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Interventions and Complications (DCCT/EDIC, n = 1,304) 
and Wisconsin Epidemiologic Study of Diabetic Retin-
opathy (WESDR, n  =  603). Among 34 previous signals 
for DR, after controlling for multiple testing, no associa-
tion was replicated in our meta-analyses. rs1571942 and 
rs12219125 at PLXDC2 locus showed nominally signifi-
cant (<0.05) association with SDR in the same direction 
as previous report, as did rs1801282 in PPARG gene with 
MDR. Among 55 loci previously associated with DN, three 
showed suggestive associations with SDR in our study 
without maintaining significance after correction for multi-
ple testing. Of particular interest, rs1617640 (EPO) was not 
significantly associated with DR status, combined SDR–
DN phenotype, time to SDR or time to DN (all P > 0.05). 
Lack of replication of previous DR hits and EPO despite 
reasonable statistical power implies that many of these may 
be false positives. Consistent with pleiotropy, we provide 
suggestive collective evidence for association between DR 
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and variants previously associated with DN without reach-
ing statistical significance at any single locus.

Introduction

Microvascular complications of diabetes are major sources 
of morbidity worldwide. Diabetic retinopathy (DR) is the 
main cause of blindness in adults of working age (Cent-
ers for Disease Control and Prevention 2011) and diabetic 
nephropathy (DN) is the leading cause of renal failure 
(Atkins 2005). Extensive pathophysiological and epidemio-
logic studies over the past two decades have identified risk 
factors and improved primary or secondary prevention of 
diabetic complications. Introduction of intensive glycemic 
control and photocoagulation treatment for DR are exam-
ples of the success of this approach. Similarly, the identi-
fication of genetic factors for diabetic complications has 
potential benefit for understanding mechanisms that may 
lead to better diagnosis, screening or treatment.

Several lines of evidence suggest a genetic contribu-
tion to the risk of microvascular complications. In particu-
lar, significant familial clustering of both DN and severe 
DR (SDR) has been reported after accounting for cross-
sectional conventional risk factors (The DCCT Research 
Group 1997). Nonetheless, genome-wide association stud-
ies (GWAS), the main approach for investigating genetic 
basis of complex diseases, have been generally unsuccess-
ful in identifying SNPs showing genome-wide significant 
(P ≤ 5 × 10−8) association with DR (Dudbridge and Gus-
nanto 2008). Besides, top signals from these studies have 
not been replicated (P < 0.05 in the same direction for the 
same phenotype) (Chanock et  al. 2007) in independent 
populations (Fu et al. 2010; Grassi et al. 2011; Huang et al. 
2011; Sheu et  al. 2013). GWAS of DN have had moder-
ate success in finding significant signals (P ≤  5 ×  10−8), 
yet these studies also suffer from a general lack of robust 
replication (Brennan et  al. 2013). With a few exceptions, 
candidate gene association studies of diabetic complica-
tions have also been similarly unsuccessful in identifying 
replicable signals. Moreover, undetectable population strat-
ification (and other technical issues) makes candidate gene 
studies prone to spurious results.

As microvascular complications, DR and DN share 
pathophysiological mechanisms and common risk factors. 
However, thus far, few genetic polymorphisms with pleio-
tropic effects have been reported for these two complica-
tions (Abhary et al. 2009; Mooyaart et al. 2011; Tian et al. 
2011). Interestingly, some DN studies require the presence 
of DR in controls resulting in a bivariate outcome.

In the current meta-analysis of DR, we sought to rep-
licate the association of top signals from previous GWAS 
and meta-analyses of candidate gene studies for DR. 

Considering possible pleiotropy of DN and DR, we also 
examined variants associated with DN from previous 
GWAS and candidate gene meta-analyses for association 
with DR. Finally, we tested an EPO promoter polymor-
phism (rs1617640), which has been associated with a com-
posite phenotype of end-stage renal disease (ESRD) and 
proliferative diabetic retinopathy (PDR) (Tong et al. 2008).

Materials and methods

Literature review

Retinopathy signals

A PubMed search was performed using the following key-
words to identify genome-wide association studies for 
DR: (((diabetes OR diabetic) AND retinopathy)) AND 
((genome wide association) OR GWAS). Of 29 identified 
records (Nov 7, 2013), seven were relevant (Table S1). This 
included four previous GWAS of DR, a GWAS of retinopa-
thy in individuals without diabetes and two large candidate 
gene studies with considerable genomic coverage.

Meta-analyses of previous candidate gene association 
studies were identified by the following PubMed search: 
((((genetics OR genetic OR gene OR polymorphism OR 
SNP OR allele OR genotype OR variant OR variation OR 
mutation)) AND ((diabetes OR diabetic) AND retinopa-
thy))) AND (meta-analysis). Among 44 records (Mar 24, 
2014), 18 were relevant meta-analyses with positive results 
(Table S3).

