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Abstract: Osteoporosis (OP) affects millions of people worldwide, especially postmenopausal women and the elderly. Although 
current available anti-OP agents can show promise in slowing down bone resorption, most are not specifically delivered to the hard 
tissue, causing significant toxicity. A bone-targeted nanodrug delivery system can reduce side effects and precisely deliver drug 
candidates to the bone. This review focuses on the progress of bone-targeted nanoparticles in OP therapy. We enumerate the existing 
OP medications, types of bone-targeted nanoparticles and categorize pairs of the most common bone-targeting functional groups. 
Finally, we summarize the potential use of bone-targeted nanoparticles in OP treatment. Ongoing research into the development of 
targeted ligands and nanocarriers will continue to expand the possibilities of OP-targeted therapies into clinical application. 
Keywords: bone targeting, nanomedicine, osteoporosis therapy

Introduction
Osteoporosis (OP) is one of the most prevalent bone diseases characterized by a loss of bone calcium and matrix, leading to 
a decrease in bone density and degradation of bone tissue microstructure.1,2 This condition can cause lower back pain, stooped 
posture, height loss, and fractures. Due to the loss of bone mass, patients with OP have an increased risk for bone fragility and 
fracture. If left unprevented or untreated, OP can progress painlessly and cause severe wrist, hip, and spinal fractures, leading 
to disability and death in the elderly.3,4 Because bone and cartilage health are closely related, OP may affect the occurrence and 
development of osteoarthritis (OA). The decreased bone density and insufficient mineralization of bone trabeculae caused by 
OP can affect the normal structure of cartilage and subchondral bone. Therefore, treating OP is also necessary for preventing 
and treating OA.5 As the population ages, osteoporosis is gradually becoming a serious global health problem, affecting over 
200 million people worldwide, according to statistics from the International OP Foundation.6 The etiology of OP is complex 
and involves a delicate balance between osteoblasts and osteoclasts in the body and multiple regulatory factors released by the 
osteocyte network that maintains bone remodeling homeostasis. The imbalance in any of these factors can lead to OP,7 

highlighting the need for a clear understanding of its etiology to explore effective treatment options.
Currently, two main approaches are used to treat OP in clinical practice. These include preventing bone resorption using 

drugs like bisphosphonates, calcitonin, denosumab, and selective estrogen receptor modulators and directly increasing bone 
density using parathyroid hormone (PTH).8,9 However, these commonly used drugs have limited efficacy and can result in 
inevitable toxic side effects. Table 1 summarizes their mechanisms and side effects. These drugs’ limitations restrict their 
efficacy in the body. On the one hand, these drugs have low biocompatibility once entering the body, making them susceptible 
to rejection reactions and difficult to transport to bone tissues.10–12 On the other hand, most drugs lack targeting specificity and 
can not specifically recognize bone tissues, leading to high accumulation in organs, such as the liver and kidneys, causing toxic 
side effects and negatively impacting their therapeutic effectiveness.13,14 Therefore, there is an urgent need to develop more 
refined and efficient treatment methods for OP.
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Nanotechnology is a rapidly growing research field that provides promising options for disease treatment. Currently, 
dozens of nanodrugs have been approved for clinical use, such as liposome-encapsulated doxorubicin (Doxil; Johnson & 
Johnson) for the treatment of ovarian cancer and Kaposi’s sarcoma,35 while hundreds of other nanodrugs are in 
preclinical evaluation.36 Nanomaterials are synthetic structures composed of inorganic or organic substances with at 
least two dimensions between 1 and 1000 nanometers.36 The small size of nanoparticles (NPs) enables them to pass 
through biological barriers and reach ideal areas in the body, resulting in higher therapeutic efficiency. In addition, 
loading into nanomaterials can improve drugs’ solubility, thus greatly increasing drugs’ bioavailability.37–39 By modify-
ing NPs for drug delivery, they can be targeted to disease sites and released in specific locations.40,41 This approach 
changes drugs’ pharmacokinetic characteristics, increases their time of existence in the disease area, and extends their 
biological effects.42 Because bone itself is a nanocomposite material, NPs have similarities with bone tissues and high 
surface areas and roughness, which facilitate protein and cell adsorption in bone tissue. Currently, strategies for targeting 
bone tissue focus on the bone surface, bone marrow and its endothelial cells. While more than 40 types of first-generation 
nanomaterials have been applied in clinical practice,43 research on nanodrugs is still in its early stages, and future 
development and improvement of nanodrugs will require a massive undertaking. This review summarizes recent research 
progress on nanomaterials in OP treatment and mainly discusses two aspects of using nanomaterials for OP treatment: (i) 
various nanomaterials used for osteoporosis treatment, including liposomes, exosomes (Exos), Polymeric NPs such as 
poly (DL-lactide-co-glycolide) (PLGA) nanoparticles and Inorganic NPs, and (ii) exploring the potential of using various 
bone tissue-targeting modified nanomaterials for targeted drug delivery in OP treatment. Additionally, the potential 
challenges and prospects of using such nanomaterials for targeted OP treatment are also discussed.
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Nanocarriers for OP
The development of nanotechnology has opened exciting possibilities for the treatment of OP, with nanomaterials severing as 
effective delivery vehicles for growth factors, nucleic acids, and proteins that have demonstrated therapeutic benefits.44–48 Such 
delivery can be achieved through various methods, including oral administration, injection, or local injection. High-quality 
nanocarriers offer several excellent characteristics, such as (1) protecting drugs from degradation, (2) enhancing their penetration 
into the body, (3) targeted delivery of therapeutic substances and improved topical drug penetration and release in the affected 
area, and (4) excellent biocompatibility and biodegradability.48 These unique properties make nanotechnology a promising player 
in the development of effective treatments for OP. Nanomaterials-based therapies offer several advantages in biomedical 
applications. Firstly, their smaller size allows for enhanced drug penetration and mobility within the body, leading to improved 
therapeutic outcomes. Secondly, their natural structure and good biocompatibility make them less susceptible to immune 
responses and degradation, leading to longer circulation time in the body. Lastly, their relative non-toxicity compared to 
conventional drug delivery systems can result in fewer side effects and improved patient safety. Moreover, modifying nanocarriers 
makes drug delivery more efficient and precise.49–51 Currently, there are several types of nanocarriers employed for treating OP, 
including lipid carriers, Exos, and various synthetic NPs. While each of these nanocarriers has unique advantages, combining their 
advantages through particle modification or nanocomposite assembly is a promising direction for future research.Figure 1 and 
Table 2 provides an overview of the characteristics of various nanocarriers and related research. By developing more sophisticated 
and effective nanocarrier systems, researchers can potentially enhance drug delivery and improve the outcomes of OP treatments.

