to be strong for regions known 
to be anatomically interconnected, but that correlations can also 
occur between regions that are linked only indirectly (Vincent et al., 
2007). Thus, while functional connectivity maps are not a pure 
indicator of anatomical connectivity, they represent an invaluable 
measure that is highly complementary to dMRI and tractography, 
especially when acquired in the same subjects.

The HCP will carry out a “macro-connectome” analysis of long-
distance connections at a spatial resolution of 1–2 mm. At this scale, 
each gray-matter voxel contains hundreds of thousands of neurons and 
hundreds of millions of synapses. Complementary efforts to chart the 
“micro-connectome” at the level of cells, dendrites, axons, and synapses 
aspire to reconstruct domains up to a cubic millimeter (Briggman and 
Denk, 2006; Lichtman et al., 2008), so that the macro-connectome and 
micro-connectome domains will barely overlap in their spatial scales.

a two-Phase hcP effort
Phase I of the 5-year WU-Minn HCP consortium grant is focused 
on additional refinements and optimization of data acquisition 
and analysis stages and on implementing a robust informatics plat-
form. Phase II, from mid-2012 through mid-2015, will involve data 
acquisition from the main cohort of 1,200 subjects as well as con-
tinued refinement of the informatics platform and some analysis 
methods. This section summarizes key HCP methods relevant to 
the informatics effort and describes some of the progress already 
made toward Phase I objectives. A more detailed description of our 
plans will be published elsewhere.

subject cohort
We plan to study 1,200 subjects (300 healthy twin pairs and available 
siblings) between the ages of 22 and 35. This design, coupled with 
collection of subjects’ DNA, will yield invaluable information about 
(i) the degree of heritability associated with specific components 
of the human brain connectome; and (ii) associations of specific 
genetic variants with these components in healthy adults. It will 
also enable genome-wide testing for additional associations (e.g., 
Visscher and Montgomery, 2009).

ImagIng
All 1,200 subjects will be scanned at Washington University on 
a dedicated 3 Tesla (3T) Siemens Skyra scanner. The scanner 
will be customized to provide a maximum gradient strength 
of ∼100 mT/m, more than twice the standard 40 mT/m for 
the Skyra. A subset of 200 subjects will also be scanned at the 
University of Minnesota using a new 7T scanner, which is 3http://www.xnat.org
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and function. It will also provide a starting point for future stud-
ies that examine how abnormalities in structural and functional 
connectivity play a role in neurological and psychiatric disorders.

The HCP will use a battery of reliable and well-validated meas-
ures that assess a wide range of human functions, including cogni-
tion, emotion, motor and sensory processes, and personality. The 
core of this battery will be from the NIH Toolbox for Assessment 
of Neurological and Behavioral function4. This will enable federa-
tion of HCP data with other large-scale efforts to acquire neu-
roimaging and behavioral data and will facilitate comparison of 
brain-behavior relationships across studies (Gershon et al., 2010). 
Additional tests that are currently being piloted will be drawn from 
other sources.

genetIc analyses
Blood samples collected from each subject during their visit 
will be sent to the Rutgers University Cell and DNA Repository 
(RUCDR), where cell lines will be created and DNA will be 
extracted. Genetic analysis will be conducted in early 2015, after 
all Phase II subjects have completed in-person testing. Performing 
the genotyping in the later stages of the project will allow the 
HCP to take advantage of future developments in this rapidly 
advancing field, including the availability of new sequencing 
technologies and decreased costs of whole-genome sequencing. 
Genetic data and de-identified demographic and phenotype data 
will be entered into the dbGAP database in accordance with NIH 
data-sharing policies. Summary data look-up by genotype will be 
possible via ConnectomeDB.

study workflow
The collection of this broad range of data types from multiple 
family groups will necessitate careful coordination of the various 
tests during in-person visits. Figure 1 illustrates the data collection 
workflow planned for the high-throughput phase of the HCP. All 
1,200 subjects in the main cohort will be scanned at Washington 
University on the dedicated 3T scanner. A subset of 200 subjects 
(100 same-sex twin pairs, 50% monozygotic) will also be scanned 
at University of Minnesota using 7T MRI (HARDI, R-fMRI, and 
T-fMRI) and possibly also 10.5 T. Another subset of 100 (50 
same-sex twin pairs, all monozygotic) will be scanned at St. Louis 
University (SLU) using MEG/EEG. Many data management and 
quality control (QC) steps will be taken to maximize the quality 
and reliability of these datasets (see Data Workflow and Quality 
Control sections).

the hcP InformatIcs aPProach
Our HCP informatics approach includes components related to 
data support and visualization. The Section “Data Support” dis-
cusses key data types and representations plus aspects of data pro-
cessing pipelines that have major informatics implications. This 
leads to a discussion of ConnectomeDB and the computational 
resources and infrastructure needed to support it, as well as our 
data-sharing plans. The Section “Visualization” describes CWB 
and its interoperability with ConnectomeDB. These sections also 
include examples of potential exploratory uses of HCP data.

expected to provide improved signal-to-noise ratio and better 
spatial resolution, but is less well established for routine, high-
throughput studies. Some subjects may also be scanned on a 
10.5 T scanner currently under development at the University 
of Minnesota. Having higher-field scans of individuals also 
scanned at 3T will let us use the higher-resolution data to con-
strain and better interpret the 3T data.