Nephropathy signals

To identify GWAS studies for DN, we did a PubMed search 
with the following terms: ((genome wide association OR 
genome-wide association OR gwas)) AND ((diabetes OR 
diabetic) AND nephropathy). Out of 163 records (Nov 
13, 2013), 11 were relevant (Table S2). We also included 
hits reported in a previous meta-analysis of candidate gene 
studies for DN (Mooyaart et al. 2011).

Study populations

All the studies were conducted in accordance with the dec-
laration of Helsinki, were approved by the institutional eth-
ics review boards and obtained written informed consents 
from the participants.

DCCT/EDIC

The Diabetes Control and Complications Trial (DCCT, 
1983–1993) was a randomized clinical trial designed to 
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compare the effect of intensive glycemic management, 
aimed at normalizing blood glucose, with that of the con-
temporary conventional diabetes treatment in preventing 
the development (primary cohort) or slowing the progres-
sion (secondary cohort) of DR in type 1 diabetes (T1D) 
(The DCCT Research Group 1993). Following termination 
of the DCCT, the majority of participants have been fol-
lowed in the Epidemiology of Diabetes Interventions and 
Complications (EDIC) study (White et al. 2010). Subjects 
underwent frequent seven-field stereoscopic fundus pho-
tography during DCCT (every 6  months) and EDIC (an 
average of 3.8 photos per person over 10 years). Other phe-
notypic measures, including A1C values, have also been 
recorded longitudinally during these studies.

WESDR

The Wisconsin Epidemiologic Study of Diabetic Retinopa-
thy (WESDR) is a population-based observational cohort 
study of diabetic patients from southern Wisconsin. We 
studied T1D patients in WESDR. Patients underwent ste-
reoscopic fundus photography of seven standard fields 
at baseline and as part of their follow-up examinations 
performed approximately at 4, 10, 14 and 25  years from 
baseline. At each follow-up visit, A1C was also measured 
(Klein et al. 2008).

Phenotype definition

We defined severe diabetic retinopathy (SDR) as severe 
non-proliferative diabetic retinopathy (NPDR) or worse. In 
both studies retinopathy status for each patient was ascer-
tained at the last follow-up visit. Fundus photographs from 
the DCCT/EDIC and WESDR cohorts were respectively 
graded in the Fundus Photographic Reading Center and 
the Ocular Epidemiology Reading Center (both at Depart-
ment of Ophthalmology in the University of Wisconsin), 
based on the Early Treatment Diabetic Retinopathy Study 
(ETDRS) severity scale (Klein et  al. 2008; The DCCT 
Research Group 1995). Severe diabetic retinopathy (SDR) 
was defined as an ETDRS level of 53/<53 or worse or a 
history of panretinal photocoagulation (scatter laser) treat-
ment. Participants without retinopathy or with milder forms 
of retinopathy not reaching this level were considered as 
controls.

To ensure consistency with some previous studies that 
may have used a milder endpoint as phenotype, we also 
used mild diabetic retinopathy (MDR) as an alternate out-
come. MDR was defined as the occurrence of mild NPDR 
or worse. Cases had an ETDRS level above 35/<35 in the 
DCCT/EDIC and above 31/<31 in WESDR, while con-
trols were below this level (i.e. no retinopathy or only 
microaneurysms).

In the combined SDR–DN analysis for the EPO vari-
ant, the case–control status of each participant was deter-
mined at the final follow-up visit. Cases were patients 
with SDR (as above) plus DN: receiving renal replace-
ment therapy (transplant or hemodialysis) or showing 
gross proteinuria in urinalysis (WESDR) or persistent 
macroalbuminuria (DCCT/EDIC: AER >300  mg/24  h) 
or a creatinine-based estimated GFR less than 15  mL/
min/1.73  m2 (DCCT/EDIC). Controls were patients with 
no retinopathy or only microaneurysms (ETDRS step 
<4) and no DN: no history of renal replacement therapy 
or proteinuria (WESDR) plus being normoalbuminuric 
(AER <30  mg/24  h) with an e-GFR greater than 60  mL/
min/1.73 m2 (DCCT/EDIC).