Lipid Nanocarriers
Lipid nanocarriers are a type of drug delivery system primarily composed of solid lipid matrices with hydrophilic and 
lipophilic phases, offering excellent drug-loading capacity and easy modification. They represent the second generation 
of lipid-based drug delivery systems, aiming to overcome the limitations of previous systems.55,83 Among them, 
liposomes are the most widely used lipid nanocarriers in clinical applications. These spherical vesicles can encapsulate 
hydrophilic or hydrophobic therapeutic molecules, exhibit good biocompatibility and biodegradability, and possess easily 
modifiable structures, improved drug solubility and pharmacokinetics, and reduced drug toxicity.84–87

Table 1 Characteristics and Side Effects of Various Drugs for OP Treatment

Type Category Representative 
Drug

Action Pathway Side Effects Ref

Anti-absorption 

regulators

Bisphosphonates Risedronate 

(RDN)

Bind to bone surface, inhibit 

bone absorption by osteoclasts

Common side effects: 

gastrointestinal irritation, bone 

and joint pain or necrosis 
Long-term side effects: atypical 

fractures, esophageal cancer

[15–22]

Selective estrogen 
receptor 

modulators

Raloxifene Estrogen agonists that have 
cytokine activity and can inhibit 

bone absorption

Uterus and breast responses [23–26]

Bazedoxifene Prevention of osteoporosis NA [27]
Ipriflavone Substitute for HRT and inhibit 

osteoclast differentiation

Both the uterus and breasts 

responses

[28]

Receptor activator 
of NF-κB ligand 

(RANKL)

Denosumab Block binding to RANK, inhibit 
formation and maturation of 

osteoclasts

Eczema, cellulitis, jawbone 
necrosis

[29,30]

Calcitonin Salmon calcitonin Lower activity of active 

osteoclasts

Production of anti-calcitonin 

antibodies

[31,32]

Synthetic 
metabolic 

therapy

PTH analogs Teriparatide 
(TPD)

Stimulate bone formation and 
conversion

Long-term injection increases 
risk of osteosarcoma

[33]

Abaloparatide For the treatment of women 

with postmenopausal 
osteoporosis

Nausea, orthostatic 

hypotension, and leg cramps

[34]
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In 1995, the US Food and Drug Administration (FDA) approved the first clinical nanodrug for chemotherapy, 
Doxil®,88 which is a pegylated liposome formulation of doxorubicin. The drug has proven effective in reducing the 
cardiotoxicity associated with doxorubicin.89 Other liposome formulations subsequently approved for clinical use include 

Figure 1 NPs are classified into different categories according to their properties, shape or size. Each class of NPs has several subclasses, with advantages and limitations are 
presented here.

