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Simple Summary: BCAS1-SV1, a novel splice variant of BCAS1, promotes the proliferation and
migration of glioblastoma cells by directly binding to and inhibiting the tumor suppressor function
of β-arrestin 2. Maackiain blocks the specific interaction of BCAS1-SV1 with β-arrestin 2 and shows
potential application as a therapeutic for glioblastoma.

Abstract: Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in
human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of
the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-
SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1
significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-
mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-
two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that β-
arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of β-arrestin
2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM
cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a
potential inhibitor of the interaction between BCAS1-SV1 and β-arrestin 2. MK treatment lessened
the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in
subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first
evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by
suppressing the β-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.

Keywords: alternative splicing; BCAS1; glioblastoma; proliferation; migration; β-arrestin 2; maackiain

1. Introduction

Glioblastoma multiforme (GBM) is both the most common and the most invasive primary
brain tumor. Despite efforts to develop strategies for earlier diagnosis and improved treat-
ment combining surgery, targeted therapy, radiotherapy, chemotherapy, and immunotherapy,
survival rates remain low [1,2]. Thus, it is critical to identify the detailed molecular pathways
underlying the development of this cancer to enable more specific treatment.

Alternative splicing is an mRNA splicing mechanism in which exons of pre-mRNAs
are ligated in a different order to form a large number of transcripts with different protein
coding sequences or RNA regulatory elements [3,4]. More than 90% of human genes
undergo alternative splicing, with obvious changes across developmental stages and
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tissue types [5]. Aberrant alternative splicing is well known in many diseases, including
cancer [6,7] and neurodegenerative diseases [8].

Investigators have identified several alternative splicing events in GBM tumorigene-
sis [9–11]. For example, Lo et al. identified a novel splice variant of GLI1 (GLI family zinc
finger 1), named tGLI1, that is highly expressed in GBM. GLI1 augments the expression
of the invasion-associated CD24 gene, which is linked to enhanced motility, invasiveness,
angiogenesis, and growth of GBM cells [9,12]. The tumor suppressor gene KLF6 (Kruppel-
like transcription factor 6) is alternatively spliced to produce a cytoplasmic isoform called
KLF6-SV1. This variant has been revealed to play a crucial role in GBM pathogenesis and to
promote cell proliferation [13]. Abnormal splicing of the gene encoding cyclin-dependent
kinase (Cdk)-associated protein phosphatase (KAP) generates a dominant negative KAP
variant that boosts both Cdk2-dependent proliferation and icdc2-dependent migration in
GBM [14]. The levels of GFAP-δ, an alternative splice variant of the intermediate filament
protein glial fibrillary acidic protein-α (GFAP-α), are higher in grade IV GBM. A rising
GFAP-δ/α ratio prompts the expression of dual-specificity phosphatase 4 (DUSP4) in focal
adhesions, which results in greatly invasive and highly malignant cells [15]. Circ-AKT3,
an AKT alternative splicing variant, competitively binds to phosphorylated PDK1, lessens
AKT-thr308 phosphorylation, and acts as a negative modulator in the PI3K/AKT signal
pathway. Circ-AKT3 can diminish the tumorigenicity of GBM cells and their resistance to
radiation [16]. Other genes with alternative splicing variants in GBM include MXD3 [17],
VEGF [18], EGFR [19], FGFR1 [20], BAF45d [21], MARK4 [22], ANXA7 [10], PKM [23],
USP5 [24], and IG20 [25].

Cheung et al. used an exon expression array to perform a genome-wide analysis of
glioma-specific splicing in GBM samples of patients [26]. The results showed an alternative
splicing event in BCAS1. We further confirmed the existence of this splice variant in the
GBM8401 cell line using RT-PCR and molecular cloning and named it BCAS1-SV1. BCAS1-
SV1 has an in-frame deletion of exons 1, 2, and 3 (47 codons) as well as exons 8, 9, and 10
(92 codons) but has the addition of exon 1.1 (5 codons) and exon 6.1 (45 codons) (Figure 1A).
BCAS1 (brain-enriched myelin-associated protein 1) is a candidate oncogene located in
a region at 20q13 [27–29]. Although the function of BCAS1 has yet to be described in
detail, its expression is amplified in various human cancers, including breast and prostate
cancer, leading to more aggressive tumors [27,30–32]. Transcriptome research has shown
that BCAS1 is also highly expressed in brain [33]. There is evidence that BCAS1 proteins
form homodimers in the cytoplasm of cultured cells and interact with LC8-type 1 dynein
light chain (DYNLL1) [34]. In addition, BCAS1 is characteristically expressed in immature
oligodendrocytes undergoing myelination, and BCAS1 expression identify cells involved
in multiple system atrophy and multiple sclerosis [35–37]. In mice, defects in BCAS1
in oligodendrocytes and Schwann cells can cause hypomyelination, schizophrenia-like
behavioral abnormalities, upregulation of inflammatory genes, and reduced anxiety [38].
BCAS1 in the subthalamic nucleus is also associated with the recovery of behavior in mice
exposed to MPTP [39].

Although the BCAS1 gene is often activated in cancer, a clear understanding of the
role of BCAS1-SV1 in the tumor biology of GBM has remained elusive. In this study, we
performed structural and functional characterization of the BCAS1-SV1 variant in GBM.
We demonstrated that this novel BCAS1-SV1 variant is found in most GBM cell lines but
not in normal brain cells. The gain-of-function variant of BCAS1-SV1 positively modu-
lates the proliferation and migration phenotype of GBM cells. In addition, we identified
that BCAS1-SV1 but not BCAS1 binds to β-arrestin 2, which is encoded by ARRB2 gene.
β-arrestin 2 is a negative regulator that mediates the desensitization and internalization of
G protein-coupled receptors. It has been shown to arrest HIF-1α activity, and the growth
and angiogenesis of GBM cells. High β-arrestin 2 expression levels correlate with better
survival in patients with GBM [40]. Thus, BCAS1-SV1 may modify β-arrestin 2 activity
to mediate the proliferation and migration of GBM. These findings establish a role for
BCAS1-SV1 as an enhancer of malignancy in GBM. We also found that the phytocompound
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maackiain (MK) can block the interaction between BCAS1-SV1 and β-arrestin 2, which
opens up a new therapeutic perspective on GBM.
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Figure 1. Identification of the novel BCAS1-SV1 splice variant. (A) Simplified transcript structures 
of BCAS1 and BCAS1-SV1. The BCAS1 gene is composed of 12 exons. The BCAS1-SV1 transcript 
deletes exons 1, 2, and 3 (47 codons, blue marked letters on the left) as well as exons 8, 9, and 10 (92 
codons, blue marked letters on the right) but has an added exon 1.1 (5 codons, green marked letters 
on the left) and exon 6.1 (45 codons, green marked letters on the right). (B) BCAS1-SV1 is highly 
expressed in six GBM cell lines but less so in three types of healthy brain cells, as shown by RT-PCR 
(upper right) and Western blot analysis (bottom right). Primers were designed on exon 7 and exon 
11 to obtain products with 479 base pairs (bp) (BCAS1) and 202 bp (BCAS1-SV1) (left). β-actin was 
an internal control. (C) BCAS1-SV1 is less expressed in other cancer cell lines, as shown by RT-PCR 
(left) and Western blot analysis (right). β-actin was an internal control. 
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We demonstrated that this novel BCAS1-SV1 variant is found in most GBM cell lines but 
not in normal brain cells. The gain-of-function variant of BCAS1-SV1 positively modulates 
the proliferation and migration phenotype of GBM cells. In addition, we identified that 
BCAS1-SV1 but not BCAS1 binds to the ARRB2 gene, which encodes β-arrestin 2. β-arres-
tin 2 is a negative regulator that mediates the desensitization and internalization of G pro-
tein-coupled receptors. It has been shown to arrest HIF-1α activity, and the growth and 
angiogenesis of GBM cells. High β-arrestin 2 expression levels correlate with better sur-
vival in patients with GBM [40]. Thus, BCAS1-SV1 may modify β-arrestin 2 activity to 
mediate the proliferation and migration of GBM. These findings establish a role for 
BCAS1-SV1 as an enhancer of malignancy in GBM. We also found that the phytocom-
pound maackiain (MK) can block the interaction between BCAS1-SV1 and β-arrestin 2, 
which opens up a new therapeutic perspective on GBM. 

2. Materials and Methods 
2.1. Reagents, Cell Lines, and Primary Cells 

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (St. Louis, 
MI, USA). The GBM cell lines (M059K, U-87MG, DBTRG-05MG, G5T/VGH, GBM8401, 
and GBM8901) and other cancer cell line (HeLa, SHSY5Y, MCF-7, LNCap, A-375, A-253, 
Jurkat, and A-549) were purchased from the Bioresources Collection and Research Center 
(BCRC, Hsin Chu, Taiwan). The human normal brain primary cells are purchased from 

Figure 1. Identification of the novel BCAS1-SV1 splice variant. (A) Simplified transcript structures of
BCAS1 and BCAS1-SV1. The BCAS1 gene is composed of 12 exons. The BCAS1-SV1 transcript deletes
exons 1, 2, and 3 (47 codons, blue marked letters on the left) as well as exons 8, 9, and 10 (92 codons,
blue marked letters on the right) but has an added exon 1.1 (5 codons, green marked letters on the
left) and exon 6.1 (45 codons, green marked letters on the right). (B) BCAS1-SV1 is highly expressed
in six GBM cell lines but less so in three types of healthy brain cells, as shown by RT-PCR (upper
right) and Western blot analysis (bottom right). Primers were designed on exon 7 and exon 11 to
obtain products with 479 base pairs (bp) (BCAS1) and 202 bp (BCAS1-SV1) (left). β-actin was an
internal control. (C) BCAS1-SV1 is less expressed in other cancer cell lines, as shown by RT-PCR (left)
and Western blot analysis (right). β-actin was an internal control.