Genotyping

DCCT/EDIC and WESDR subjects were genotyped 
using the Illumina (Illumina® Inc., San Diego, CA, USA) 
Human 1M and HumanOmni1-Quad assays, respec-
tively. Genotypes were called per study using Illu-
mina’s proprietary GenCall algorithm implemented in 
BEADSTUDIO/GENOMESTUDIO software (Illu-
mina®). Genotype calls were exported to PLINK v1.07 
(http://pngu.mgh.harvard.edu/purcell/plink/) for further 
analysis. Extensive QC measures were undertaken to 
remove samples with low genotyping quality and individu-
als with cryptic relatedness or ethnic admixture (Paterson 
et al. 2009). All analyses were limited to individuals from a 
white European ancestry who clustered with CEU and TSI 
samples of HapMap 3 (The International HapMap 3 Con-
sortium 2010) in principal component analysis. As another 
measure against population stratification, the association 
between the first three principal components (PC) and the 
outcome was assessed using logistic regression which was 
not significant in either univariate or multivariate models.

Imputation

Genotype imputation for untyped SNPs was performed 
separately for each study using Howie et al. (2009) meth-
odology implemented in impute v2 (http://mathgen.stats.
ox.ac.uk/impute/impute_v2.html). Phased autosomal chro-
mosomes from HapMap 3 release 2 and HapMap 2 release 
24 were used as reference panels. A multi-population ref-
erence panel, consisting of all populations in HapMap, 
was used for imputation, allowing the software to choose 
the best customized reference set for each individual. Ini-
tial pre-phasing of each study population was performed 
using shapeit program (http://www.shapeit.fr/) to produce 
best-guess haplotypes before imputing untyped genotypes 
into the estimated haplotypes. For the SNPs present in both 
HapMap releases, HapMap 3 was used as reference. SNPs 

http://pngu.mgh.harvard.edu/purcell/plink/
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.shapeit.fr/
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with low imputation quality (info <0.8) were excluded 
from further analysis.

Statistical analysis

DR meta‑GWAS

We performed GWAS of SDR assuming an addi-
tive coding for the genotypes and using dosages 
from genotype imputation for untyped SNPs in snpt-
est v2.4.1 (https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html), fitting a logistic regression 
model adjusting for the effects of age, gender, diabetes 
duration and mean A1C. Four separate GWAS analyses 
were performed: one in WESDR and three in cohort–treat-
ment subgroups of DCCT/EDIC (primary cohort, second-
ary cohort on conventional treatment, secondary cohort 
receiving intensive treatment). To avoid sparseness, the 
primary cohort of DCCT/EDIC was not divided into sepa-
rate treatment groups; but a treatment indicator was added 
to the logistic model. Meta-analysis was performed at 
each SNP to combine the results of separate studies using 
metal (http://www.sph.umich.edu/csg/abecasis/Metal/) to 
apply inverse-variance weighted methodology assuming 
fixed effects. Analyses for MDR were performed simi-
larly, but DCCT/EDIC was divided into four subgroups 
based on cohort and treatment. Here, we present only the 
results for previous DR and DN signals; complete results 
of meta-GWAS will be published separately.

Association analysis for EPO polymorphism

Association analyses were performed in sas v9.3. For time-
to-SDR analysis we tested the association of the variant 
with time since the onset of study to the first development 
of SDR using complementary log-log model in each study 
before combining the results in a fixed-effect meta-anal-
ysis. For time-to-DN analysis, we tested the association 
between EPO polymorphism and time to the development 
of DN using discrete time Cox regression in WESDR and 
DCCT/EDIC before combining the results in a fixed-effect 
meta-analysis. All the models adjusted for age and diabetes 
duration at baseline, gender and a time-dependent updated 
mean A1C. For ordinal logistic regression, association of 
EPO polymorphism with DR status was tested after remov-
ing DN cases, considering a hierarchy of PDR vs. NPDR 
vs. no-DR.

Power calculations and multiple testing

Results with a two-sided P < 0.05 after Bonferroni correc-
tion for the effective number of tests were considered sig-
nificant. The effective number of tests was calculated from 
the combined WESDR and DCCT/EDIC (best-guess) 
genotypes, using the Genetic Type I error calculator 
(http://statgenpro.psychiatry.hku.hk/gec/index.php) (Li et al. 
2012). Power calculations were conducted using quanto 
v1.2.4 (http://hydra.usc.edu/gxe/) assuming a log-additive 
model.