Each subject will have multiple MR scans, including HARDI, 
R-fMRI (Resting-state fMRI), T-fMRI (task-evoked fMRI), and 
standard T1-weighted and T2-weighted anatomical scans. Advances 
in pulse sequences are planned in order to obtain the highest reso-
lution and quality of data possible in a reasonable period of time. 
Already, new pulse sequences have been developed that accelerate 
image acquisition time (TR) by sevenfold while maintaining or 
even improving the signal-to-noise ratio (Feinberg et al., 2010). 
The faster temporal resolution for both R-fMRI and T-fMRI made 
possible by these advances will increase the amount of data acquired 
for each subject and increase the HCP data storage requirements, a 
point that exemplifies the many interdependencies among various 
HCP project components.

Task-fMRI scans will include a range of tasks aimed at providing 
broad coverage of the brain and identifying as many functionally 
distinct parcels as possible. The results will aid in validating and 
interpreting the results of the connectivity analyses obtained using 
resting-state fMRI and diffusion imaging. These “functional local-
izer” tasks will include measures of primary sensory processes (e.g., 
vision, motor function) and a wide range of cognitive and affective 
processes, including stimulus category representations, working 
memory, episodic memory, language processing, emotion process-
ing, decision-making, reward processing and social cognition. The 
specific tasks to be included are currently being piloted; final task 
selection will be based on multiple criteria, including sensitivity, 
reliability and brain coverage.

A subset of 100 subjects will also be studied with combined 
MEG/EEG, which provides vastly better temporal resolution 
 (milliseconds instead of seconds) but lower spatial resolution than 
MR (between 1 and 4 cm). Mapping MEG/EEG data to cortical 
sources will enable electrical activity patterns among neural popula-
tions to be characterized as functions of both time and frequency. 
As with the fMRI, MEG/EEG will include both resting-state and 
task-evoked acquisitions. The behavioral tasks will be a matched 
subset of the tasks used in fMRI. The MEG/EEG scans, to will 
be acquired at St. Louis University using a Magnes 3600 MEG 
(4DNeuroimaging, San Diego, CA, USA) with 248 magnetometers, 
23 MEG reference channels (5 gradiometer, and 18 magnetom-
eter) and 64 EEG voltage channels. This data will be analyzed in 
both sensor space and using state-of-the-art source localization 
methods (Wipf and Nagarajan, 2009; Ou et al., 2010) and using 
subject specific head models derived from anatomic MRI. Analyses 
of band-limited power (BLP) will provide measures that reflect the 
frequency-dependent dynamics of resting and task-evoked brain 
activity (de Pasquale et al., 2010; Scheeringa et al., 2011).

behavIoral, genetIc, and other non-ImagIng measures
Measuring behavior in conjunction with mapping of structural and 
functional networks in HCP subjects will enable the analysis of the 
functional correlates of variations in “typical” brain connectivity 4www.nihtoolbox.org
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or time-series values will be stored in the binary portion of the 
NIFTI-2 format. Datasets whose brainordinates include both vox-
els and surface vertices pose special metadata requirements that 
are being addressed for the HCP and for other software platforms 
by a “CIFTI” working group (with “C” indicating connectivity). 
A description of CIFTI data types including example file formats 
has been reviewed by domain experts and is available for pub-
lic comment6. CIFTI file formats will support metadata that map 
matrix rows and columns to brainordinates, parcels (see below), 
and/or time points, in conformance with NIFTI conventions for 
header extensions.

Individuals, atlases, and registration. The anatomical substrates 
on which HCP data are analyzed and visualized will include individ-
ual subjects as well as atlases. In general, quantitative comparisons 
across multiple subjects require registering data from individuals 
to an atlas. Maximizing the quality of inter-subject registration 
(alignment) is a high priority but also a major challenge. This is 
especially the case for cerebral cortex, owing to the complexity 
and variability of its convolutions. Several registration methods 
and atlases are under consideration for the HCP, including popu-
lation-average volumes and population-average cortical surfaces 
based on registration of surface features. Major improvements in 
inter-subject alignment may be attainable by invoking constraints 
related to function, architecture, and connectivity, especially for 
cerebral cortex (e.g., Petrovic et al., 2007; Sabuncu et al., 2010). This 
is important for the HCP informatics effort, insofar as improved 
atlas representations that emerge in Phase II may warrant support 
by the HCP.

Parcellations. The brain can be subdivided into many subcorti-
cal nuclei and cortical areas (“parcels”), each sharing common 
characteristics based on architectonics, connectivity, topographic 
organization, and/or function. Expression of connectivity data 
as a matrix of connection weights between parcels will enable 
data to be stored very compactly and transmitted rapidly. Also, 

data suPPort
Data types
Volumes, surfaces, and representations. MR images are acquired 
in a 3-D space of regularly spaced voxels, but the geometric rep-
resentations useful for subsequent processing depend upon brain 
structure. Subcortical structures are best processed in standard 
volumetric (voxel) coordinates. The complex convolutions of the 
cortical sheet make it advantageous for many purposes to model 
the cortex using explicit surface representations – a set of vertices 
topologically linked into a 2D mesh for each hemisphere. However, 
for other purposes it remains useful to analyze and visualize cortical 
structures in volume space. Hence, the HCP will support both volu-
metric and surface representations for analysis and visualization.

For some connectivity data types, it is useful to represent sub-
cortical volumetric coordinates and cortical surface vertices in a 
single file. This motivates introduction of a geometry-independent 
terminology. Specifically, a “brainordinate” (brain coordinate) is a 
spatial location within the brain that can be either a voxel (i, j, k 
integer values) or a surface vertex (x, y, z real-valued coordinates 
and a “node number”); a “grayordinate” is a voxel or vertex within 
gray matter (cortical or subcortical); a “whiteordinate” is a voxel 
within white matter or a vertex on the white matter surface. These 
terms (brainordinate, grayordinate, and whiteordinate) are espe-
cially useful in relation to the CIFTI data files described in the 
next paragraph.