2. Materials and Methods
2.1. Reagents, Cell Lines, and Primary Cells

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (St. Louis,
MI, USA). The GBM cell lines (M059K, U-87MG, DBTRG-05MG, G5T/VGH, GBM8401, and
GBM8901) and other cancer cell line (HeLa, SHSY5Y, MCF-7, LNCap, A-375, A-253, Jurkat,
and A-549) were purchased from the Bioresources Collection and Research Center (BCRC,
Hsin Chu, Taiwan). The human normal brain primary cells are purchased from ScienCell
Research Laboratories (San Diego, CA, USA). The cell culture medium and reagents were
purchased from Gibco, ThermoFisher Scientific (Waltham, MA, USA). The M059K cell line
was cultured in DMEM/F12 medium supplementing 2.5 mM L-glutamine, 15 mM HEPES,
1.5 g/L sodium bicarbonate, 0.5 mM sodium pyruvate, 0.05 mM non-essential amino acids,
10% fetal FBS, and 1% antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin) at
37 ◦C under 5% CO2. The GBM8401 cell line was routinely maintained in RPMI 1640
containing 10% FBS and 1% antibiotics at 37 ◦C under 5% CO2.

2.2. Total RNA Extraction and Reverse Transcriptase-Polymerase Chain Reaction

According to the manufacturer’s instructions, total RNA was isolated from several
cell lines using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). For identification of
the mRNA expressions of BCAS1 and BCAS1-SV1, the reaction mixture was incubated
at 55 ◦C for 60 min for reverse transcription using the SuperScript One-Step reverse
transcriptase–polymerase chain reaction (RT-PCR) system (Invitrogen). Then, PCR reac-
tions for exons 7–11 were carried out according to the following protocol: 1 cycle at 94 ◦C
for 2 min; followed by 35 cycles at 94 ◦C for 15 s, 60 ◦C for 30 s, and 68 ◦C for 30 s; and a final
cycle at 68 ◦C for 5 min. The primer sequences were 5′-ACACACAGTCCGTGACAACC-3′

(forward) and 5′-GGCTGCTGACTTCTTGTCCT -3′ (reverse) (Tri-i Biotech, Taipei, Taiwan).



Cancers 2022, 14, 3890 5 of 35

The amplified products were resolved by agarose gel electrophoresis and visualized with
ethidium bromide staining.

2.3. Western Bolt Analysis

For preparing cell lysis, a modified RIPA buffer (Millipore, Billerica, MA, USA) con-
taining 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium orthovanadate, 1 mM
sodium fluoride, 1 µg/mL aprotinin, 1µg/mL leupeptin, and 1 µg/mL pepstatin was used
to extract proteins. The protein level of whole cell lysates was directly quantitated using the
RC DC Protein Assay Kit (Bio-Rad Life Science, Hercules, CA, USA). Fifty micrograms of
protein per sample were added to a 6X sample buffer, denatured for 10 min at 100 ◦C, and
loaded onto 10–12.5% sodium dodecyl sulfate-polyacrylamide (Amresco, Solon, OH, USA)
electrophoresis gel (SDS-PAGE). After electrophoresis, the proteins were transferred onto a
PVDF membranes (Millipore Corp., Burlington, MA, USA), followed by blocking with 5%
non-fat milk (w/v) for 1 h at room temperature. The membranes were then incubated with
specific primary monoclonal antibodies (MAb) for BCAS1 (GeneTex, Hsinchu, Taiwan),
c-Myc (Clontech, Mountain View, CA, USA), or β-arrestin 2 (Cell Signaling Technology,
Beverly, MA, USA) overnight at 4 ◦C. After they were washed, the membranes were in-
cubated with appropriate secondary HRP-conjugated goat anti-mouse or goat anti-rabbit
antibodies (Enzo Life Sciences, Farmingdale, NY, USA). The blots were developed using an
Amersham enhanced chemiluminescence system (Piscataway, NJ, USA). The signals were
detected using a UVP BioSpectrum Imaging System (Upland, CA, USA).

2.4. Recombinant Plasmid Construction and Transfection

BCAS1, identified BCAS1-SV1, and ARRB2 cDNA were synthesized from Genomics
(Taipei, Taiwan). BCAS1 and BCAS1-SV1 cDNA were digested by restriction enzyme and
inserted into the pcDNA 3.1/myc-His vector (Invitrogen). For stable transfection, the
expression vectors were initial transiently transfected into M059K or GBM8401 cells using
the Lipofectamine 2000 transfection reagent (Invitrogen) according the manufacturer’s
instructions, and then, diverse populations were selected in geneticin (G418) (Invitrogen)
for use in further experiments.

2.5. Cell Proliferation Assay

Cell proliferation was determined by the CellTiter Blue Cell Viability Assay kit
(Promega, Madison, WI, USA). Briefly, the GBM cells were seeded into 96-well cell culture
plates (4 × 103/well). At 0, 12, 24, 36, 48, 60, and 72 h, the CellTiter-Blue® Reagent was
added directly to cultured cells and then incubated at 37 ◦C for 2 h. The number of viable
cells was determined by a fluorescent signal using a SpectraMax M2 Microplate Reader
(Molecular Devices, Silicon Valley, CA, USA) (λex = 560; λem = 590 nm).

2.6. Cell Migration Assay

The scratch-wound assay [41] was used to analyze the GBM cell migratory capacity.
Briefly, the cells were seeded and grown to confluence in 6-well cell culture plates and then
were scratched (wound) with a fine pipette tip to generate a gap. The GBM cells at the
wound edge migrated into the wound space. Images of the scratched cell monolayers were
taken at×100 magnification using an Axio Observer inverted fluorescence microscope (Carl
Zeiss MicroImaging GmbH, Göttingen, Germany) and used to compute gap width using
AxioVision software (Carl Zeiss, Göttingen, Germany). For each gap, the average width of
three measurements (top, middle, and bottom) of the microscopic field was computed.

2.7. Cell Invasion Assay

The InnoCyte Cell Invasion Assay kit (Merck Ltd., Taipei, Taiwan) was used to quantify
the GBM cell invasion in vitro, according to the manufacturer’s instructions. Briefly, a
cell suspension (1.5 × 105 cells in a 300 µL serum-free medium) was placed in the upper
chamber of rehydrated inserts. The inserts with an 8 µm pore size polycarbonate membrane
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were coated with a uniform layer of a basement membrane matrix on the upper surface.
A medium (500 µL) containing 10% fetal bovine serum was added to the lower chamber.
Following incubation for 24 h, the medium in the upper chamber was removed and the
inserts were placed in fresh wells containing a cell staining solution (500 µL, 1:300 diluted
fluorescent calcein-AM with a cell detachment buffer). After 1 h, 200 µL of the dislodged
cells was transferred to duplicate wells of a 96-well cell culture plate (black), and the
fluorescence was measured using a SpectraMax M2 Microplate reader (Molecular Devices)
(λex = 485; λem = 520 nm). The invasive GBM cells on the inserts were also stained in 0.1%
crystal violet to reveal movement of the cells through the basement membrane matrix.

2.8. Transient Transfection of Small RNA Interference

GBM cells were plated on 6-well culture plates at a density of 2.0 × 105 cells
per dish. When 70% confluence was reached, the cells were transfected with small
interfering RNA (siRNA; 75 nM) or nontargeting control siRNA using the Lipofec-
tamine 2000 transfection reagent (Invitrogen) according to the manufacturer’s protocol
for 24 h. The siRNA sequences targeting human BCAS1-SV1 sequences were (1) 5′-
UAAUGUAGAAGUUAGAGUCAU-3′ and (2) 5′-UUAGAGUCGAGGUCCAUCCAC-3′.
For human ARRB2, it was (1) 5′-AAGGACCGCAAAGUGUUUGUG-3′. A non-silencing
RNA duplex 5′-AAUUCUCCGAACGUGUCACGU-3′, as the manufacturer indicated, was
used as a control.

2.9. Yeast Two-Hybrid Library Screening

In a Matchmaker GAL4-based two-hybrid assay (Clontech, Mountain View, CA, USA),
the “bait” of BCAS1-SV1 was cloned into a yeast vector containing the GAL4 DNA-binding
domain (DNA-BD, pGBKT7) and pretransformed into the Saccharomyces cerevisiae host strain
AH109. The “prey” cDNA library of human brain (Clontech) was expressed as fusions to
the GAL4 activation domain (AD, pGADT7 vector) in S. cerevisiae host strain Y187. The
pretransformed library strain was mated with the bait strain to create diploids. When bait
and prey fusion proteins interact, the DNA-BD and AD are brought into proximity to
activate the transcription of four reporter genes (ADE2, HIS3, MEL1, and LacZ). According
to the manufacturer’s instructions, the interaction of BCAS1-SV1 with candidate proteins
was determined on the basis of a SD/-Ade/-His/-Leu/-Trp/X-α-gal plate or a colony
lift assay. To identify the gene responsible for the positive interaction, the plasmid was
rescued from positive diploids grown on SD/-Ade/-His/-Leu using Zymoprep™ Yeast
Plasmid Miniprep I (Zymo Research Corporation, Irvine, CA, USA). The prey insert was
then identified by sequencing.

2.10. Yeast Two-Hybrid Assay

Full-length cDNA of BCAS1-SV1 and ARRB2, and their fragments were subcloned
into the pGBKT7 and pGADT7 vectors, respectively. Then, they were transformed into
yeast strains AH109 and Y187, respectively. Yeast two-hybrid assays were performed as
described in the Section 2.9. The specific association between the BCAS1-SV1 and β-arrestin
2 proteins in vivo was further confirmed by a reverse yeast two-hybrid assay.

2.11. Co-Immunoprecipitation Analysis

cDNA of BCAS1-SV1 and ARRB2 was subcloned into the pCMV-Myc vector (Clon-
tech, Mountain View, CA, USA) and pCMV-HA vector (Clontech), respectively. Then, both
plasmids were co-transfected into 293T cells using the Lipofectamine 2000 transfection
reagent (Invitrogen). After 48 h, the co-transfected cells were lysed in EBC buffer (50 mM
Tris-HCl (pH 8.0), 120 mM NaCl, 0.5% NP-40, and 1 mM PMSF plus aprotinin and leu-
peptin (1 µg/mL each)), and the soluble supernatant was collected by centrifugation at
14,000× g for 5 min at 4 ◦C. The supernatant was precleared by protein G-sepharose beads,
immunoprecipitated with rabbit anti-HA antibody (Cell Signaling Technology, Beverly,
MA, USA) or a normal rabbit immunoglobulin G (Cell Signaling Technology) for 2 h at 4 ◦C,
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and incubated with protein G-sepharose beads for an additional 1 h. Immunoprecipitates
were then washed three times with EBC buffer and twice with phosphate-buffered saline
(PBS). The samples were detected by immunoblot analysis using a mouse anti-cMyc tag
polyclonal antibody (Cell Signaling Technology). We also used an anti-cMyc antibody for
immunoprecipitation and an anti-HA antibody for Western blot analysis. For reverse im-
munoprecipitation, cDNA of ARRB2 and BCAS1-SV1 was subcloned into the pCMV-Myc
vector and pCMV-HA vector, respectively. Immunoprecipitation was then carried out as
previously described. Fluorescence was detected using a Zeiss Axio Imager A1 fluorescence
microscope (Carl Zeiss MicroImaging GmbH, Göttingen, Germany). Myc and the β-arrestin
2 antibody were purchased from Cell Signaling Technology (Beverly, MA, USA).