Table 1   Characteristics of study subjects in DCCT/EDIC and WESDR

Mean ± standard deviation is reported
a  Number of subjects with phenotype and genotype data after QC

Characteristic Unit DCCT/EDIC WESDR

Primary cohort Secondary cohort  
conventional treatment

Secondary cohort  
intensive treatment

Na

 Total 651 323 330 603

 Case SDR 53 114 42 309

 Control SDR 598 209 288 294

Gender % Male 52 54 55 50

Age at final follow-up visit year 42.0 ± 7.9 43.4 ± 6.9 44.3 ± 7.1 48.5 ± 10.6

Duration of diabetes at final visit year 18.2 ± 3.2 25.1 ± 4.7 25.6 ± 4.5 34.3 ± 8.5

A1C level at first visit % 8.81 ± 1.67 8.83 ± 1.50 8.97 ± 1.44 9.93 ± 1.88

mmol/mol 72.8 73.0 74.5 85.0

Updated mean A1C during study % 8.23 ± 1.16 8.52 ± 1.06 7.68 ± 0.96 8.91 ± 1.18

mmol/mol 66.4 69.6 60.4 73.9

Follow-up duration year 15.6 ± 2.8 16.5 ± 3.0 16.8 ± 2.5 22.0 ± 5.9

Number of fundus photography visits count 15.6 ± 3.7 17.5 ± 3.4 17.9 ± 3.4 4.5 ± 0.8

https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html)
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html)
http://www.sph.umich.edu/csg/abecasis/Metal/
http://statgenpro.psychiatry.hku.hk/gec/index.php
http://hydra.usc.edu/gxe/
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Testing collective association of loci with SDR

To evaluate collective association of loci with SDR, we 
used Fisher’s method for combining independent tests 
and Stouffer’s Z score method (Fisher 1932; Stouffer et al. 
1949). In Fisher’s method, P values for association at all 
loci (single SNP at each locus) were combined irrespec-
tive of the direction of effect, while in Stouffer’s method, 
Z scores for association were summed considering consist-
ency of direction with the original report.

Results

Table  1 summarizes the characteristics of participating 
studies in the current meta-analysis.

Replication of previous signals for DR

We investigated the association of previously reported sig-
nals for retinopathy with SDR in our meta-analysis. The list 
for replication comprised three different sources:

1.	 Top reported signals (P  <  10−5, 54 SNPs in 11 loci) 
in previous GWAS studies of DR including two large 
candidate gene association studies with genome-wide 
coverage (Roy et  al. 2009; Sobrin et  al. 2011) (Table 
S1).

2.	 Top reported signals (P < 10−5, 22 SNPs in 11 loci) in 
a previous GWAS of retinopathy in individuals without 
diabetes (Jensen et al. 2013).

3.	 Polymorphisms with evidence for association with DR 
(P  <  0.05, 18 SNPs in 16 loci) from previous meta-
analyses of candidate gene association studies (Table 
S3).

There was no overlap between the above categories 
either based on the SNP or the closest gene. The final 
list included 95 SNPs representing 39 loci. Of these, 87 
SNPs representing 32 loci were genotyped or imputed in 
our data and we identified suitable proxies (r2 > 0.9) for 3 
more SNPs using genotype data from HapMap and 1,000 
genomes. No suitable tag SNPs could be identified for five 
SNPs (5 loci) including the aldose reductase (CA)n repeat 
polymorphism (Abhary et al. 2009). Among the 90 tested 
SNPs at 34 independent loci, three SNPs (2 loci) showed 
nominally significant (P  <  0.05) association with SDR in 
our meta-analysis (Table  2). Only SNPs at the PLXDC2 
locus on chromosome ten showed nominal association in 
the same direction as the original study without maintain-
ing significance after correction for the effective number of 
tests (P > 0.0015 for 34 DR loci). Interestingly, both SNPs 
at this locus had the same direction of effect in WESDR Ta
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and DCCT/EDIC subgroups without significant evidence 
of heterogeneity of effect (I2 =  0, P  >  0.67 Cochran’s Q 
test).

To estimate statistical power to detect association at 
these loci in the current study, we performed calculations 
using effect size estimates from the original reports and 
allele frequencies from our data. Our study was expected 
to have strong power to detect associations at 25 loci 
(1 − β > 0.85, two-sided α = 0.05), moderate power at 6 
loci (0.6 < 1 − β < 0.8, two-sided α = 0.05) and low power 
at 3 loci (1 − β < 0.5). To avoid inflated power estimates 
due to the winner’s curse, we repeated power calculations 
after shrinking the original effect sizes by 50 % (Ioannidis 
et al. 2009; Sun et al. 2011). Based on these conservative 
bias-reduced calculations, the current study has high power 
(1 − β > 0.8, α = 0.05) to detect association at 9 loci, mod-
erate power (0.5 < 1 − β < 0.8, α = 0.05) for 7 loci, and 
low power (1 − β < 0.5, α =  0.05) for the remaining 18 
loci.