When feasible, the HCP will use standard NIFTI-1 (volumetric) 
and GIFTI (surfaces) formats. Primary diffusion imaging data will 
be stored using the format MiND recently developed by Patel et al. 
(2010). By conforming to these existing formats, datasets gener-
ated using one software platform can be read by other platforms 
without the need to invoke file conversion utilities. Several types 
of connectivity-related data will exceed the size limits supported 
by NIFTI-1 and GIFTI and will instead use the recently adopted 
NIFTI-2 format5. NIFTI-2 is similar to NIFTI-1, but has dimension 
indices increased from 16-bit to 64-bit integers, which will be use-
ful for multiple purposes and platforms. For the HCP,  connectivity 

FIguRe 1 | HCP subject workflow.

5http://www.nitrc.org/forum/message.php?msg_id = 3738 6http://www.nitrc.org/projects/cifti
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data model includes a standard experiment hierarchy, including 
projects, subjects, visits, and experiments. On top of this basic 
hierarchy, specific data type extensions can be added to represent 
specific data, including imaging modalities, derived imaging meas-
ures, behavioral tests, and genetics information. The Data Service 
provides mechanisms for incorporating these extensions into the 
XNAT infrastructure, including the database backend, middleware 
data access objects, and frontend reports and data entry forms. 
Finally, the Search Service allows complex queries to be executed 
on the database.

All of XNAT’s services are accessible via an open web services API 
that follows the REpresentational State Transfer (REST) approach 
(Fielding, 2000). By utilizing the richness of the HTTP protocol, 
REST web services allow requests between client and server to be 
specified using browser-like URLs. The REST API provides specific 
URLs to create, access, and modify every resource under XNAT’s 
management. The URL structures follow the organizational hier-
archy of XNAT data, making it intuitive to navigate the API either 
manually (rarely) or programmatically. HCP will use this API for 
interactions between ConnectomeDB and CWB, for importing data 
into and out of processing pipelines, and as a conduit between 
external software applications and HCP datasets. External libraries 
and tools that can interact with the XNAT API include pyxnat – a 
Python library for interfacing with XNAT repositories7; 3D Slicer – 
an advanced image visualization and analysis environment8; and 
LONI Pipeline – a GUI-based pipelining environment9.

API extensions. The HCP is developing additional services to sup-
port connectome-related queries. A primary initial focus is on 
a service that enables spatial queries on connectivity measures. 
This service will calculate and return a connectivity map or a 
task-evoked activation map based on specified spatial, subject, and 
calculation parameters. The spatial parameter will allow queries to 
specify the spatial domain to include in the calculation. Examples 
include a single brainordinate (see above), a cortical or subcorti-
cal parcel, or some other region of interest (collection of brain-
ordinates). This type of search will benefit from registering each 
subject’s data onto a standard surface mesh and subcortical atlas 
parcellation. The subject parameter will allow queries to specify the 
subject or subject groups to include in the calculation examples 
including an individual subject ID, one or more lists of subject IDs, 
subject characteristics (e.g., subjects with IQ > 120, subjects with 
a particular genotype at a particular genetic locus), and contrasts 
(e.g., subjects with IQ > 110 vs. subjects with IQ < 90). Finally, 
the calculation parameter will allow queries to specify the specific 
connectivity or task-evoked activation measure to calculate and 
return. Basic connectivity measures will include those based on 
resting-state fMRI (functional connectivity) and diffusion imag-
ing (structural connectivity). Depending on the included subject 
parameter, the output connectivity measure might be the indi-
vidual connectivity maps for a specific subject, the average map 
for a group of subjects, or the average difference map between 
two groups. When needed, the requested connectivity  information 

 graph-theoretic  network analyses (see below) will be more tractable 
and biologically meaningful on parcellated data. However, this will 
place a premium on the fidelity of the parcellation schemes. Data 
from the HCP should greatly improve the accuracy with which the 
brain can be subdivided, but over a time frame that will extend 
throughout Phase II. Hence, just as for atlases, improved parcel-
lations that emerge in Phase II may warrant support by the HCP.

Networks and modularity. Brain parcels can often be grouped 
into spatially distributed networks and subnetworks that subserve 
distinct functions. These can be analyzed using graph-theoretic 
approaches that model networks as nodes connected by edges 
(Sporns, 2010). In the context of HCP, graph nodes can be brain-
ordinates or parcels, and edges can be R-fMRI correlations (full 
correlations or various types of partial correlations), tractography-
based estimates of connection probability or strength, or other 
measures of relationships between the nodes. The HCP will use 
several categories of network-related measures, including meas-
ures of segregation such as clustering and modularity (Newman, 
2006); measures of integration, including path length and global 
efficiency; and measures of influence to identify subsets of nodes 
and edges central to the network architecture such as hubs or 
bridges (Rubinov and Sporns, 2010).

Processing pipelines and analysis streams. Generation of the 
various data types for each of the major imaging modalities will 
require extensive processing and analysis. Each analysis stream 
needs to be carried out in a systematic and well-documented way. 
For each modality, a goal is to settle on customized processing 
streams that yield the highest-quality and most informative types 
of data. During Phase I, this will include systematic evaluation of 
different pipelines and analysis strategies applied to the same sets 
of preliminary data. Minimally processed versions for each data 
modality will also remain available, which will enable investigators 
to explore alternative processing and analysis approaches.