2.12. Immunofluorescence Analysis

BCAS1-SV1-overexpressing GBM cell lines grown on poly-L-lysine-coated coverslips
were washed and fixed with 4% paraformaldehyde at room temperature for 10 min and
then incubated with 0.2% Triton X-100 for 10 min. Next, the samples were soaked in a
solution containing 1% BSA and 22.52 mg/mL glycine (dissolved in PBST (PBS + 0.1%
Tween 20)) for 30 min. The primary antibody was added and allowed to react overnight
at 4 ◦C. On the next day, the sample was washed and placed in PBST containing 1% BSA.
Then, an Alexa Fluor 488-conjugated goat anti-mouse secondary antibody and an Alexa
Fluor 568-conjugated goat anti-rabbit secondary antibody (purchased from Invitrogen) was
added, and the sample was reacted at 25 ◦C for 1 h. Finally, the sample was washed, the
nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI), and the fluorescence was
detected using Zeiss Axio Imager A1 fluorescence microscope (Carl Zeiss MicroImaging
GmbH, Göttingen, Germany).

2.13. Maackiain Treatment, Yeast Two-Hybrid-Based Spotting Assay, and Optical Density Measurement

The synthesized MK (mol. wt. 284.27, 98% purity) was purchased from Rainbow
Biotechnology Co. Ltd. (Shilin, Taipei, Taiwan) and dissolved in dimethyl sulfoxide (DMSO)
as a master stock solution (1 M). The diploid yeast carrying Gal 4 BD-/Gal 4 AD-, Gal 4
BD-p53/Gal 4 AD-T, Gal 4 BD-BCAS1-SV1-F2/Gal 4 AD-ARRB2-A2, or Gal 4 BD-ARRB2-
A2/Gal 4 AD-BCAS1-SV1-F2 were grown overnight at 30 ◦C in liquid SD/-Leu/-Trp until
they reached the log or mid-log phase. In the spot assay, all cultures were then normalized
for optical density (OD600); serially diluted; and spotted onto solid media of SD/-Leu/-Trp
or SD/-Ade/-His/-Leu/-Trp plates with 0, 1, 5, or 10 µM MK using a pipette (10 µL) and
grown at 30 ◦C for 3 day. The diploid yeast cultures were then normalized for OD600 and
grown in liquid media of SD/-Leu/-Trp or SD/-Ade/-His/-Leu/-Trp/X-α-gal with 0, 1, 5,
or 10 µM MK. The OD value was recorded every 12 h for 48 h.

2.14. Cytotoxicity Analysis of Maackiain in GBM Cells

The GBM cells were treated by serially diluting MK or not for 24 h. Then, the cells
were washed and replaced with fresh medium, and 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT, 5 mg/mL) was added and incubated at 37 ◦C for
2 h. Next, after washing, the formazan crystals were dissolved with isopropanol, and the ab-
sorbance was measured at 570 nm using a SpectraMax M2 Microplate reader (Molecular Devices).

2.15. Tumor Xenograft Mouse Model

The animal study was conducted in accordance with the Guide for the Care and Use
of Institutional Animals of China Medical University and the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The protocol for animal housing,
care, and application of experimental procedures was approved by the Institutional Animal
Care and Use Committee of the China Medical University (permit number: 100-56-N). Male
BALB/c nude mice weighing 20–25 g (approximately 2 months old) were obtained from
the National Laboratory Animal Center (Taiwan). The mice were inoculated with 50 µL
GBM cells (2 × 106) and mixed with 50 µL Matrigel™ Basement Membrane Matrix (BD
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Biosciences, San Jose, CA, USA) subcutaneously in the right flank. Tumor growth was
investigated by use of Vernier calipers, and tumor volume (V) was calculated based on the
formula V (mm3) = (D12 × D2)/2, where D1 and D2 represent the shortest and longest
tumor diameters, respectively. After the tumor was approximately 25 ± 1 mm3 (day zero),
the respective treatments were applied. All tumor-bearing mice were randomly assigned
into five groups: control (treated with PBS only), DMSO, and MK (1, 5, and 10 mg/kg).
Each group included six mice (n = 6). The mice were given their respective treatments
on the 4th, 8th, 12th, and 16th days via tail vein (intravenous) injection (50 µL). During
the treatment period, body weight and tumor size were measured every other day. After
30 days of treatment, the mice were killed by decapitation and tumors were removed and
measured. In the survival time experiment, as in the previous experimental method, five
mice in each group (n = 5) were evaluated for survival time until the 90th day. The median
survival of mice in all treatment groups was calculated using Kaplan–Meier statistics and
the log-rank test.

2.16. Intracranial Implantation of U87-Luc GBM Cells in Mice

A human GBM U87MG cell line stably integrated with a luciferase reporter gene
(U87-luc) kindly provided by Dr. Shao-Chih Chiu (China Medical University) was used
to develop intracranial xenograft GBM tumors. Male BALB/c nude mice (the National
Laboratory Animal Center, Taiwan) at 8 weeks of age (20–25 g) were deeply anesthetized
with intraperitoneal administration of 10 mg/mL Zoletil (tiletamine and zolazepam for
injection) in 0.04% Rompun (xylazine) at a dose of 0.08 mL per 10 g body weight and
with 2% isoflurane supplement under spontaneous respiration in a 70% nitrous oxide/30%
oxygen mixture if required. The mice were secured in a stereotaxic device (Stoelting, Wheat
Lane Wood Dale, IL, USA), a midline scalp incision, and a burr hole in the skull were
made, and then, the cells (4 × 105) in 5 µL serum-free RPMI 1640 were injected into the left
striatum (2.5 mm lateral and 0.5 mm posterior to the bregma, 3.5 mm intraparenchymal
depth) using a 10 µL Hamilton syringe [42]. Finally, the burr hole was sealed with bone
wax (Ethicon Inc, Johnson and Johnson, Somerville, NJ, USA) and the incision was closed
using Dermabond skin adhesive (Ethicon Inc.). Tumor growth was detected and deter-
mined by bioluminescence imaging in vivo using the IVIS Lumina II system (Caliper Life
Sciences, Hopkinton, MA, USA). Survival functions of experimental groups of mice bearing
intracranial GBM tumors were obtained using Kaplan–Meier statistics and a log-rank test.
The median survival time for each experimental group was also estimated.

2.17. In Vivo Imaging of Intracranial Tumors

All tumor-bearing mice were randomly assigned to two groups: control (treated with
normal saline only) and MK (10 mg/kg). Each group included three mice (n = 3). The mice
were injected intravenously with the respective treatment (50 µL) on the 10th, 13th, and 16th
days in the tail vein. During the treatment period, tumor size was measured every 10 days.
Intracranial tumor growth was quantified by biophotonic imaging using a Xenogen IVIS
200 system (Xenogen, Palo Alto, CA, USA). The mice were administered a 100 µL intraperi-
toneal injection of 30 mg/mL D-luciferin (PerkinElmer, Waltham, MA, USA) suspended in
DPBS (Gibco, Waltham, MA, USA) 10 min before imaging as a substrate for the luciferase
enzyme. Prior to imaging, anesthesia was induced with isoflurane gas by placing mice in
the chamber of an XGI-8 vaporizer and was sustained by inhalation via nose cones inside
the imaging chamber. Images were captured and quantified with Living Image 4.1 software
based on equivalent regions of interest over the head. Image intensities were expressed as
photons/s/cm2 per steradian.

2.18. Statistical Analysis

Statistical analysis was implemented using SAS software (SAS, Institute Inc., Cary, NC, USA).
Each experiment was performed at least three times. The data are expressed as mean ± standard
deviation (SD). We determined statistical significance by employing one-way ANOVA and
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Tukey’s test. Two groups were compared using student’s t-test. The p values < 0.05 were
assumed to indicate statistical significance.

3. Results
3.1. Identification of a Novel BCAS1 Alternative Splicing Variant

A previous report [26] and an analysis of multiple BCAS1 cDNA clones from different
GBM cell lines consistently indicated the presence of two BCAS1 transcripts. Nucleotide
sequencing showed the larger transcript to be wild-type BCAS1 (coding 584 amino acids),
whereas the smaller transcript corresponded to an alternative splicing variant of BCAS1
named BCAS1-SV1 (coding 495 amino acids) (Figure 1A). The BCAS1-SV1 variant has an
in-frame deletion of exons 1, 2, and 3 (47 codons) as well as exons 8, 9, and 10 (92 codons)
but has the addition of exon 1.1 (5 codons) and exon 6.1 (45 codons).

3.2. BCAS1-SV1 Is Highly Expressed in GBM but Not in Normal Brain Cells

The expressions of the BCAS1 and BCAS1-SV1 transcripts were analyzed by RT-PCR
in several GBM cell lines. The primers were designed on exon 7 and exon 11 to obtain
479-base pair (bp) (BCAS1) and 202-bp (BCAS1-SV1) products (Figure 1B, left). BCAS1-SV1
was highly expressed in the GBM cell lines M059K, U-87MG, DBTRG-05MG, G5T/VGH,
GBM8401, and GBM8901 compared with the expression in normal microglia, astrocyte,
and neuron cells (Figure 1B, upper right). In the Western blot analysis, the GBM cell lines
also expressed comparable levels of BCAS1-SV1 (52 kDa) and BCAS1 (62 kDa). BCAS1-SV1
was highly expressed in GBM cells versus normal brain cells (Figure 1B, lower right, the
uncropped blots are shown in Figure S1). We also analyzed the expression in other cancer
cells. In addition to SH-SY5Y cells, BCAS1-SV1 expression was low in human cancer cells
of breast (MCF-7), prostate (LNCap), skin (A-375), salivary gland (A-253), cervix (HeLa),
T lymphocyte (Jurkat), and lung (A549), as shown by RT-PCR and Western blot analysis
(Figure 1C, the uncropped blots are shown in Figure S2). These results provide evidence
that BCAS1-SV1 expression is a major characteristic of human GBM.