Considering possible statistical power limitations, we 
asked whether there is evidence for collective associa-
tion of these loci with SDR in our meta-analysis. Fisher’s 
combined probability test did not show statistically signifi-
cant evidence for association (P = 0.54); yet, Stouffer’s Z 
score method which considers the direction of association 
showed a marginally significant collective evidence for 
association with SDR at these 34 loci (P = 0.04). However, 
after dropping the top nominally significant locus on chro-
mosome 10, the joint analysis of the remaining loci was not 
significant (P = 0.09). Of the 34 tested loci, the direction of 
association was consistent between our meta-analysis and 
the original report at 19 loci not indicating an enrichment 
(exact binomial test P = 0.6). Besides, there was no statis-
tically significant correlation between effect size estimates 
in our meta-analysis and the original studies for these 34 
loci (r = 0.12, P = 0.38, Pearson’s correlation). Figure S1 
compares effect size estimates in our meta-analysis with 
the original reports.

To ensure consistency with some of the previous studies 
that may have used milder levels of DR as the outcome, we 
also investigated the association of previously reported sig-
nals for retinopathy with mild diabetic retinopathy (MDR) 
in our meta-analysis. Among the 90 tested SNPs at 34 inde-
pendent loci, only a single SNP in PPARG showed nomi-
nally significant association with MDR (P = 0.0096). The 
direction of effect was consistent with the previous report 
(Table 2); however, there was significant evidence for heter-
ogeneity of effect in our meta-analysis (I2 = 74, P = 0.004 
Cochran’s Q test). The association at this SNP was not sig-
nificant after adjusting for multiple testing. Similar to SDR 
analysis, 19 out of 34 loci showed association in a direc-
tion consistent with the original reports which is not indica-
tive of an enrichment (exact binomial test P = 0.6). After 

removing the top signal at PPARG, there was no signifi-
cant collective evidence for association with MDR at the 
remaining 33 loci (P = 0.54, Stouffer’s Z score method).

Association of previous DN variants with DR

A list was composed of SNPs with evidence for association 
with DN based on the following criteria:

1.	 Top signals from previous GWAS of DN (Table S2, 
P ≤ 10−4, 79 SNPs, 49 loci).

2.	 SNPs with evidence for association with DN in a pre-
vious comprehensive meta-analysis of genetic associa-
tion studies (Mooyaart et al. 2011) (P < 0.05, 24 SNPs/
loci).

We also included other reported SNPs in proximity of 
top hits that did not necessarily meet our P value threshold 
in each study. This increased the total number of investi-
gated SNPs to 122 representing 59 loci. Genotype or impu-
tation data were available for 107 SNPs and appropriate 
proxies (r2  >  0.8) were found for eight others based on 
HapMap 2 and 3 data. Among 115 tested SNPs represent-
ing 55 loci, 9 SNPs at 5 independent loci showed nominal 
evidence (P < 0.05) for association with SDR in our meta-
analysis (Table 3). This is not significantly higher than the 
number of successes expected under the null (P  =  0.14, 
exact binomial test). After adjusting for the effective num-
ber of tests (significance threshold P < 6.97 × 10−4 for 72 
effective tests), no SNP maintained significance for associ-
ation with SDR; yet SNPs at three loci (near CPVL/CHN2, 
PVT1, LINC00523) showed suggestive association 
(P < 1.39 × 10−2 for 72 effective tests). In a similar analy-
sis, none of the 115 tested SNPs showed significant asso-
ciation with MDR (all P > 0.05).

The current study may be underpowered to detect asso-
ciation of single SNPs with modest effect sizes; therefore, 
we tested whether the examined DN loci collectively pro-
vide evidence for association with SDR. Collectively, these 
55 loci showed statistically significant association with 
SDR (P  =  0.049, Fisher’s combined probability test). 37 
loci showed association with SDR in the same direction 
as previously reported for DN (P = 0.007, exact binomial 
test). There was also a statistically significant positive cor-
relation between the SDR effect sizes in our meta-analysis 
and the DN effect sizes in the original reports for these loci 
(r = 0.41, P = 0.001, Pearson’s correlation, Figure S2).

Association of EPO promoter polymorphism with SDR 
and DN

Table 4 summarizes the meta-analysis results for the EPO 
promoter polymorphism, rs1617640, which did not show 
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significant association with SDR status (P = 0.79) or time 
to SDR (P = 0.61). Since rs1617640 was originally asso-
ciated with a combined ESRD and PDR phenotype (Tong 
et  al. 2008), we also tested its association with a com-
bined DN and SDR phenotype. The SNP was not associ-
ated with SDR +  DN status at the last follow-up visit in 
either WESDR or DCCT/EDIC, nor in the meta-analysis 
of the two populations (P  =  0.10, β  =  0.37, 95  % CI: 
[−0.07, 0.81] in our meta-analysis vs. β = −0.41, 95  % 
CI: [−0.52,−0.29] in the original study). To increase con-
sistency with the original study which required a minimum 
of 15 years of diabetes in controls, we repeated our anal-
ysis with a similar duration criteria which did not change 
the results (P =  0.07, β =  0.41, 95  % CI: [−0.04, 0.85] 
in opposite direction to the original study). Furthermore, 
rs1617640 was not associated with time to development of 
nephropathy in either WESDR (P = 0.74) or DCCT/EDIC 
(P = 0.065).