ConnectomeDB
XNAT foundation. ConnectomeDB is being developed as a custom-
ized version of the XNAT imaging informatics platform (Marcus 
et al., 2007). XNAT is a highly extensible, open source system for 
receiving, archiving, managing, processing, and sharing both imag-
ing and non-imaging study data. XNAT includes five services that 
are critical for ConnectomeDB operations. The DICOM Service 
receives and stores data from DICOM devices (scanners or gate-
ways), imports relevant metadata from DICOM tags to the data-
base, anonymizes sensitive information in the DICOM files, and 
converts the images to NIFTI formatted files. The Pipeline Service 
for defining and executing automated and semi-automated image 
processing procedures allows computationally intensive process-
ing and analysis jobs to be offloaded to compute clusters while 
managing, monitoring and reporting on the execution status of 
these jobs through its application interface. The Quality Control 
Service enables both manual and automated review of images and 
subsequent markup of specific characteristics (e.g., motion arti-
facts, head positioning, signal to noise ratio) and overall usability 
of individual scans and full imaging sessions. The Data Service 
allows study data to be incorporated into the database. The default 

7http://packages.python.org/pyxnat/
8http://slicer.org
9http://www.loni.ucla.edu
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of dynamic user interaction, and portability across client systems 
(browsers, desktop applications, mobile devices). The interface will 
include two main tracks. The Download track emphasizes rapid 
identification of data of interest and subsequent download. The 
most straightforward downloads will be pre-packaged bundles, 
containing high interest content from each quarterly data release 
(see Data-Sharing below). Alternatively, browsing and search 
interfaces will allow users to select individual subjects and sub-
jects groups by one or more demographic, genetic, or behavioral 
criteria. The Visualization & Discovery track will include an embed-
ded version of CWB, which will allow users to explore connectivity 
data on a rendered 3D surface (see Visualization below). Using a 
faceted search interface, users will build subject groups that are 
dynamically rendered by CWB.

High-throughput informatics
The HCP informatics platform will support high-throughput data 
collection and open-access data-sharing. Data collection require-
ments include uploading acquired data from multiple devices 
and study sites, enforcing rigorous QC procedures, and executing 
standardized image processing. Data-sharing requirements include 
supporting world-wide download of very large data sets and high 
volumes of API service requests. The overall computing and data-
base strategy for supporting these requirements is illustrated in 
Figure 3 and detailed below.

Computing infrastructure. The HCP computing infrastructure 
(Table 1) includes two complementary systems, an elastically 
expandable virtual cluster and a high performance computing sys-
tem (HPCS). The virtual cluster has a pool of general purpose serv-
ers managed by VMW are ESXi. Specific virtual machines (VMs) 
for web servers, database servers, and compute nodes are allocated 
from the VMW are cluster and can be dynamically provisioned to 

(e.g., average difference maps) will be dynamically generated. Task-
evoked activation measures will include key contrasts for each 
task and options to they view activation maps for a particular task 
in a specific subject, the average map for a group of subjects, or 
comparing two groups.

Importantly, connectivity results will be accessible either as dense 
connectivity maps, which will have fine spatial resolution but will 
be slower to compute and transmit, or as parcellated connectivity 
maps, which will be faster to process and in some situations may be 
pre-computed. Additional features that are planned include options 
to access time courses for R-fMRI data, fiber trajectories for structural 
connectivity data, and individual subject design files and time courses 
for T-fMRI data. Other approaches such as regression analysis will 
also be supported. For example, this may include options to deter-
mine the correlation between features of particular pathways or net-
works and particular behavioral measures (e.g., working memory).

When a spatial query is submitted, ConnectomeDB will parse 
the parameters, search the database to identify the appropriate 
subjects, retrieve the necessary files from its file store, and then 
execute the necessary calculations. By executing these queries on 
the database server and its associated computing cluster, only the 
final connectivity or activation map will need to be transferred back 
to the user. While this approach increases the computing demands 
on the HCP infrastructure, it will dramatically reduce the amount 
of data that needs to be transferred over the network. CWB will be 
a primary consumer of this service, but as with all services in the 
ConnectomeDB API, it will be accessible to other external clients, 
including other visualization environments and related databases.

User interface. The ConnectomeDB UI is being custom devel-
oped using dynamic web technologies (HTML 5, Javascript, Ajax; 
Figure 2). Building on advanced web technologies has several 
advantages, including streamlined access to remote data, high levels 

FIguRe 2 | The Connectome uI. (Left) This mockup of the Visualization & 
Discovery track illustrates key concepts that are being implemented, 
including a faceted search interface to construct subject groups and an 
embedded version of Connectome Workbench. Both the search interface 

and Workbench view are fed by ConnectomeDB’s open API. (Right) This 
mockup of the Download track illustrates the track’s emphasis on guiding 
users quickly to standard download packages and navigation to  
specific data.
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HCP’s capacity during peak load. During extremely high load, we 
may also utilize commercial cloud computing services to elastically 
expand the cluster’s computing capacity.

To support the project’s most demanding processing streams, 
we have partnered with the WU Center for High Performance 
Computing (CHPC), which operates an IBM HPCS that com-
menced operating in 2010. Pipelines developed for the HCP greatly 

match changing load conditions. Construction of the VMs is man-
aged by Puppet (Puppet Labs), a systems management platform that 
enables IT staff to manage and deploy standard system configura-
tions. The initial Phase 1 cluster includes 4 6-core physical CPUs 
that will be expanded in project years 3 and 5. We will partner with 
the WU Neuroimaging Informatics and Analysis Center (NIAC), 
which runs a similar virtual cluster, to dynamically expand the 

Table 1 | The HCP computing infrastructure. 