3.3. BCAS1-SV1 Has a Greater Capability to Promote the Proliferation and Migration of GBM
Cells Than BCAS1

To determine the role of BCAS1-SV1 in GBM, we created three GBM8401 and three
M059K stable transfectant lines selected in G418 that expressed the control vector, BCAS1,
and BCAS1-SV1, respectively. RT-PCR identified the expressions of BCAS1 and BCAS1-SV1
in M059K and GBM8401 cells, respectively (Figure 2A, top), whereas Western blot showed
that those cell lines expressed BCAS1 and BCAS1-SV1 (Figure 2A, bottom, the uncropped
blots are shown in Figure S3). The levels of BCAS1 and BCAS1-SV1 transcripts and pro-
teins in BCAS1- or BCAS1-SV1-overexpressing M059K or GBM8401 cells corresponded to
our expectations.

To determine the role of BCAS1-SV1 in proliferation, we used CellTiter Blue Cell Via-
bility assay kits to calculate cell numbers. The growth curve for BCAS1-SV1-overexpressing
M059K and GBM8401 cells over 72 h showed a significant increase in proliferation. The
overexpression of BCAS1-SV1 increased cell proliferation by nearly 1.2-fold (p = 0.0035)
compared with the control vector group in M059K cells and 1.2-fold (p = 0.0081) in GBM8401
cells (Figure 2B). However, the overexpression of BCAS1 did not affect cell proliferation
compared with the control vector group in either cell line.

To explore whether BCAS1-SV1 controlled other cellular functions, we studied its role
in cell migration. The differential effects of BCAS1 and BCAS1-SV1 on the migration of
GBM cells were examined using the scratch wound assay (Figure 2C, top). The average
gap width after time t relative to that at time zero (t0) was used as a migratory index, or
Im. The average Im values at t12 were 59.8%, 48.7%, and 92.8% for the vector, BCAS1, and
BCAS1-SV1, respectively, in M059K cells and 58.9%, 52.7%, and 94.0% for the vector, BCAS1,
and BCAS1-SV1, respectively, in GBM8401 cells (Figure 2C, bottom). The overexpression
of BCAS1-SV1 increased cell migration by nearly 1.6-fold (p = 0.0008) compared with the
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control vector group in M059K cells and by 1.6-fold (p = 0.0008) in GBM8401 cells. The
overexpression of BCAS1 did not affect cell migration compared with the control vector
group in either cell line (Figure 2C, bottom).
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Figure 2. Characterization of M059K and GBM8401 cell lines stably expressing vector, BCAS1, and
BCAS1-SV1, respectively. BCAS1-SV1 had a higher propensity to promote the proliferative and
migratory but not invasive phenotype in GBM cells. (A) M059K (left) and GBM8401 (right) stable
transfectants were analyzed for BCAS1 and BCAS1-SV1 expression by RT-PCR (top) and Western
blotting (bottom). Primers were designed on exon 7 and exon 11 to obtain 479-bp (BCAS1) and
202-bp (BCAS1-SV1) products. Anti-BCAS1 and anti-myc antibodies were used to detect BCAS1 and
BCAS1-SV1. β-actin was an internal control. (B) Cell proliferation of M059K (left) and GBM8401
(right) stable transfectants was determined by CellTiter Blue Cell Viability assay. (C) Cell migration of
M059K (left) and GBM8401 (right) stable transfectants was determined by scratch wound assay. Bars,
width of the initial scratch gap at the start of the experiment. A migratory index, Im, was defined
as Im = (g0 − g12)/g0, where g12 and g0 are the gap widths at time 12 and time 0, respectively.
(D) Invasion of M059K (left) and GBM8401 (right) cells was determined by InnoCyte cell invasion
assay. After incubation for 24 h, the fluorescence in cells that had invaded the basement membrane
was quantified (top) or stained with crystal violet (bottom).

Moreover, we evaluated the invasion capability of BACS1-SV1-expressing cells in
GBM with a quantitative fluorescence invasion assay (Figure 2D, top) and crystal violet
staining (Figure 2D, bottom). Both proliferation and invasiveness of the cells were assessed
to calculate the invasion/proliferation ratio as a measure of net invasiveness. The results
showed that BCAS1-SV1-expressing cells were not significantly more invasive than those
expressing BCAS1 or the vector control in the M059K and GBM8401 cell lines. They all
had similar invasion capabilities. Together, these results show a higher propensity of
BCAS1-SV1 relative to BCAS1 to promote proliferation and migration in GBM cells.

3.4. Blocking of Expression of BCAS1-SV1 Inhibits the Proliferation and Migration of GBM Cells

We designed a BCAS1-SV1 siRNA to target the 5′, 3′ noncoding sequence or exon 6.1
and then measured the expression of BCAS1-SV1 in GBM cells by RT-PCR and Western
blotting (Figure 3A, the uncropped blots are shown in Figure S4). We found that BCAS1-
SV1 siRNA reduced the expression of BCAS1-SV1 but not that of BCAS1, which led to
diminished proliferation of M059K and GBM8401 cells (Figure 3B) by 17% (No. 2, p = 0.0016)
and 18% (No. 2, p = 0.0015), respectively, as well as weakened migration of M059K and
GBM8401 cells by 51% (No. 1, p = 0.0039) and 56% (No. 2, p = 0.0028), respectively (Figure 3C).
We found no effect on cell invasion (Figure 3D).
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Figure 3. BCAS1-SV1 siRNA significantly decreased the proliferation and migration but not invasion
of GBM cells. M059K (left) and GBM8401 (right) cells were transfected with BCAS1-SV1 RNA
interference (RNAi) for 24 h. (A) BCAS1 and BCAS1-SV1 expressions were analyzed by RT-PCR
(top) and Western blotting (bottom). Primers were designed on exon 7 and exon 11 to obtain 479-bp
(BCAS1) and 202-bp (BCAS1-SV1) products. Anti-BCAS1 and anti-myc antibodies were used to detect
BCAS1 and BCAS1-SV1. β-actin was an internal control. (B) Proliferation of BCAS1-SV1 siRNA-
treated M059K (left) and GBM8401 (right) cells was determined by CellTiter Blue Cell Viability assay.
(C) Migration of BCAS1-SV1 siRNA-treated M059K (left) and GBM8401 (right) cells was determined
by scratch wound assay. Bars, width of the initial scratch gap at the start of the experiment. A
migratory index, Im, was defined as Im = (g0 − g12)/g0, where g12 and g0 are the gap widths at time
12 and time 0, respectively. (D) Invasion of BCAS1-SV1 siRNA-treated M059K (left) and GBM8401
(right) cells was determined by InnoCyte Cell Invasion Assay. Following incubation for 24 h, the
fluorescence in cells that had invaded the basement membrane was quantified (top) or stained with
crystal violet (bottom).

3.5. β-Arrestin 2 Is a Specific Interaction Partner of BCAS1-SV1

Next, we wanted to identify the possible mechanism by which BCAS1-SV1 promotes
GBM proliferation and migration by identifying its interaction partners by use of yeast
two-hybrid screening. The BCAS1-SV1 cDNA, fused in-frame to the Gal4 DNA-binding
domain (Gal4-BD), was used as bait (in AH109 strain) to screen a human brain cDNA
library previously ligated to a Gal4 activation domain (Gal4-AD) (in yeast strain Y187).
Through yeast mating, a total of 8.4 × 105 colonies were screened and 27 positive clones
were obtained (Figure 4A). Sequence analyses revealed that four of these clones represented
the cDNA encoding portion of β-arrestin 2 (ARRB2) (Figure 4B). The largest positive clone
(1–3) identified here was 755 bp in length and contained an open reading frame encoding
part of ARRB2 (Figure 4C).

To be more certain of this interaction, we transformed constructs containing intact
BCAS1 or BCAS1-SV1 in the pGBKT7 vector and ARRB2 in the pGADT7 vector into yeast
strains AH109 and Y187, respectively, and then mated the strains and subjected them
to a yeast two-hybrid assay. As shown in Figure 4D, BCAS1-SV1 specifically interacted
with β-arrestin 2, but BCAS1 did not (data not shown). The specific interaction between
BCAS1-SV1 and β-arrestin 2 was further confirmed by immunoprecipitation. Cell extracts
prepared from 293T cells co-transfected with Myc-tagged BCAS1-SV1/HA-tagged ARRB2
plasmids or Myc-tagged ARRB2/HA-tagged BCAS1-SV1 plasmids were subjected to im-
munoprecipitation and Western blot analysis (Figure 4E, the uncropped blots are shown
in Figure S5). Previous studies have shown that BCAS1 interacts with itself to form a
dimer [33], but we found that BCAS1-SV1 does not interact with itself or with BCAS1.
BCAS1-SV1 did not form a homodimer or associate with BCAS1 to form a heterodimer
(data not shown). Immunofluorescence analysis showed that BCAS1-SV1-myc was mainly
co-localized with part of β-arrestin 2 in the cytoplasm, confirming the interaction between
the two (Figure 4F). These results showed that BCAS1-SV1 specifically interacted with
β-arrestin 2.
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colonies of yeast two-hybrid screening are shown. Diploid cells (blue) contain four reporter genes 
that are activated in response to the two-hybrid interactions. (C) Schematic drawing of the overlap-
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Figure 4. β-arrestin 2 (ARRB2) specifically interacts with BCAS1-SV1 in vivo. (A) Schematic drawing
of yeast two-hybrid screening. β-arrestin 2 clones were isolated by yeast two-hybrid screening of a
human brain cDNA library using BCAS1-SV1 as bait. The AH109 strain was transformed with the
construct containing BCAS1-SV1 fused in-frame to the Gal4 DNA-binding domain (B,D) and then
mated with the Y187 strain, which contain plasmid with the human brain cDNA library fused to
the activation domain of Gal4 (A,D). The reporter genes of diploid cells were activated in response
to two-hybrid interactions and were selected on SD/−Ade/−His/−Leu/−Trp/X-α-gal plates.
(B) Positive colonies of yeast two-hybrid screening are shown. Diploid cells (blue) contain four
reporter genes that are activated in response to the two-hybrid interactions. (C) Schematic drawing
of the overlapping ARRB2 cDNA clones that span the coding region of the ARRB2 gene (NCBI
reference sequence: NP_004304.1) (D) Interaction between BCAS1-SV1 and full-length β-arrestin
2 in yeast two-hybrid assay. Diploid cells containing BD-p53 and AD-T were used as a positive
control. (E) BCAS1-SV1 interacts with β-arrestin 2 in an immunoprecipitation analysis. Cell extracts
prepared from 293T cells co-transfected with Myc-tagged BCAS1-SV1/HA-tagged ARRB2 plasmids
or Myc-tagged ARRB2/HA-tagged BCAS1-SV1 plasmids were subjected to immunoprecipitation
and Western blot analysis using anti-HA antibody or anti-Myc antibody. (F) BCAS1-SV1 and β-
arrestin 2 are partially co-located in M059K and GBM8401 cells. BCAS1-SV1 and β-arrestin 2 were
observed by immunofluorescence staining. The green spots represent ARRB2. The red spots represent
BCAS1-SV1-Myc. The nuclei were stained with DAPI (blue).
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3.6. BCAS1-SV1 Interacts with the C-terminus of β-Arrestin through an Intermediate Region
Containing Exon 6.1