A previous study suggested that EPO polymorphism 
may be associated with DR only under a recessive model 
(Abhary et al. 2010). We, therefore, tested the association 
of rs1617640 with DR status (PDR vs NPDR vs no-DR) 
in a recessive model after removing DN cases; it was not 
significant (P =  0.08 in opposite direction to the original 
report).

We evaluated the statistical power of the current study 
to detect association at the EPO variant assuming an odds 

ratio of 0.66 (95 % CI: 0.58–0.76) for the additive effect of 
protective allele (effect size of the two replication cohorts, 
GoKinD and Boston T1D, in the original report) and an 
allele frequency of 0.42. Based on the upper and lower con-
fidence limits of the effect estimate, a study of current size 
has statistical power between 0.62 and 0.99 to detect an 
association (two-tailed α level of 0.05).

Discussion

Despite evidence for a genetic contribution to diabetic 
retinopathy, GWAS have not been very successful in iden-
tifying loci for DR. Neither have the top loci from these 
studies been replicated in independent populations (Fu 
et  al. 2010; Grassi et  al. 2011; Huang et  al. 2011; Sheu 
et al. 2013). Results from candidate gene association stud-
ies have also been often conflicting (Abhary et al. 2009).

Previous studies vary considerably in outcome defini-
tion and grading methods. In the current study we con-
ducted a meta-analysis of two relatively large T1D cohorts 
using seven-field stereoscopic fundus photographs, the 
gold standard method to phenotype DR. We used SDR and 
MDR as our outcomes. These severity grades represent 
very severe (preproliferative) and very mild NPDR respec-
tively and together correspond well with the outcomes used 
in most previous studies. Nevertheless, current evidence 

Table 3   Variants showing nominal association (Puncorrected  <  0.05) in SDR meta-analysis among SNPs previously associated with diabetic 
nephropathy

Association direction in the original study (diabetic nephropathy) and current study (diabetic retinopathy) is compared

Chr chromosome, Position physical position based on hg18, A1/A2 effect/other alleles, OR odds ratio, P original association P value with dia-
betic nephropathy, Freq1 mean frequency of A1 in the current meta-analysis, Direction direction of effect in each study in the current meta-anal-
ysis (order: WESDR, primary cohort, secondary cohort—conventional Rx, secondary cohort—intensive Rx of DCCT/EDIC), Pcase–control P value 
in case–control meta-analysis of SDR without adjusting for multiple testing

* The significance threshold after accounting for effective number of tests is P < 6.97 × 10−4 with suggestive association at P < 1.39 × 10−2

SNP Chr Position Reference Closest gene A1/A2 Original associa-
tion (DN)

Current meta-analysis of SDR Direction 
(DN vs DR)

OR P Freq1 OR Direction P*
case–control

rs11723864 4 174,810,981 Sandholm et al. 
(2012)

HAND2 C/G 0.66 6.9E−07 0.92 0.66 −++− 0.025 −−

rs39059 7 29,221,995 Pezzolesi et al. 
(2009)

CPVL/CHN2 A/G 1.39 5.0E−06 0.63 0.78 −−−− 0.009 +−
rs39075 7 29,243,217 CPVL/CHN2 A/G 0.70 6.5E−07 0.40 1.25 +−++ 0.016 −+
rs10808565 8 129,076,594 Hanson et al. 

(2007)
PVT1 T/C 3.34 1.4E−03 0.34 0.77 −−−− 0.007 +−

rs3815871 8 129,077,760 PVT1 C/G 0.36 1.1E−03 0.33 0.77 −−−− 0.009 −
rs1411766 13 109,050,161 Pezzolesi et al. 

(2009)
IRS2 A/G 1.41 1.8E−06 0.37 1.21 +−++ 0.044 ++

rs17412858 13 109,050,609 IRS2 A/G 0.71 1.8E−06 0.63 0.82 −+−− 0.044 −−
rs1018534 14 100,189,987 Sandholm et al. 

(2012)
LINC00523 T/G 0.84 9.1E−05 0.32 0.75 −−−− 0.004 −−

rs1467537 14 100,191,027 LINC00523 T/C 0.82 2.4E−04 0.30 0.75 −−−− 0.006 −−
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supports a genetic contribution mostly for the more severe 
form of DR.