Component Device Notes

Virtual cluster 2 Dell PowerEdge R610s managed byVMWare 

ESXi

Additional nodes will be added in years 3 and 5. Dynamically expandable 

using NIAC cluster.

Web servers VMs running Tomcat 6.0.29 and XNAT 1.5 Load-balanced web servers host XNAT system and handle all API requests. 

Monitored by Pingdom and Google Analytics.

Database servers VMs running Postgres 9.0.3. Postgres 9 is run in synchronous multi-master replication mode, enabling 

high availability and load balancing.

Compute Cluster VMs running Sun Grid Engine-based queuing. Executes pipelines and on-the-fly computations that require short latencies.

Data storage Scale-out NAS (Vendor TBD) Planned 1 PB capacity will include tiered storage pools and 10Gb 

connectivity to cluster and HPCS.

Load balancing Kemp Technologies LoadMaster 2600 Distributes web traffic across multiple servers and provides hardware-

accelerated SSL encryption

HPCS IBM system in WU’s CHPC The HPC will execute computationally intensive processing including 

“standard” pipelines and user-submitted jobs.

DICOM gateway Shuttle XS35-704 Intel Atom D510 The gateway uses CTP to manage secure transmission of scans from 

UMinn scanner to ConnectomeDB.

Elastic computing 

and storage

Partner institutions, cloud computing Mirror data sites will ease bottlenecks during peak traffic periods. Elastic 

computing strategies will automatically detect stress on compute cluster 

and recruit additional resources.

The web servers, database servers, and compute cluster are jointly managed as a single VMware ESXi cluster for efficient resource utilization and high availability. 
The underlying servers each include 48-GB memory and dual 6-core processors. Each node in the VMware cluster is redundantly tied back in to the storage system 
for VM storage. All nodes run 64-bit CentOS 5.5. The HPCS includes an iDataPlex cluster (168 nodes with dual quad core Nehalem processors and 24-GB RAM), an 
e1350 cluster (7 SMP servers, each with 64 cores and 256-GB RAM), a 288-port Qlogic Infiniband switch to interconnect all processors and storage nodes, and 9 TB 
of high-speed storage. Connectivity to the system is provided by a 4 × 10 Gb research network backbone.

FIguRe 3 | ConnectomeDB architecture, including data transfer 
components. ConnectomeDB will utilize the Tomcat servlet container as 
the application server and use the enterprise grade, open source 
PostgreSQL database for storage of non-imaging data, imaging session 

meta-data, and system data. Actual images and other binary content are 
stored on a file system rather than in the database, improving performance 
and making the data more easily consumable by external software 
packages.
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review, they will be de-identified, including removal of sensitive 
fields from the DICOM headers and obscuring facial features in 
the high-resolution anatomic scans, transferred to a public-facing 
database, and shared with the public according to the data-sharing 
plan described below. All processing and analysis pipelines will be 
executed on the public-facing system so that these operations are 
performed on de-identified data only.

MRI data acquired at Washington University will be uploaded 
directly from the scanner to ConnectomeDB over the DICOM 
protocol on a secure private network. MRI data acquired at the 
University of Minnesota will be sent from the scanners to an on-site 
DICOM gateway configured with RSNA’s Clinical Trial Processor 
(CTP) software. The CTP appliance will receive the data over 
the DICOM protocol, which is non-encrypted, and relay it to 
ConnectomeDB over the secure HTTPS protocol. Once the data 
have been uploaded, several actions will be triggered. First, XNAT’s 
DICOM service will import metadata from the DICOM header 
fields into the database and places the files into its file repository. 
Next, a notification will be sent to HCP imaging staff to complete 
manual inspection of the data. Finally, a series of pipelines will 
be executed to generate sequence-specific automated QC metrics 
with flags to the HCP imaging staff regarding problematic data, 
and to validate metadata fields for protocol compliance. We aim to 
complete both manual and automated QA within 1 h of acquisi-
tion, which will enable re-scanning of individuals while they are 
still on-site.

MEG/EEG data will be uploaded to ConnectomeDB via a dedi-
cated web form in native 4D format that will insure de-identifi-
cation and secure transport via https. QC procedures will ensure 
proper linkage to other information via study specific subject IDs. 
EEG data will be converted to European Data format (EDF)10 while 
MEG data will remain in source format.

Demographic and behavioral data will be entered into 
ConnectomeDB, either through import mechanisms or direct data 
entry. Most of the behavioral data will be acquired on the NIH 
Toolbox testing system, which includes its own database. Scripts 
are being developed to extract the test results from the Toolbox 
database and upload them into ConnectomeDB via XML docu-
ments. Additional connectome-specific forms will be developed 
for direct web-based entry into ConnectomeDB, via desktop or 
tablet computers.

Quality control. Initial QC of imaging data will be performed 
by the technician during acquisition of the data by reviewing the 
images at the scanner console. Obviously flawed data will be imme-
diately reacquired within the scan session. Once imaging studies 
have been uploaded to the internal ConnectomeDB, several QC 
and pre-processing procedures will be triggered and are expected 
to be completed within an hour, as discussed above. First, the scans 
will be manually inspected in more detail by trained technicians. 
The manual review process will use a similar procedure as that 
used by the Alzheimer’s Disease Neuroimaging Initiative, which 
includes evaluation of head positioning, susceptibility artifacts, 
motion, and other acquisition anomalies along a 4-point scale 
(Jack et al., 2008). Specific extensions will be implemented for 

benefit from the ability to run in parallel across subjects and take 
advantage of the vast amount of memory available in the HPCS 
nodes. Already, several neuroimaging packages including FreeSurfer, 
FSL, and Caret have been installed on the platform and are in active 
use by the HCP. The system utilizes a MOAB/TORQUE  scheduling 
system that manages job priority. While the CHPC’s HPCS is a 
shared resource openly available to the University’s research com-
munity, the HCP will have assured priority on the system to ensure 
that the project has sufficient resources to achieve its goals.