Furthermore, we wanted to confirm the regions where BCAS1-SV1 and β-arrestin 2
interacted with each other. We thus generated three deletion mutants spanning the entire
BCAS1-SV1 sequence, as shown in Figure 5A, and assayed the interactions of these deletion
mutants with ARRB2 by use of the yeast two-hybrid assay. As shown in Figure 5B–D,
deletion of the 160–312 region (B2) from BCAS1-SV1 abolished the interaction between
BCAS1-SV1 and β-arrestin 2. The B2 region containing exon 6.1 was sufficient for interac-
tions between BCAS1-SV1 and β-arrestin 2. Furthermore, we wanted to confirm the regions
where BCAS1-SV1 and β-arrestin 2 interact with each other by yeast two-hybrid assay.
Three deletion mutants spanning over the entire BCAS1-SV1 sequence were generated,
and the position of the deleted region in each deletion mutant is shown in Figure 5A.
Interactions of these deletion mutants with ARRB2 were assayed by yeast two hybrid assay.
As shown in Figure 5B–D, deletion of the 160–312 region (B2) from BCAS1-SV1 abolished
the interaction between BCAS1-SV1 and β-arrestin 2, suggesting the requirement of the B2
region for BCAS1-SV1 interaction with β-arrestin 2. The B2 region containing exon 6.1 was
sufficient for interactions between BCAS1-SV1 and β-arrestin 2.
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Figure 5. BCAS1-SV1 interacts with the c-terminus of β-arrestin through an intermediate region.
(A) Schematic drawing of the deletion mutants of BCAS1-SV1 used in the yeast two-hybrid assay.
(B–D) The B2 fragment of BCAS1-SV1 (160–312 amino acid) interacted strongly with β-arrestin 2.
Diploid cells (blue) contain four reporter genes that are activated in response to two-hybrid inter-
actions. Diploid cells containing BD-p53 and AD-T were used as a positive control. (E) Schematic
drawing of the deletion mutants of β-arrestin used in the yeast two-hybrid assay. (F–H) The A2 frag-
ment of β-arrestin (186–410 amino acid) had a strong interaction with the B2 fragment of BCAS1-SV1.
Diploid cells containing BD-p53 and AD-T were used as a positive control.

Next, we examined which region of β-arrestin 2 was responsible for the interaction
between BCAS1-SV1 and β-arrestin 2 using two deletion mutants spanning the entire
β-arrestin 2 sequence and including different activation domains. The region of each dele-
tion mutant is shown in Figure 5E. As shown in Figure 5F–H, deletion of the 186–410 region
(A2) from β-arrestin 2 abolished the interaction between BCAS1-SV1 and β-arrestin 2. The
A2 region containing a JNK binding domain is the major different between β-arrestin 1 and
β-arrestin 2.

3.7. Downregulation of β-Arrestin 2 Increases Proliferation and Migration of GBM Cells and
Abolishes the Effect of BCAS1-SV1

To further confirm a role for β-arrestin 2 in BCAS1-SV1-associated proliferation and
migration of GBM cells, we used an RNA interference approach to knock down ARRB2
expression in vector-control- and BCAS1-SV1-overexpressing M059K or GBM8401 cells.
GBM cells were transfected with siRNAs of ARRB2 directed against human β-arrestin 2 for
24 h. The expression of β-arrestin 2 was decreased by 87% (No. 2, p < 0.0001) and 72.7%
(No. 1, p < 0.0001) in vector-control M059K and vector-control GBM8401 cells, respectively
(Figure 6A, bottom of left, the uncropped blots are shown in Figure S6), as well as by
77.7% (No. 1, p < 0.0001) and 75.4% (No. 1, p < 0.0001) in BCAS1-SV1-overexpressing
M059K and BCAS1-SV1-overexpressing GBM8401 cells, respectively (Figure 6A, bottom
of right, the uncropped blots are shown in Figure S6). Knockdown of β-arrestin 2 in
M059K and GBM8401 cells significantly augmented cell proliferation (M059K, p = 0.0045;
GBM8401, p = 0.0015, Figure 6B) and migration (M059K, p = 0.0010; GBM8401, p = 0.0018,
Figure 6C). Notably, both increases were not enhanced by the overexpression of BCAS1-
SV1 (Figure 6B,C). Taken together, these results suggest that β-arrestin 2 acts as a tumor
suppressor gene for GBM. BCAS1-SV1 may promote the proliferation and migration of
GBM cells mainly by binding and inhibiting the antitumor function of β-arrestin 2.
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plates, the diploid yeast of Gal 4 BD-B2 (BCAS1-SV1)/Gal 4 AD-A2 (ARRB2) and Gal 4 
BD-A2 (ARRB2)/Gal 4 AD-B2 (BCAS1-SV1) showed a MK dose-dependent inhibition of 
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yeast of Gal 4 BD- B2 (BCAS1-SV1)/Gal 4 AD-A2 (ARRB2) and Gal 4 BD-A2 (ARRB2)/Gal 
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7G, right of panel). This indicates that the interaction between BCAS1-SV1 and β-arrestin 
2 may be weakened by MK treatment. 

Figure 6. Downregulation of β-arrestin 2 increases the proliferation and migration of GBM cells
and abolishes the effect of BCAS1-SV1. Vector-control- or BCAS1-SV1-overexpressing M059K and
GBM8401 cells were transfected with ARRB2-specific or control nonspecific siRNAs, respectively.
Twenty-four hours after transfection, cthe ells were examined for proliferation and migration.
(A) BCAS1-SV1 and β-arrestin 2 expression were analyzed by Western blotting. Anti-β-arrestin
2 and anti-myc antibodies were used to detect β-arrestin 2 and BCAS1-SV1. β-actin was an internal
control. (B) Cell proliferation of the control siRNA-treated or ARRB2 siRNA-treated groups in M059K
(left) and GBM8401 (right) cells was determined by CellTiter Blue Cell Viability assay. (C) Cell mi-
gration of the control siRNA-treated or ARRB2 siRNA-treated groups in M059K (left) and GBM8401
(right) cells was determined by scratch wound assay. Bars, width of the initial scratch gap at the start
of the experiment. A migratory index, Im, was defined as Im = (g0 − g12)/g0, where g12 and g0 are
the gap widths at time 12 and time 0, respectively.
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3.8. Maackiain Directly Weakens the Interaction of BCAS1-SV1 with β-Arrestin 2 in a Yeast
Two-Hybrid-Based Growth Assay

Next, we wanted to find candidate compounds that could block the interaction of
BCAS1-SV1 with β-arrestin 2 for the treatment of GBM using the yeast two-hybrid-based
growth assay [43] (Figure 7A). By screening our laboratory’s existing phytochemical bank,
we obtained MK. In the yeast spot assay, the results showed that on SD/-Leu/-Trp plates,
the diploid yeast of Gal 4 BD-/Gal 4 AD-, Gal 4 BD-P53/Gal 4 AD-T, Gal 4 BD-B2 (BCAS1-
SV1)/Gal 4 AD-A2 (ARRB2), and Gal 4 BD-A2 (ARRB2)/Gal 4 AD-B2 (BCAS1-SV1) all
grew normally when treated with MK in amounts below 10 mM (Figure 7B,E, left panel).
This suggested no toxicity to yeast at this MK dose. However, on SD/-Ade/-Leu/-His/-Trp
plates, the diploid yeast of Gal 4 BD-B2 (BCAS1-SV1)/Gal 4 AD-A2 (ARRB2) and Gal
4 BD-A2 (ARRB2)/Gal 4 AD-B2 (BCAS1-SV1) showed a MK dose-dependent inhibition
of growth (Figure 7D–E, right panel). In this condition, the growth of diploid yeast of
Gal 4 BD-P53/Gal 4 AD-T was not affected (Figure 7C, right panel). Additionally, OD600
measurement showed normal growth of yeast diploid of Gal 4 BD-/Gal 4 AD-, Gal 4
BD-P53/Gal 4 AD-T, Gal 4 BD-B2 (BCAS1-SV1)/Gal 4 AD-A2 (ARRB2), and Gal 4 BD-
A2 (ARRB2)/Gal 4 AD-B2 (BCAS1-SV1) on of SD/-Leu/-Trp broth containing less than
10 mM MK (Figure 7F–I, left panel). MK dose-dependent growth retardation was observed
in the diploid yeast of Gal 4 BD- B2 (BCAS1-SV1)/Gal 4 AD-A2 (ARRB2) and Gal 4
BD-A2 (ARRB2)/Gal 4 AD-B2 (BCAS1-SV1) cultured in SD/-Ade/-Leu/-His/-Trp broth
(Figure 7H–I, right panel). Growth of the diploid yeast of Gal 4 BD-P53/Gal 4 AD-T did not
change (Figure 7G, right of panel). This indicates that the interaction between BCAS1-SV1
and β-arrestin 2 may be weakened by MK treatment.
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yeast diploid cells containing plasmids encoding either (B) Gal4 BD-/Gal4 AD-, (C) Gal4 BD-
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Figure 7. Maackiain (MK) directly inhibits the interaction of BCAS1-SV1 with β-arrestin 2 in a yeast
two-hybrid-based growth assay. (A) Schematic showing the use of the yeast two-hybrid-based growth
assay in identifying inhibitors of protein–protein interactions. (B–E) Log-phase cultures of yeast
diploid cells containing plasmids encoding either (B) Gal4 BD-/Gal4 AD-, (C) Gal4 BD-p53/Gal4
AD-T, (D) Gal4 BD-B2 (BCAS1-SV1)/Gal4 AD-A2 (β-arrestin 2), or (E) Gal4 BD-A2/Gal4 AD-B2 were
washed in water and plated at different dilutions on nonselective (-Leu-Trp) and selective (-Leu-Trp-
Ade-His) plates including different dilutions of MK and incubated at 30 ◦C for 3 days. (F–I) Overnight
cultures of yeast diploid cells containing plasmids encoding either (F) Gal4 BD-/Gal4 AD-, (G) Gal4
BD-p53/Gal4 AD-T, (H) Gal4 BD-B2 (BCAS1-SV1)/Gal4 AD-A2 (β-arrestin 2), or (I) Gal4 BD-A2/Gal4
AD-B2 in nonselective medium were washed in water and inoculated into selective and nonselective
media including different dilutions of MK at OD600 = 0.2. For each strain, growth as measured by
average OD600 of triplicate cultures is plotted against time.