Table 2 Various Nanocarriers and Their Applications in the Treatment of OP

Nanocarriers Characteristics Carrier Therapeutic 
Agent

Results Ref

Lipid 

nanocarriers

Easily modified, high 

loading efficiency

Liposome Antagomir-148a Inhibiting osteoclast bone resorption [52]

Lipid nanoparticle 
(LNP)

SiRNA-GNAS Enhanced differentiation of MSCs into 
osteoblasts

[53]

Ionizable LNP BMP-9 gene Exhibited the safety and bone 

regeneration efficiency

[54]

Nanostructure lipid 

carrier

RLX hydrochloride, 

Vitamin D

Improving drug permeability [55]

Solid LNP(SLNP) RLX hydrochloride Stronger drug effects [56]
Bioadhesive 

nanoparticle

RLX Improve oral bioavailability of drugs [57]

LNP SIM Enhance the bone-formation effect of 
SIM

[58]

Bilosome Risedronate (RDN) Improving drug permeability and 

reducing drug toxicity

[59]

(Continued)
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Myocet™90 and Marqibo®.91 Extensive research has been conducted on modifying lipid nanocarriers, providing 
inspiration for developing lipid nanocarriers for treating OP. One interesting development is the use of liposome-based 
thermosensitive nanocarriers that release loaded drugs at high temperatures. ThermoDox, a lipid-based thermosensitive 

Table 2 (Continued). 

Nanocarriers Characteristics Carrier Therapeutic 
Agent

Results Ref

Exos Rich source, capable of 
autologous 

transplantation

iPSC-Exo SiRNA-Shn3 Silencing of Shn3 gene, reducing 
autologous RANKL expression, and 

inhibiting osteoclast formation

[60]

Hybrid Exo (Exo with 
liposome)

Antagomir-188 Promoting osteogenic differentiation 
of BMSCs and preventing bone loss

[61]

BMSC-derived 

exosomal

MiR-29a Promote osteogenesis [62]

Blood cell 

extracellular vesicles 

(RBCEVs)

Anti-miR-214 Inhibit osteoblasts and enhance 

osteogenesis

[63]

SPIONs Superparamagnetic, 

promote bone 

regeneration and inhibit 
bone loss

nHAP-based 

composite co-doped 

with SPIONs

MiR-21, miR-124 Increased osteoblast activity and 

inhibited osteoclast activity

[64]

silk Fibroin/ 

hydroxyapatite 

scaffolds incorporated 
with SPIONs

BMSCs Promoting BMSC adhesion and 

growth, and enhancing osteogenic 

effects

[65]

nHAP Structurally similar to 

bone tissue and has 
a natural bone cement 

effect

nHAP PTH Synergistically increasing bone matrix [66]

nHAP RhBMP-2 Synergistically stimulating bone 
formation

[67]

nHAP bisphosphonate Promote bisphosphonate- 

induced inhibition of bone resorption

[68]

nHAP SCT Excellent bone repair in vivo [69]

nHAP ZOL Inhibit bone loss, maintain of 

trabecular structure and 
strengthening of bone

[70]

Zinc-nHAP RDN Preserve the structure of cortical and 

trabecular bone

[71]

PLGA 

nanoparticles

Easily degraded, good 

drug release kinetics

AL sodium-mPEG- 

PLGA

Astragaloside Improving oral bioavailability and anti- 

osteoporosis effect of AS

[72]

Tetracycline 
decorated PLGA NPs

Simvastatin Increasing bone density of OP rats [73]

PLGA NPs Estradiol Enhance the estradiol concentration 
in the blood for more effective 

treatment of OP

[74]

PLGA NPs MSC-Sec Inhibit osteoclast differentiation and 
promote osteoblast proliferation

[75]

PLGA/HAP BMP Increasing mouse bone formation [76]

CS-NPs Storage stable, widely 
existing in nature

CS-NPs RLX, PTH, RDN Increasing drug oral bioavailability and 
reducing bone loss

[77–79]

CS-NPs PTH-134 Biocompatibility, high embedding 

efficiency and delivery efficiency

[80]

CS-NPs SWE Enhance the anti-OP effect of SWE [81]

hyaluronic acid-CS- 

NPs

RDN and TPD Synergistically enhancing bone 

regeneration

[82]
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nanocarrier containing doxorubicin, is currently undergoing Phase II trials for the treatment of breast cancer and liver 
metastases and Phase III trials for the treatment of liver cancer.92