The two HCP computing systems are complementary in that the 
virtual cluster provides rapid response times and can be dynami-
cally expanded to match load. The HPCS, on the other hand, has 
large computing power but is a shared resource that queues jobs. 
The virtual cluster is therefore best for on-the-fly computing, such 
as is required to support web services, while the HPCS is best for 
computationally intensive pipelines that are less time sensitive.

The total volume of data produced by the HCP will likely be 
multiple petabytes (1 petabyte = 1,000,000 gigabytes). We are cur-
rently evaluating data storage solutions that handle data at this scale 
to determine the best price/performance ratio for the HCP. Based 
on preliminary analyses, we are expecting to deploy 1 PB of stor-
age, which will require significant compromises in deciding which 
of the many data types generated will be preserved. Datasets to be 
stored permanently will include primary data plus the outputs of 
key pre-processing and analysis stages. These will be selected on the 
basis of their expected utility to the community and on the time 
that would be needed to recompute or regenerate intermediate 
processing results.

A driving consideration in selecting a storage solution is close 
integration with the HPCS. Four 10-Gb network connections 
between the two systems will enable high-speed data transmis-
sion, which will put serious strain on the storage device. Given 
these connections and the HPCS’s architecture, at peak usage, the 
storage system will need to be able to sustain up to 200,000 input/
output operations per second, a benchmark achievable by a number 
of available scale-out NAS (Network Attached Storage) systems. To 
meet this benchmark, we expect to design a system that includes 
tiered storage pools with dynamic migration between tiers.

In addition to this core storage system, we are also planning for 
backup, disaster recovery, and mirror sites. Given the scale of the 
data, it will be impossible to backup all of the data, so we will prior-
itize data that could not be regenerated, including the raw acquired 
data and processed data that requires significant computing time. 
We will utilize both near-line backups for highest priority data and 
offsite storage for catastrophic disaster recovery. As described below, 
our data-sharing plan includes quarterly data releases throughout 
Phase 2. To reduce bottlenecks during peak periods after these 
releases, we aim to mirror the current release on academic partner 
sites and commercial cloud systems. We are also exploring distri-
bution through the BitTorrent model (Langille and Eisen, 2010).

Data workflow. All data acquired within the HCP will be uploaded 
or entered directly into ConnectomeDB. ConnectomeDB itself 
includes two separate database systems. Initially, data are entered 
into an internal-facing system that is accessible only to a small 
group of HCP operations staff who are responsible for review-
ing data quality and project workflow. Once data pass quality 10http://www.edfplus.info/
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BOLD and diffusion imaging. Second, automated programs will 
be run to assess image quality. Specific quality metrics are cur-
rently being developed for each of the HCP imaging modalities 
and behavioral paradigms. The resulting metrics will be com-
pared with the distribution of values from previous acquisitions 
to determine whether each is within an expected range. During 
the initial months of data acquisition, the number of HCP scans 
contributing to these norm values will be limited, so we will seed 
the database with values extracted from data obtained in similar 
studies and during the pilot phase. As the study database expands, 
more sophisticated approaches will become available, including 
metrics specific for individual fMRI tasks (which may vary in the 
amount of head motion). Specific QC criteria for each metric will 
be developed during Phase I.

Data quality will be recorded in the database at the imaging 
session level and for each scan within the session. The database 
will include a binary pass/fail determination as well as fields for the 
aforementioned manual review criteria and the automated numeric 
QC metrics. Given the complexity and volume of image data being 
acquired in the HCP protocol, we anticipate that individual scans 
within each imaging visit will vary in quality. A single fMRI run, for 
example, might include an unacceptable level of motion, whereas 
other scans for that subject are acceptable in quality. In such cases, 
data re-acquisition is unlikely. The appropriate strategy for han-
dling missing datasets will be dependent on exactly which data 
are absent.

Pipeline execution. The various processing streams described 
above are complex and computationally demanding. In order to 
ensure that they are run consistently and efficiently across all sub-
jects, we will utilize XNAT’s pipeline service to execute and monitor 
the processing. XNAT’s pipeline approach uses XML documents 
to formally define the sequence of steps in a processing stream, 
including the executable, execution parameters, and input data. 
As a pipeline executes, the pipeline service monitors its execution 
and updates its status in the database. When a pipeline exits, noti-
fications will be sent to HCP staff to review the results, following 
pipeline-specific QC procedures similar to those used to review 
the raw data. Pipelines that require short latency (such as those 

associated with initial QC) will be executed on the HCP cluster, 
while those that are more computationally demanding but less time 
sensitive will be executed on the HPCS.

Provenance. Given the complexity of the data analysis streams 
described above, it will be crucial to keep accurate track of the 
history of processing steps for each generated file. Provenance 
records will be generated at two levels. First, a record of the com-
putational steps executed to generate an image or connectivity map 
will be embedded within a NIFTI header extension. This record 
will contain sufficient detail that the image could be regenerated 
from the included information. Second, higher level metadata, 
such as pipeline version and execution date, will be written into 
an XCEDE-formatted XML document (Gadde et al., 2011) and 
imported into ConnectomeDB. This information will be used to 
maintain database organization as pipelines develop over time.