3.9. Maackiain Can Lessen the Proliferation and Migration of GBM Cells In Vitro

Since MK can effectively prevent the interaction between BCAS1-SV1 and β-arrestin 2,
we further wanted to evaluate whether MK treatment could reduce the proliferation and
migration of M059K and GBM8401 cells. First, we used the MTT assay to confirm the
appropriate dose of MK. We found no obvious toxicity to M059K and GBM8401 cells
with amounts less than 1 µM MK (Figure 8A). Therefore, in subsequent experiments, we
evaluated the efficacy of treatment with MK up to 1 µM in inhibiting GBM tumorigenicity.
In addition, RT-PCR and Western blotting analyses showed that MK did not affect the
expression of BCAS1-SV1 (Figure 8B, the uncropped blots are shown in Figure S7). In
the assay of cell proliferation, MK dose-dependently reduced the proliferation of M059k
and GBM8401 cells. The proliferation of M059k and GBM8401 cells was reduced by 42%
(p = 0.0025) and 40% (p = 0.0012), respectively, under 1 µM MK treatment (Figure 8C). MK
also dose-dependently diminished the migration of M059k and GBM8401 cells. With a
treatment of less than 1 µM MK, the cell migrations of M059k and GBM8401 cells decreased
by 70% (p = 0.0005) and 67% (p = 0.0001), respectively (Figure 8D).
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Figure 8. Maackiain (MK) treatment reduced the proliferation and migration of GBM cells. (A) 
M059K and GBM8401 cells were treated with 0.1, 0.25, 0.5, 1, 2, or 4 μM MK for 24 h, and the cell 
survival rate was determined by MTT assay. Concentrations below 1 μM MK did not significantly 
affect cell survival. (B) BCAS1-SV1 expression was analyzed by Western blotting. Anti-BCAS1 anti-
body was used to detect BCAS1 and BCAS1-SV1. β-actin was an internal control. (C) Proliferation 
of MK-treated M059K (left) and GBM8401 (right) cells was determined by CellTiter Blue Cell Via-
bility assay. (D) Migration of MK-treated M059K (left) and GBM8401 (right) cells was determined 
by scratch wound assay. Bars, width of the initial scratch gap at the start of the experiment. A mi-
gratory index, Im, was defined as Im = (g0 − g12)/g0, where g12 and g0 are the gap widths at time 
12 and time 0, respectively. 

3.10. Maackiain Treatment Reduces Tumor Size in an Immunodeficient Mouse Model  
To enhance the potential clinical application of MK, we used a mouse model with 

dorsal back subcutaneous xenografts. According to previous studies, the dose of MK-
treated mice was below 10 mg/kg, and there was no obvious toxicity to the mice [44]. In 
addition, MK treatment did not significantly affect the body weight of the mice during the 
experiment (Figure 9A). Treatment with 10 mg/kg MK led to reductions in tumor size of 
72% (p < 0.0001) in mice injected with M059K cells and 66% (p = 0.0004) in mice injected 
with GBM8401 cells at 30 days, respectively (Figure 9B). At the end of the study period, 
the subcutaneous tumor was carefully excised and measured, which showed that tumor 
size was dose-dependently reduced in the MK-treated groups (Figure 9C). Treatment with 
10 mg/kg of MK reduced the tumor weight by 68% in mice injected with M059K cells (p = 
0.0003) and 75% (p = 0.0005) in mice injected with GBM8401 cells, respectively (Figure 9D). 
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Figure 8. Maackiain (MK) treatment reduced the proliferation and migration of GBM cells. (A) M059K
and GBM8401 cells were treated with 0.1, 0.25, 0.5, 1, 2, or 4 µM MK for 24 h, and the cell survival
rate was determined by MTT assay. Concentrations below 1 µM MK did not significantly affect
cell survival. (B) BCAS1-SV1 expression was analyzed by Western blotting. Anti-BCAS1 antibody
was used to detect BCAS1 and BCAS1-SV1. β-actin was an internal control. (C) Proliferation of
MK-treated M059K (left) and GBM8401 (right) cells was determined by CellTiter Blue Cell Viability
assay. (D) Migration of MK-treated M059K (left) and GBM8401 (right) cells was determined by
scratch wound assay. Bars, width of the initial scratch gap at the start of the experiment. A migratory
index, Im, was defined as Im = (g0 − g12)/g0, where g12 and g0 are the gap widths at time 12 and
time 0, respectively.

3.10. Maackiain Treatment Reduces Tumor Size in an Immunodeficient Mouse Model

To enhance the potential clinical application of MK, we used a mouse model with
dorsal back subcutaneous xenografts. According to previous studies, the dose of MK-
treated mice was below 10 mg/kg, and there was no obvious toxicity to the mice [44]. In
addition, MK treatment did not significantly affect the body weight of the mice during
the experiment (Figure 9A). Treatment with 10 mg/kg MK led to reductions in tumor
size of 72% (p < 0.0001) in mice injected with M059K cells and 66% (p = 0.0004) in mice
injected with GBM8401 cells at 30 days, respectively (Figure 9B). At the end of the study
period, the subcutaneous tumor was carefully excised and measured, which showed that
tumor size was dose-dependently reduced in the MK-treated groups (Figure 9C). Treatment
with 10 mg/kg of MK reduced the tumor weight by 68% in mice injected with M059K
cells (p = 0.0003) and 75% (p = 0.0005) in mice injected with GBM8401 cells, respectively
(Figure 9D). MK also dose-dependently prolonged the median survival time of tumor-
bearing mice. In the group treated with 10 mg/kg MK, median survival was significantly
prolonged (M059K, 69.2 ± 5.3 days, p = 0.0004; GBM8401, 75.8 ± 7.7 days, p = 0.0006)
compared with that of the DMSO-treated group (M059K, 35.7 ± 3.6 days; GBM8401,
36.4 ± 3.3 days) (Figure 9E).
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Figure 9. Maackiain (MK) has a significant antitumor effect in an immunodeficient mouse tumor 
model of a dorsal back subcutaneous xenograft. M059K or GBM8401 cells were inoculated subcuta-
neously on the dorsal back of male BALB/c nude mice for tumor growth. Mice were randomly as-
signed (n = 6 for each group) to receive five different regimens: normal saline, DMSO, 1 mg/kg MK, 
5 mg/kg MK, and 10 mg/kg MK. Treatments were administered intraperitoneally on days 10, 13, 
and 16. (A) Mouse body weight was monitored at 2-day intervals continuously. There was no sig-
nificant change in body weight overall. (B) Tumor volumes were measured every other day to ob-
tain the tumor growth curves. Tumor growth was slower among MK-treated mice than in the DMSO 
group, particularly in the group treated with 10 mg/kg MK. (C) At day 30, mice were killed under 
anesthesia and tumors were carefully excised. Excised tumor size was smaller among MK-treated 
mice. (D) Tumor weight was remarkably reduced in the MK-treated group compared with the con-
trol (normal saline) and DMSO groups in mice injected with M059K and GBM8401 cells, respectively. 
(E) The survival median of mice was evaluated for the five treatment groups until day 94. Median 
survival was significantly prolonged in MK-treated tumor-bearing mice compared with controls. 
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Figure 9. Maackiain (MK) has a significant antitumor effect in an immunodeficient mouse tumor
model of a dorsal back subcutaneous xenograft. M059K or GBM8401 cells were inoculated subcu-
taneously on the dorsal back of male BALB/c nude mice for tumor growth. Mice were randomly
assigned (n = 6 for each group) to receive five different regimens: normal saline, DMSO, 1 mg/kg
MK, 5 mg/kg MK, and 10 mg/kg MK. Treatments were administered intraperitoneally on days
10, 13, and 16. (A) Mouse body weight was monitored at 2-day intervals continuously. There was
no significant change in body weight overall. (B) Tumor volumes were measured every other day
to obtain the tumor growth curves. Tumor growth was slower among MK-treated mice than in
the DMSO group, particularly in the group treated with 10 mg/kg MK. (C) At day 30, mice were
killed under anesthesia and tumors were carefully excised. Excised tumor size was smaller among
MK-treated mice. (D) Tumor weight was remarkably reduced in the MK-treated group compared
with the control (normal saline) and DMSO groups in mice injected with M059K and GBM8401
cells, respectively. (E) The survival median of mice was evaluated for the five treatment groups until
day 94. Median survival was significantly prolonged in MK-treated tumor-bearing mice compared
with controls.