For bone diseases, researchers hope to develop lipid nanocarriers targeting bone tissue. Song et al93 and Ferreira et al94 

have respectively developed pamidronate-conjugated liposomes and alendronate salt-conjugated PEGylated liposomes and 
demonstrated that the former exhibited an increased affinity for bone tissue, and the latter had the bone-targeting ability. 
Currently, researchers are exploring the use of liposomes to treat OP. A recent study utilized modified liposomes to load 
antagomir-148a, a miRNA modulator that suppresses the osteoclastogenic miR-148a (a miRNA modulator suppressing the 
osteoclastogenic miR-148a) and found that the modified liposomes accumulated mainly in bone and downregulated miR-148a 
expression in osteoclasts, inhibiting bone absorption in mice with OP.52 In another study on lipid nanoparticle delivery of 
nucleic acids, the authors used LNP delivery of siRNA to silence the GNAS gene in MSCs. Ex vivo and in vivo experiments 
demonstrated that this LNP-siRNA delivery system effectively silenced the GNAS gene and enhanced the potential of MSCs 
to differentiate into osteoblasts. This delivery strategy provides promise option for the treatment of OP.53 A novel ionizable 
lipid with a C18 tail and ionizable head group was developed for delivery of bone morphogenetic protein-9 (BMP-9) gene for 
OP treatment. In this study, Ionizable LNP showed excellent delivery efficacy, and ex vivo and in vivo experiments confirmed 
the transfection efficiency and safety of the BMP-9 gene for the reversal of OP.54

While drugs commonly used to orally treat OP have good pharmacological advantages, their gastrointestinal effects 
often lead to lower bioavailability and toxic side effects.95 Researchers have designed a lipid nanocarrier to simulta-
neously carry Raloxifene (RLX) hydrochloride and Vitamin D (Vit.D), two classic drugs, to address the low bioavail-
ability of these drugs. After testing the pharmacokinetic parameters of healthy volunteers who took the drugs orally, they 
found that compared to traditional commercial products, these nanolipid carriers increased the bioavailability of RLX by 
385.6%, and the average level of Vit.D metabolites from 91±29 nmol/L to 174±36 nmol/L. The increased bioavailability 
of these drugs may be due to the lipid carriers being absorbed via the interaction of the drug and bile salts after being 
decomposed by enzymes in the intestine, which protects the drug from premature metabolism.55 Similarly, to enhance the 
bioavailability of RLX hydrochloride, researchers invented a double emulsion solvent evaporation (DESE) to encapsulate 
RLX hydrochloride into solid lipid nanoparticles (SLNPs). This drug-loading method can encapsulate RLX hydrochlor-
ide in SLNPs with appropriate physicochemical and biological properties, which enhances the drug’s effect.56 Another 
lipid NP is a bioadhesive nanoparticle composed of Carbopol 940, glyceryl distearate, and TGPS. This lipid nanodelivery 
system was able to firmly encapsulate RLX internally and demonstrated higher biological utilization in rat experiments, 
suggesting an excellent OP drug delivery vehicle.57 Simvastatin (SIM), which has been shown to treat OP through 
osteoblast differentiation and mineralization, has poor bone targeting and low bioavailability for in vivo application. 
However, the in vivo application of SIM has poor bone targeting and low bioavailability. Therefore, LNP, which is 
combined with a targeting peptide, was used as a carrier to deliver SIM to the bone tissue and to enhance the bone- 
enhancing effect of SIM. This demonstrated that LNP is an effective carrier for the treatment of OP.58

In a separate study, researchers added bile salts and cholesterol to lipids and designed a new type of lipid nanocarrier called 
bilosomes. They then evaluated the advantages of bilosomes carrying sodium alendronate. Compared with regular liposomes, the 
addition of cholesterol and bile salts improved the stability of the bilosomes, protecting them from external digestive damage and 
reducing the toxicity of oral drugs. This significantly enhanced the efficacy of sodium alendronate in treating OP.59