Data-sharing. The majority of the data collected and stored by the 
HCP will be openly shared using the open-access model recom-
mended by the Science Commons11. The only data that will be with-
held from open access are those that could identify individual study 
participants, which will be made available only for group analyses 
submitted through ConnectomeDB. Data will be distributed in a 
rolling fashion through quarterly releases over the course of Phase 
2. Data will be released in standard formats, including DICOM, 
NIFTI, GIFTI, and CIFTI.

Given the scope and scale of the datasets, our aim of open and 
rapid data-sharing represents a significant challenge. To address this 
challenge, the HCP will use a tiered distribution strategy (Figure 4). 
The first tier includes dynamic access to condensed representations 
of connectivity maps and related data. The second distribution tier 
will allow users to download bundled subsets of the data. These 
bundles will be configured to be of high scientific value while still 
being small enough to download within a reasonable time. A third 
tier will allow users to request a portable hard drive populated by a 
more extensive bundle of HCP data. Finally, users needing access 
to extremely large datasets that are impractical to distribute will be 

FIguRe 4 | HCP data distribution tiers.

11http://sciencecommons.org/projects/publishing/open-access-data-protocol/
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Figure 5 illustrates how CWB allows concurrent visualization 
of multiple brain structures (left and right cerebral hemispheres 
plus the cerebellum) in a single window. Subcortical structures 
will be viewable concurrently with surfaces or as volume slices in 
separate windows.

Connectome Workbench will include options to display 
the results of various network analyses. For example, this may 
include concurrent visualization of network nodes in their 3D 
location in the brain as well as in a spring-embedded network, 
where node position reflects the strength and pattern of con-
nectivity. The connection strength of graph edges will be rep-
resented using options of thresholding, color, and/or thickness. 
As additional methods are developed for displaying complex 
connectivity patterns among hundreds of nodes, the most useful 
of these will be incorporated either directly into CWB or via 
third party software.

Both the dense time-series and the parcellated time-series files 
provide temporal information related to brain activity. A visualiza-
tion mode that plays “movies” by sequencing through and display-
ing each of the timepoints will be implemented. Options to view 
results of Task-fMRI paradigms will include both surface-based 
and volume-based visualization of individual and group-average 
data. Given that Task-fMRI time courses can vary significantly 
across regions (e.g., Nelson et al., 2010), options will also be avail-
able to view the average time course for any selected parcel or 
other ROI.

MEG and EEG data collected as part of the HCP will entail addi-
tional visualization requirements. This will include visualization in 
both sensor space (outside the skull) and after source localization to 
cortical parcels whose size respects the attainable spatial resolution. 
Representations of time course data will include results of power 
spectrum and BLP analyses.

able to obtain direct access to the HPCS to execute their computing 
tasks. This raises issues of prioritization, cost recovery, and user 
qualification that have yet to be addressed.

Some of the data acquired by the HCP could potentially be used 
to identify the study participants. We will take several steps to miti-
gate this risk. As mentioned above, sensitive DICOM header fields 
will be redacted and facial features in the images will be obscured. 
Second, the precision of sensitive data fields will be reduced in the 
open-access data set, in some cases binning numeric fields into 
categories. Finally, we will develop web services that will enable 
users to submit group-wise analyses that would operate on sensitive 
genetic data without providing users with direct access to individual 
subject data. For example, users could request connectivity differ-
ence maps of subjects carrying the ApoE4 allele versus ApoE2/3. 
The resulting group-wise data would be scientifically useful while 
preventing individual subject exposure. This approach requires care 
to ensure that requested groups are of sufficient size and the number 
of overall queries is constrained to prevent computationally driven 
approaches from extracting individual subject information.

vIsualIzatIon
The complexity and diversity of connectivity-related data types 
described above result in extensive visualization needs for the HCP. 
To address these needs, CWB, developed on top of Caret software 
(Van Essen et al., 2001)12 will include both browser and desktop 
versions. The browser-based version will allow users to quickly 
view data from ConnectomeDB, while the desktop version will 
allow users to carry out more demanding visualization and analysis 
steps on downloaded data.

Connectome Workbench
Connectome Workbench is based on Caret6, a prototype Java-
based version of Caret, and will run on recent versions of Linux, 
Mac OS X, and Windows. It will use many standard Caret features 
for visualizing data on surfaces and volumes. This includes multi-
ple viewing windows and many display options. Major visualiza-
tion options will include (i) data overlaid on surfaces or volume 
slices in solid colors to display parcels and other regions of interest 
(ROIs), (ii) continuous scalar variables to display fMRI data, shape 
features, connectivity strengths, etc., each using an appropriate pal-
ette; (iii) contours projected to the surface to delineate boundaries 
of cortical areas and other ROIs, (iv) foci that represent centers of 
various ROIs projected to the surface; and (v) tractography data 
represented by needle-like representations of fiber orientations 
in each voxel.

A “connectivity selector” option will load functional and struc-
tural connectivity data from the appropriate connectivity matrix 
file (dense or parcellated) and display it on the user-selected surface 
and/or volume representations (e.g., as in Figure 2). Because dense 
connectivity files will be too large and slow to load in their entirety, 
connectivity data will be read in from disk by random access when 
the user requests a connectivity map for a particular brainordinate 
or patch of brainordinates. For functional connectivity data, it may 
be feasible to use the more compact time-series datasets and to calcu-
late on the fly the correlation coefficients representing connectivity.