3.11. Maackiain Treatment Diminishes the Size of Orthotopic Xenografted GBM Tumors of
Immunodeficient Mice

To further assess the potential of MK in inhibiting glioblastoma proliferation and
migration, we injected U87-luc cells (human GBM U87MG cells stably expressing luciferase
reporter) intracranially into immunodeficient mice and used bioluminescence imaging to
assess tumor growth. Figure 10A shows individual bioluminescence images of GBM from
the two experimental groups (control and 10 mg/kg MK), which were taken at 10, 20, 30,
and 40 days after the intracranial implantation of U87-luc cells. At the 10-day time point,
most of the mice showed development of similar small GBMs (Figure 10B). At the 20-day
time point, all six mice had intracranial tumors that varied in size. Tumor sizes appeared
to be smaller in mice treated with 10 mg/kg MK than in the control mice (Figure 10B). At
the 30-day time point, tumor growth in the control mice appeared to be so aggressive that
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the mice died from GBM. However, all mice injected with 10 mg/kg MK survived despite
having slightly enlarged tumors (Figure 10B). On Day 40, all mice in the 10 mg/kg MK
group were still alive and had a slight increase in tumor size (Figure 10B).
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Figure 10. Maackiain (MK) has an obvious antitumor effect, as shown by biophotonic measurement
of orthotopic xenografts in immunodeficient mice. Male BALB/c nude mice were intracranially
infused with 4 × 105 firefly luciferase-labeled U87MG (U87-luc) glioma cells. Mice were divided into
groups treated with normal saline (control) or 10 mg/kg MK with n = 3 per group. After 10 days,
13 days, and 16 days, mice were injected with normal saline or MK (10 mg/kg). (A) Bioluminescence
imaging of GBMs was performed after 10, 20, 30, and 40 days of tumor cell implantation and is
shown as a function of total radiance in photons/s/cm2 per steradian. Tumor burden is revealed by
a colorimetric scale where red represents the highest range of radiance values, which translates to
tumor burden. Red daggers represent death of the animal. (B) Radiation values from GBM-bearing
mice in control and MK-treated groups in panel A were averaged and compared. (C) MK treatment
extended the overall lifespan of GBM-bearing mice. Kaplan–Meier curves are compared between the
control and MK-treated group.

4. Discussion

GBM is a thorny brain cancer with a high rate of recurrence and a short survival
time for which there is currently no effective treatment. Therefore, it is imperative to
understand the molecular mechanism by which GBM occurs and to establish a direct and
clear treatment strategy [45]. Studies have shown that the BCAS1 gene is greatly amplified
on the chromosomes of some cancer patients, but whether and how BCAS1 is involved in
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the development of cancer are unclear [32]. Dysregulation of the mRNA alternative splicing
mechanism of eukaryotic cells, which results in abnormal gene expression or products,
is known to be involved in the development of many diseases, especially cancer [46].
For example, Cheung et al. analyzed exon expression arrays in patients with GBM and
found that BCAS1 undergoes alternative splicing modification [26]. In addition, using
the Clinical Proteomics Tumor Analysis Consortium (CPTAC) dataset, Prakash et al. also
found that the BCAS1 protein sequence significantly changed in GBM [32]. This aroused
our interest in the relationship between alternative splicing of BCAS1 and the establishment
of GBM. We referred to the Bioinformatics database related to alternative splicing of BCAS1
(http://www.ensembl.org/id/ENSG00000064787, accessed on 10 July 2022) and used
cDNA libraries constructed by use of different GBM cell lines to screen and sequence
BCAS1 cDNA. We identified a novel splice variant of BCAS1, designated BCAS1-SV1. We
found that BCAS1-SV1 was weakly expressed in normal brain cells and other cancer cells
but significantly augmented in GBM cell lines. The upregulation or downregulation (data
not shown) of wild-type BCAS1 expression did not change the tumorigenic potential of
GBM cells. However, the overexpression of BCAS1-SV1 significantly enhanced the ability
of GBM cells to proliferate and migrate. We further knocked down BCAS1-SV1 expression
in GBM cells by RNA interference and found that the ability of cells to proliferate and
migrate was significantly inhibited. Therefore, we confirmed that BCAS-SV1 but not BCAS1
can promote GBM tumor proliferation and migration.

To explore why BCAS1-SV1 promotes the carcinogenesis potential of GBM, we used
yeast two-hybrid technology to find possible direct targets of BCAS1-SV1 and identified β-
arrestin 2 as a candidate specific binding target. We further confirmed the direct interaction
between the two and that the BCAS1-SV1 fragment containing amino acid residues 160–312
(including exon 6.1) interacts with the 186–410 amino acid residue fragment of β-arrestin 2.

β-arrestin 2 is encoded by the human ARRB2 gene and is an intracellular adap-
tor/scaffold protein that is highly expressed in the central nervous system. The main func-
tion of the β-arrestin family is to negatively regulate the activation and phosphorylation of
the G-protein-coupled receptor signaling pathway, which promotes agonist-mediated de-
sensitization and internalization and leads to the inhibition of cellular responses to stimuli
such as neurotransmitters, hormones, and sensory signals [47]. Studies have shown that β-
arrestin 2 inhibits β-adrenergic receptor function in vitro and participates in the regulation
of synaptic receptors [48]. In addition, β-arrestin 2 has been shown to be involved in cancer
pathologies such as proliferation, migration, invasion, metastasis, and apoptosis of solid
tumors. In a mouse model of lung cancer, the depletion of β-arrestin 2 activated CXCR2
and NF-κB, leading to tumor growth and angiogenesis [49]. In hepatocellular carcinoma,
the inhibition of β-arrestin 2 expression enhances cell migration and invasion, and lower
β-arrestin 2 expression may be associated with poor prognosis or early cancer recurrence
in patients undergoing surgery [50]. Cao et al. showed that β-arrestin 2 can hinder the
activation of NF-κB by inhibiting the phosphorylation of IkBα, thus reducing the prolif-
eration and migration of renal cell carcinoma in vitro. However, the downregulation of
β-arrestin 2 expression by RNAi promotes the cancerization of cells [51]. Bae et al. reported
that β-arrestin 2 binds to and promotes ubiquitin-mediated 26S proteasomal degradation
of HIF-1α. The overexpression of β-arrestin 2 in GBM slows HIF-1α signaling, preventing
tumor growth and angiogenesis. Conversely, knockdown of β-arrestin 2 increases HIF-1α
levels and lessens survival in patients with GBM [40]. Studies have also indicated that
nociceptin receptor (NOPr), a G protein-coupled receptor that is significantly expressed in
GBM, mediates nociceptin through the β-arrestin 2/PKC/extracellular signal-regulated
kinase 1/2 (Erk1/2) pathway to hinder proliferation, migration, and inflammatory signal-
ing in lipopolysaccharide-stimulated U87 cells [52]. Furthermore, dopamine receptor type
2/β-arrestin 2 signaling can be used to inhibit Akt phosphorylation and cell proliferation in
pituitary adenomas [53]. Through its nucleocytoplasmic shuttling ability, SUMOylated β-
arrestin 2 enhances tumor suppressor p53 signaling by displacing Mdm2 from the nucleus
to the cytoplasm [54].

http://www.ensembl.org/id/ENSG00000064787
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However, some studies have shown that β-arrestin 2 can also promote cell carcinogen-
esis. For example, β-arrestin 2 can induce the invasion and metastasis of ovarian cancer
cells by linking endothelin A receptor and beta-catenin signaling [55]. It also enhances
kisspeptin-10-induced transactivation of epidermal growth factor receptor and breast can-
cer cell invasion by regulating matrix metalloprotease (MMP)-9 secretion and activity [56].
Moreover, β-arrestin 2 promotes intestinal tumor initiation and growth by activating the
Wnt pathway [57] and promotes cell proliferation in diffuse-type tenosynovial giant cell
tumor by activating the PI3K-Akt signaling pathway to inhibit apoptosis [58]. β-arrestin
2 can also promote colorectal cancer growth and migration [59], and proliferation and
anti-apoptosis of ovarian cancer cells [60] by triggering Wilms tumor 1-associated protein
(WTAP). Autocrine activation of protease-activated receptor-2 (PAR-2) by trypsin-like ser-
ine proteases secreted in a metastatic breast cancer cell line may promote metastatic tumor
cell migration through β-arrestin2-dependent ERK1/2 activation [61].

These dual roles of β-arrestin 2 in suppressing and promoting the cancerization
of cells puzzled us. Therefore, to understand the exact role of β-arrestin 2 in GBM, we
directly downregulated the expression of β-arrestin 2 by use of RNAi. We found that the
downregulation of β-arrestin 2 in M059K and GBM8401 cells significantly augmented
the proliferation and migration of GBM cells but did not affect invasion. This confirms
that β-arrestin 2 may be involved in suppressing carcinogenesis in GBM. Furthermore,
we found that inhibiting the expression of β-arrestin 2 markedly abolished the ability of
BCAS1-SV1 to further promote GBM proliferation and migration. Because β-arrestin 2 is
an interaction partner of BCAS1-SV1, we speculate that BCAS1-SV1 may enhance GBM
development by binding to β-arrestin 2 and by hindering its function, resulting in the loss
of ability of β-arrestin 2 to prevent cell proliferation and migration.

In this study, we demonstrated that BCAS-1 SV1 interacts with the C-terminal fragment
of β-arrestin 2 containing amino acid residues 186–410. Other studies showed that the
fragment contains the binding regions of inositol hexaphosphate (IP6), TNF receptor-
associated factor 6 (TRAF6), β2-adaptin, clathrin, and c-Jun N-terminal kinase 3 (JNK3,
mitogen-activated protein kinase 10) [62]. IP6 is a regulator of cellular function that is
abundant in both plants and mammalian cells [63]. IP6 competitively inhibits AKT protein
activity to block colon cancer proliferation [64] as well as to block the migratory ability and
the expression of invasion-related markers of colorectal cancer cells in vitro [65]. Therefore,
the ability of IP6 to lessen cancer cell proliferation, migration, and invasion may be mediated
by the tumor suppressor activity of β-arrestin 2 in GBM. The competitive effect of BCAS1-
SV1 on the binding site of β-arrestin 2 to IP6 may abolish the ability of IP6 to inhibit tumors.