Among the 34 tested loci, a single locus (2 SNPs) on 
chromosome 10 showed significant association with SDR 
in the same direction. The original association between 
this locus and DR was reported in a case–control GWAS of 
Taiwanese type 2 diabetes (T2D) patients (P = 9.3 × 10−9 
for rs12219125) as one of the two loci meeting genome-
wide significance (Huang et al. 2011). Huang et al. failed 
to report qq-plot, histogram of P value and genomic con-
trol inflation factor in their manuscript and their study may 
suffer from inflation of type I error as six separate genetic 
models were fitted for each SNP without adjustment for 
multiple testing. Yet, the direction of the effect at this locus 
remained consistent with the original study in WESDR and 
all the DCCT/EDIC subgroups. The two SNPs are located 
50 kb apart and are in strong LD (r2 = 0.91 in HapMap 3 
CEU): rs1571942 is located in the last intron of PLXDC2, 
Plexin domain-containing protein 2, while rs12219125 
is located 24  kb downstream of this gene. PLXDC2, also 
referred to as tumor endothelial marker seven-related pro-
tein (TEM7R), is implicated in neurogenesis and angiogen-
esis (Miller-Delaney et  al. 2011). Interestingly, a closely 

related gene, tumor endothelial marker 7 (TEM7), shows 
strong overexpression in fibrovascular membranes from 
PDR, suggesting a role in proliferation and maintenance of 
neovascular endothelial cells (Yamaji et al. 2008).

Aside from PLXDC2, none of the other loci sugges-
tive for DR in previous GWAS and candidate gene meta-
analyses were replicated in our study. The current study 
is expected to have reasonable statistical power (>0.5) 
to detect associations for about half of these loci (16 out 
of 34), implying that the general lack of replication is 
unlikely to be a mere sample size issue. After removing the 
PLXDC2 locus, the remaining loci do not show collective 
evidence for association with SDR and there is no correla-
tion between effect sizes in our meta-analysis and the origi-
nal reports suggesting that many of these loci may not be 
associated with SDR.

Several factors may have contributed to the general lack 
of success in identifying replicable signals in association 
studies for DR. These studies usually do not account for the 
known DR risk factors (such as diabetes duration or gly-
cemic control) which may have led to reduction in power 
or potential confounding. Using less accurate methods for 
defining cases and controls (such as self-report or review 

Table 4   Association of EPO promoter polymorphism (rs1617640) with SDR and DN in WESDR and DCCT/EDIC

The additive effect (beta) of allele C (minor allele) and its standard error (SE) and two-tail association P values (P) are presented in the table

For case–control analyses the frequency of minor allele (MAF) in cases and controls is provided

For each meta-analysis Cochran’s heterogeneity P value (Phet) and I2 are provided

Direction of effect in participating studies are presented with the following order: WESDR, DCCT/EDIC (for combined SDR + DN and time 
to DN analyses), WESDR, primary cohort, secondary cohort—conventional Rx, secondary cohort intensive Rx of DCCT/EDIC (for SDR analy-
ses), Utah T2D, GoKind and Boston T1D studies (Tong et al. meta-analysis)

Results from the original report of EPO polymorphism association with ESRD + PDR (Tong et al. 2008) are provided for comparison

All models in the current study adjust for age, gender, diabetes duration and glycemic exposure measured by A1C

* DR ordinal logistic regression with (PDR vs NPDR vs no-DR) as outcome. The model compares CC with AC + AA genotypes. DN cases have 
been excluded from this analysis

Analysis Study Cases 
(events)

Controls 
(censored)

MAF 
(cases)

MAF  
(controls)

Beta SE P Phet I2 Direction

Combined 
PDR + ESRD

Tong et al. meta-analysis 1,618 954 0.38 0.47 −0.405 0.060 1.9E−11 −−−

Combined 
SDR + DN

WESDR 163 88 0.40 0.34 0.295 0.277 0.29

DCCT/EDIC 41 452 0.43 0.43 0.507 0.381 0.18

WESDR + DCCT/EDIC 204 540 0.41 0.42 0.368 0.224 0.10 0.65 0 ++
Combined 

SDR + DN 
(duration ≥15 
years)

WESDR 163 76 0.40 0.35 0.288 0.276 0.30

DCCT/EDIC 40 411 0.44 0.44 0.662 0.404 0.10

WESDR + DCCT/EDIC 203 487 0.41 0.43 0.406 0.228 0.07 0.44 0 ++

SDR status WESDR + DCCT/EDIC 518 1,389 0.38 0.40 −0.025 0.094 0.80 0.28 21 ++−−
Time-to SDR WESDR + DCCT/EDIC 560 1,347 −0.032 0.064 0.61 0.21 34 −+−−
Time-to DN WESDR + DCCT/EDIC 279 1,493 0.135 0.093 0.15 0.24 29 ++
DR (recessive 