12http://brainvis.wustl.edu/wiki/index.php/Caret:About

FIguRe 5 | Connectome Workbench visualization of the inflated atlas 
surfaces for the left and right cerebral hemispheres plus the cerebellum. 
Probabilistic architectonic maps are shown of area 18 on the left hemisphere 
and area 2 on the right hemisphere.
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dIscussIon
By the end of Phase II, the WU-Minn HCP consortium anticipates 
having acquired an unparalleled neuroimaging dataset, linking 
functional, structural, behavioral, and genetic information in a large 
cohort of normal human subjects. The potential neuroscientific 
insights to be gained from this dataset are great, but in many ways 
unforeseeable. An overarching goal of the HCP informatics effort 
is to facilitate discovery by helping investigators formulate and test 
hypotheses by exploring the massive search space represented by 
its multi-modal data structure.

The HCP informatics approach aims to provide a platform 
that will allow for basic visualization of the dataset’s constituent 
parts, but will also encourage users to dynamically and efficiently 
make connections between the assembled data types. Users will 
be able to easily explore the population-average structural con-
nectivity map, determine if the strength of a particular con-
nection is correlated with a specific behavioral characteristic or 
genetic marker, or carry out a wide range of analogous queries. 
If the past decade’s experience in the domain of genome-related 
bioinformatics is a guide, data discovery is likely to take new and 
unexpected directions soon after large HCP datasets become 
available, spurring a new generation of neuroinformatics tools 
that are not yet imagined. We will be responsive to new meth-
odologies when possible and will allow our interface to evolve 
as new discoveries emerge.

The HCP effort is ambitious in many respects. Its success in 
the long run will be assessed in many ways – by the number and 
impact of scientific publications drawing upon its data, by the 
utilization of tools and analysis approaches developed under its 
auspices, and by follow-up projects that explore brain connectiv-
ity in development, aging, and a myriad of brain disorders. From 
the informatics perspective, key issues will be whether HCP data 
are accessed widely and whether the tools are found to be suitably 
powerful and user-friendly. During Phase I, focus groups will be 
established to obtain suggestions and feedback on the many facets 
of the informatics platform and help ensure that the end product 
meets the needs of the target users. The outreach effort will also 
include booths and other presentations at major scientific meetings 
(OHBM, ISMRM, and SfN), webinars and tutorials, a regularly 
updated HCP website15, and publications such as the present one.

In addition to the open-access data that will be distributed by 
the HCP, the HCP informatics platform itself will be open source 
and freely available to the scientific community under a non-viral 
license. A variety of similar projects will likely emerge in the com-
ing years that will benefit from its availability. We also anticipate 
working closely with the neuroinformatics community to make 
the HCP informatics system interoperable with the wide array of 
informatics tools that are available and under development.

While significant progress has been made since funding com-
menced for the HCP, many informatics challenges remain to be 
addressed. Many of the processing and analysis approaches to be 
used by the HCP are still under development and will undoubtedly 
evolve over the course of the project. How do we best handle the 
myriad of potential forks in processing streams? Can superseded 
pipelines be retired midway through the project or will users  prefer 

ConnectomeDB/Workbench integration
Querying ConnectomeDB from Connectome Workbench. While 
users will often analyze date already downloaded to their own 
computer, CWB will also be able to access data residing in the 
Connectome database. Interactions between the two systems 
will be enabled through ConnectomeDB’s web services API. 
CWB will include a search interface to identify subject groups 
in ConnectomeDB. Once a subject group has been selected, 
users can then visually explore average connectivity maps for 
this group by clicking on locations of interest on an atlas surface 
in CWB. With each click, a request to ConnectomeDB’s spatial 
query service will be submitted. Similar interactive explorations 
will be possible for all measures of interest, e.g., behavioral test-
ing results or task performances from Task-fMRI sessions, with 
the possibility of displaying both functional and structural con-
nectivity maps.

Browser-based visualization and Querying Connectome DB. 
Users will also be able to view connectivity patterns and other search 
results via the ConnectomeDB UI so that they can quickly visualize 
processed data without having to download data – and even view 
results on tablets and smart phones. To support this web-based 
visualization, we will develop a distributed CWB system in which 
the visualization component is implemented as a web-embeddable 
viewer using a combination of HTML5, JavaScript, and WebGL. 
The computational components of CWB will be deployed as a 
set of additional web services within the Connectome API. These 
workbench services will act as an intermediary between the viewer 
and ConnectomeDB, examining incoming visualization requests 
and converting them into queries on the data services API. Data 
retrieved from the database will then be processed as needed and 
sent to the viewer.

Links to external databases
Providing close links to other databases that contain extensive 
information about the human brain will further enhance the util-
ity of HCP-related datasets. For example, the Allen Human Brain 
Atlas (AHBA)13 contains extensive data on gene expression patterns 
obtained by postmortem analyses of human brains coupled to a pow-
erful and flexible web interface for data mining and visualization. The 
gene expression data(from microarray analyses and in situ hybridiza-
tion analyses) have been mapped to the individual subject brains in 
stereotaxic space and also to cortical surface reconstructions. We plan 
to establish bi-directional spatially based links between CWB and the 
AHBA. This would enable a user of CWB interested in a particular 
ROI based on connectivity-related data to link to the AHBA and 
explore gene expression data related to the same ROI. Conversely, 
users of AHBA interested in a particular ROI based on gene expres-
sion data would be able to link to ConnectomeDB/Workbench and 
analyze connectivity patterns in the same ROI. A similar strategy 
will be useful for other resources, such as the SumsDB searchable 
database of stereotaxic coordinates from functional imaging studies14. 
Through the HCP’s outreach efforts, links to additional databases 
will be developed over the course of the project.

13http://human.brain-map.org/
14http://sumsdb.wustl.edu/sums/ 15http://www.humanconnectome.org/
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