TRAF6 is known to act as an E3 ubiquitin ligase to directly participate in the ubiquiti-
nation of the catalytic subunit PIK3CA of PI3K and Akt to enhance the PI3K-Akt signaling
pathway to promote tumorigenesis [66,67]. TRAF6 augments the growth, proliferation, in-
vasion, and migration of glioma cells and gastric cancer and inhibits their apoptosis [68,69].
In addition, studies have revealed that, in pancreatic cancer, TRAF6 is overexpressed and
promotes tumorigenicity [70]. The knockdown of TRAF6 expression promotes apoptosis
and inhibits the invasion of human lung cancer cells and osteosarcoma [71,72]. In colon
cancer, TRAF6 activates the NF-κB/AP-1 signaling pathway by entering the nucleus, caus-
ing cancer cell growth [73]. Furthermore, TRAF6 has been shown to support the malignant
phenotype of melanoma cells by activating the NF-κB/FGF19 signaling pathway [74].
β2-Adaptin is a subunit of the endocytic adaptor protein (AP)-2 complex involved in
actopaxin-dependent recruitment. β2-adaptin controls the balance between normal cell ad-
hesion formation and invasive adhesion structures by raising focal adhesion-mediated cell
polarity and migration [75]. Clathrin is mainly involved in the formation of coated vesicles
and can promote cell spreading and migration [76]. JNK3 is a neuron-specific isoform of
c-Jun N-terminal kinase. JNK3 is involved in cell proliferation and invasion and prevents
apoptosis in prostate cancer [77]. We believe that β-arrestin may be a negative regulator of
the oncogenic potential of TRAF6, β2-adaptin, clathrin, and JNK3 in GBM. However, the
effect of β-arrestin 2 on tumors may depend on the type of cancer. Moreover, several studies



Cancers 2022, 14, 3890 28 of 35

showed that β-arrestin 2 interacts with NF-κB inhibitor α, CXCR4, and some other factors.
The inhibitor of NF-κB, IκBα, can interact with β-arrestin2 and work together to inhibit the
activity of NF-κB, affecting the expression of downstream-related genes [78]. Interaction
of the chemokine receptors CXCR4 with β-arrestin 2 enhances stromal cell-derived fac-
tor 1α-induced activation of p38 MAPK and ERK, thereby augmenting lymphocyte and
breast cancer chemotaxis [79]. Therefore, BCAS1-SV1 may also affect NF-κB activity and
metastasis in GBM cells by inhibiting the interaction ability of β-arrestin 2, which deserves
further study.

It is worth mentioning that BCAS1 forms homodimers with itself [34]. However, we
found that BCAS1-SV1 does not form a homodimer or a heterodimer with BCAS1 (data not
shown). BCAS1 might interact with itself through amino acid sequences between exons 8
and 10, which were deleted on BCAS1-SV1. Therefore, an increase in the level of BCAS1-
SV1 relative to BCAS1 may reduce the overall function of the original BCAS1. The data in
this study show that BCAS1 is not directly involved in the establishment of GBM. However,
a recent study reported that BCAS1 participates in oligodendritic cell neuromyelination and
α-synuclein-induced pathology of multiple system atrophy (MSA) [36]. Thus, whether the
overexpression of BCAS1-SV1 disturbs the normal expression of BCAS1 in glial cells and
then suppresses the formation of nerve myelin and establishes MSA deserves further study.

In the present study, we found that BCAS1-SV1 binding to β-arrestin 2 may hinder
its tumor suppressor function, which may be one of the main reasons for the growth
and migration of GBM and makes BCAS1-SV1 an excellent target for the development
of therapeutic agents. However, finding inhibitors of the interaction of BCAS1-SV1 with
β-arrestin 2 is extremely challenging. We referred to the model established by the pub-
lished literature, using the principle of the yeast two-hybrid system and combining it
with yeast growth analysis, and applied it to the screening of small-molecule drugs [43].
Screening against 42 phytocompounds owned by our laboratory indicated that MK could
prevent the interaction of BCAS1-SV1 with β-arrestin 2. MK is isolated from the traditional
Chinese herbal medicine Kushen (dried roots of Sophora flavescens Aiton) [80]. MK has
been reported to have multiple pharmacologic properties, such as anti-allergic [81,82], anti-
inflammatory [44,83], anti-oxidative [44], anti-obesity [84], and antibacterial [85] activity
in addition to neuroprotection [86,87]. In cancer therapy, MK can hinder the proliferation,
migration, invasion, and foci formation of triple-negative breast cancer cells and thus has a
significant inhibitory effect on tumor growth. Furthermore, MK can induce apoptosis by
reducing miR-374a, leading to an increase in GADD45α [88]. In in vitro studies, we found
that 1 µM MK was not lethal to GBM cells but could significantly diminish the proliferation
and migration of cancer cells. For in vivo GBM treatment, we referred to the previous
literature on MK for the treatment of type II diabetic nephritis in rats, in which the highest
dose of 10 mg/kg was not toxic [44]. In the present study, our results indicated that, in
the subcutaneous xenograft mouse model and the U87-luc orthotopic xenograft mouse
model, the growth and migration of GBM were significantly slowed after tail vein injection
of 10 mg/kg MK. The lifespan of tumor-bearing mice was also significantly prolonged.
Therefore, MK should be used as a specific candidate regent for the treatment of GBM
tumors in the future. MK can effectively diminish the proliferation and migration of GBM
cells by destroying the interaction between BCAS1-SV1 and β-arrestin 2, which should
avoid damage or side effects to other normal cells in human therapy.

A final question requiring clarification is why the splice variant of BCAS1-SV1 is
abundantly produced in GBM cells compared with normal cells or other cancer cells? There
are two main reasons for the occurrence of alternative splicing variation in genes: one is
that the mutation or modification of cis regulatory elements on the gene affects the selection
of alternative splicing (AS) sites [89]. However, no specific mutation or modification oc-
curred in the BCAS1 gene sequence according to the analysis results of The Cancer Genome
Atlas Glioblastoma Multiforme (TCGA-GBM) data. The other is caused by the mutation,
abnormal expression, or modification of trans activating splicing factor, resulting in relative
changes in its level and localization in cells [90]. Golan-Gerstl et al. reported that the splicing
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factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, which is overexpressed
in GBM, regulates AS events of the proto-oncogenes RON, BIN1, c-FLIP, and WWOXp
to promote malignant transformation and is associated with poor patient prognosis [91].
Moreover, activating EGFRvIII mutation in GBM increases the expression of hnRNP A1
splicing factor to enhance splicing of Max, a Myc-dependent transformation enhancer, and
to generate δ Max. δ Max induces the upregulation of glycolytic genes and cell proliferation
to decrease significantly patient survival [92]. The overexpression of splicing-factor-3B-
subunit-1 (SF3B1) in GBM results in shortened patient survival, increased drug resistance,
and poor prognosis. The blockade of SF3B1 activity prevents the AKT/mTOR/ß-catenin
pathway and BCL-XL splicing variant; lessens GBM proliferation, migration, tumorsphere
formation, and VEGF secretion; and induces apoptosis [93]. Splicing factor Serine and
arginine rich splicing factor 3 (SRSF3) affected more than 1000 AS events and induced
self-renewal, cell proliferation, and tumorigenesis upregulation in GBM patients, which
resulted in tumor progression and a poor prognosis [94,95]. It is worth mentioning that the
NF-κB activating protein (NKAP), an RNA-binding protein, can regulate mRNA splicing
and maturation by binding to N6-methyladenosine (m6A) on the transcript of a ferrop-
tosis defense protein, cystine/glutamate antiport (SLC7A11), making GBM escape death
due to ferroptosis [96]. Similarly, SRSF7 can specifically regulate m6A of mRNA of PDZ
binding kinase (PBK) to promote its AS response regulated by insulin-like growth factor
2 mRNA-binding protein 2 (IGF2BP2), which ultimately leads to GBM proliferation and
migration [97]. IGF2BP3 has also been shown to be a biomarker for gliomas [98]. Probable
ATP-dependent RNA helicase DDX46, involved in pre-mRNA splicing and upregulated
in GBM, promotes cell proliferation by activating MAPK-p38 signaling [99]. Likewise,
SON is overexpressed in GBM patients and associated with cell proliferation. SON acti-
vates PTBP1-mediated oncogenic splicing by enhancing intron removal and maturation of
PTBP1. Additionally, SON suppressed RBFOX2-mediated non-oncogenic neuronal splicing
by binding hnRNP A2B1 and skipping RBFOX2-targeted cassette exons in GBM [90]. In
addition, other splicing factors or RNA-binding proteins such as SRSF1 [100–102], ser-
ine/arginine protein kinase 1 (SRPK1) [103], RNA-binding protein Musashi1 (MSI1) [104],
and hnRNPH [25] were also highly expressed in GBM. In contrast, muscleblind-like protein
(MBNL) and ataxin 2-binding protein 1 (A2BP1) block GBM initiation and progression
and are less often expressed in GBM [105,106]. It is worth mentioning that apoptotic GBM
cells induced proliferation and therapy resistance of surviving tumor cells by secreting
apoptotic extracellular vesicles (apoEVs) enriched with RNA binding motif protein 11
(RBM11) to switches splicing of MDM4 and Cyclin D1 toward the expression of more
oncogenic isoforms [107].

Exactly which trans acting splicing factors are involved in the alternative splicing of
BCAS1-SV1 is a question we want to explore further. According to the report of Li et al.,
404 splicing factors are predicted to be involved in GBM-related alternative splicing
events [108]. We selected candidates from the existing literature that were shown to be
involved in GBM-related alternative splicing mechanisms and analyzed them using the
Bioinformatics website (version 1.8) [109]. The predicted results showed that SRSF1, RBM3,
SRSF7, and MBNL1 may be involved in the alternative splicing of BCAS-SV1. We will
combine RNA immunoprecipitation, splicing minigene assays, and mutagenesis of the
splicing factor binding site to confirm this prediction. In the future, we can also inhibit
the expression of BCAS1-SV1 by adjusting the amount, activity, and action position of
specific splicing factors. Furthermore, we can block BCAS1-SV1 production by directly
preventing or promoting the binding of splicing factors to specific cis regulatory elements.
Antisense oligonucleotides have been developed to mediate splice switching, which causes
premature stop codons as well as exon skipping or mRNA decay to constrain the expression
of alternative splicing isoforms of oncogenic proteins [110]. Antisense oligonucleotides can
also be chemically modified to increase their stability and binding affinity. The creation
of efficient delivery systems for antisense oligonucleotides is a practical direction for the
development of anti-cancer therapeutics [111]. There has also recently been interest in the



Cancers 2022, 14, 3890 30 of 35

use of individual decoy oligonucleotides that can specifically bind to splicing factors and
inhibit their splicing activity in vitro and in vivo [112]. However, it should be kept in mind
that specific trans activating spicing factor and cis regulatory element interactions often
regulate alternative splicing in multiple genes and that the abovementioned corrective
strategies may disturb the expression of some genes that are not related to carcinogenesis.
Therefore, it may be more feasible to choose small-molecule drugs that directly disrupt the
interaction between BCAS1 and β-arrestin 2 for therapeutic application.

5. Conclusions

The discovery of BCAS1-SV1 is of great significance. Our findings not only confirm
the role of the BCAS1 gene in GBM tumor biology (although not the wild-type BCAS1
protein) but also serve as a molecular marker for the classification of GBM malignancy
in the future. Our discovery of BCAS1-SV1 may provide a basis for the development of
new cancer therapeutic strategies such as interference small molecules, small peptides,
or aptamers.
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