model)*
WESDR + DCCT/EDIC PDR 300 0.244 0.140 0.08 0.67 0 −+++

NPDR 728

no-DR 587
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of medical records) and differences in phenotype defini-
tions may be other contributing factors. Some of the previ-
ous studies were conducted in other ethnic groups which 
may explain the lack of replication for some loci. Similarly, 
many of the previous studies examined patients with T2D 
which may be another factor contributing to the lack of 
replication, although current pathophysiologic knowledge 
does not support innate differences in DR between T1D 
and T2D (Fowler 2008). Besides, replication populations 
had limited statistical power to detect modest effects con-
sidering the winner’s curse. Finally, it is possible that most 
of the genetic contribution to DR is determined by rare var-
iations not covered in conventional GWAS and candidate 
gene studies.

Common pathophysiology and a few genetic reports 
support possible pleiotropy between DN and DR (Abhary 
et al. 2009; Mooyaart et al. 2011; Tian et al. 2011). In the 
current study we tested previous suggestive signals for 
DN for association with SDR. Although none of the loci 
showed statistically significant association after accounting 
for multiple testing, three loci showed suggestive associa-
tion with SDR. Furthermore, there was evidence for collec-
tive association of the studied loci with SDR and a positive 
correlation between the observed effect sizes for SDR and 
previously reported effect sizes for DN. These observations 
suggest that this set of DN loci contains association signals 
for SDR and limited statistical power may be contributing 
to lack of statistically significant association between sin-
gle loci and SDR. Yet, most previous DN signals are prob-
ably not associated with DR. Besides, the validity of asso-
ciation (with DN) at many of these loci is unconfirmed. A 
meta-analysis of independent T1D cohorts did not replicate 
association with DN at most of these loci (Williams et al. 
2012).

Despite reasonable statistical power, our study did not 
provide evidence for association of an EPO promoter poly-
morphism with SDR, DN, or combined SDR–DN pheno-
type and the directions of effect were opposite to the origi-
nal report. Time to event analysis is expected to have better 
statistical power and more clinical relevance in longitudinal 
studies; however, rs1617640 was also not associated with 
either time to SDR or time to DN in our meta-analyses.

Elevated vitreal levels of EPO in both patients with 
PDR and animal models have suggested EPO as an 
ischemia-induced angiogenic factor in PDR (Watanabe 
et  al. 2005). Consistent with a role in DR, EPO shows 
overexpression in the retina of diabetic patients without 
clinically detectable retinopathy compared to non-diabetic 
controls (Garcia-Ramirez et al. 2008). These observations 
were followed by a candidate gene association study which 
examined 10 SNPs in the EPO region and identified a sig-
nificant association between rs1617640 and a combined 
ESRD  +  PDR phenotype (Tong et  al. 2008). Functional 

studies suggest a role for rs1617640 in the expression of 
EPO (Tong et al. 2008); however, subsequent studies have 
failed to provide consistent evidence supporting the asso-
ciation between this SNP and DR. Abhary et  al. (2010) 
observed an association between the CC genotype at this 
SNP and DR status only in T2D patients (n = 345) assum-
ing a recessive model but no association in T1D patients 
or using an allelic association test. A subsequent candidate 
gene association study in T2D patients (345 DR and 356 
no-DR) did not find an association between rs1617640 
and DR in either allelic or recessive models (Balasubbu 
et  al. 2010). Similarly, a meta-analysis of FinnDiane and 
UK-ROI cohorts did not provide evidence for association 
of rs1617640 with PDR or with the combined ESRD–
PDR phenotype (Williams et  al. 2012). It is worth men-
tioning that unlike the present study, all the populations 
in the original report (Tong et  al. 2008) used an extreme 
control phenotype (controls free from both DR and ESRD 
after 10–15 years of diabetes duration). Without any con-
sideration of population stratification in the original report, 
it is not possible to exclude the possibility of a spurious 
association. Moreover, ESRD is a strong predictor of PDR 
(and vice versa) and current evidence for association of 
rs1617640 and DR independent of ESRD is limited. Over-
all, our study further calls into question the validity of 
association between rs1617640 and DR in T1D.

In conclusion, with the possible exception of PLXDC2, 
none of the top hits from previous GWAS and candidate 
gene meta-analysis for DR were replicated in our meta-
analysis. Our study provides suggestive evidence for 
association of three known DN loci with SDR as further 
evidence for pleiotropy of microvascular complications. 
We also did not find evidence supporting the previously 
reported association between DR and the EPO promoter 
polymorphism (rs1617640). Replication studies of this 
kind, using well-phenotyped populations with reasonable 
statistical power, are of increasing importance in establish-
ing or rejecting reported signals from GWAS and candidate 
gene studies without replication.
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