Exosomes
Exos are lipid bilayer-enclosed structures with diameters ranging from 40 to 160 nm.96 Scientists believe that cells use Exos to 
package proteins, mRNA, microRNAs (miRNAs), and lipids for intercellular communication.97,98 Due to their natural 
communication carrier properties, researchers are considering developing drug delivery systems based on Exos. In addition 
to the advantages of small size, structural stability, and low toxicity possessed by nanomaterials, as previously mentioned, 
Exos are widely available and exist in all bodily fluids and tissues.97 This provides a continuous source of carriers, and 
delivering drugs through autologous Exos does not raise ethical issues or cause immune rejection reactions.60 Another 
advantage of using Exos as drug carriers is their ability to exert regulatory effects. Specifically, Exos secreted by bone marrow 
stromal cells (BMSCs), osteoclasts, and osteoblasts have been shown to participate in bone regulation.99 Exos derived from 
osteoclasts have bone-inhibiting effects,100,101 while those from BMSCs and osteoblasts can enhance bone formation.102 
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Another key element is that Exos can be highly engineered. After engineering, Exos have cell and tissue specificity, making 
them better suited for drug delivery.63,103–109

Researchers are investigating the potential of engineered Exos carrying therapeutic molecules as a new treatment 
option for osteoporosis. In one study, researchers developed a delivery system based on Exos derived from human 
induced pluripotent stem cells (iPSCs) to combat OP. They used these MSC-derived Exos to fight against OP and 
modified them to target and deliver siRNA of the Shn3 gene (siShn3) to osteoblasts. This downregulated the 
expression of the Shn3 gene in osteoblasts, enhanced osteoblast differentiation, and decreased the expression of 
receptor activator of nuclear factor-κB ligand (RANKL), thereby inhibiting osteoclast formation from achieving an 
anti-osteoporotic effect.60 Similarly, stem cell-derived exosomes were chosen as the subject by Lu et al. In their work, 
BMSC-derived exosomes loaded with miR-29a showed potent osteogenic capacity, suggesting the potential for 
therapeutic OP.62 In addition, a new study selected red blood cell derived extracellular vesicles as delivery vehicles 
and achieved the targeting of osteoclasts with a bifunctional peptide to deliver anti-miR-214. The experimental results 
suggested the bone-targeting ability of the delivery vehicle, as well as the inhibition of osteoclasts and the enhance-
ment of osteogenesis. The use of red blood cell derived extracellular vesicles as carriers for OP treatment is 
a promising direction.63 Hu et al fused Exos with liposomes to form hybrid Exos and delivered antagomir-188 to 
the skeleton via C-X-C motif chemokine receptor 4 (CXCR4), which promotes BMSC osteoblastic differentiation, thus 
reversing the age-related loss of trabecular bone.61

Superparamagnetic Iron Oxide Nanoparticles
In the 1970s, Freeman et al were the first to combine magnetism with medical applications, and since then, extensive 
research on magnetic NPs has been conducted.110 Superparamagnetic iron oxide nanoparticles (SPIONs) have become 
one of the most widely studied targeted nanomaterials due to their many advantages. Firstly, SPIONs are synthesized 
from a single raw material and are easy to synthesize, with good chemical stability.111 SPIONs also exhibit good 
biocompatibility and biological safety and are relatively non-toxic compared to nanoparticles containing manganese and 
gadolinium.112,113 Furthermore, SPIONs exhibit excellent superparamagnetic, allowing them to be accumulated in 
a designated area through an external magnetic field.114 These magnetic particles lose their magnetism and scatter 
when the external magnetic field disappears, thus avoiding possible immune system attacks and enhancing local effects 
and half-life in circulation.115 Currently, SPIONs have mainly been applied in two areas of clinical biomedical research. 
One is in magnetic resonance imaging (MRI), where SPIONs serve as contrast agents to assist in diagnosing early 
diseases.116 The other area of interest is using SPIONs as excellent drug-target delivery vehicles, especially for tumor- 
targeted radiotherapy and chemotherapy.117,118

While acting as carriers, SPIONs also play an essential role in anti-OP. Previous in vitro studies have shown that 
SPIONs can promote osteoblast differentiation and inhibit osteoclast formation. In vivo experiments have demonstrated 
that these nanoparticles can accelerate bone defect repair and prevent bone loss.111,119,120 These studies further illustrate 
the advantages of using SPIONs for the treatment of OP. SPIONs can deliver bioactive molecules (such as antibodies, 
proteins, drugs, etc.) or cells, which opens up more possibilities for bone regenerative medicine.121

Marycz et al designed a dual-target scaffold carrier doped with SPIONs and HAP nanoparticles (nHAP) for delivering 
miR-21 and miR-124.64 Under the action of the carrier and the magnetic field, miRNA targets accumulate and then release, 
increasing osteoblast activity and inhibiting osteoclast activity, enhancing the regeneration of osteoporotic bone. In another 
study, researchers incorporated SPIONs into silk fibroin/hydroxyapatite scaffolds and implanted BMSCs into the backs of 
nude mice using this scaffold. The results showed that BMSCs could adhere and grow well and promote bone formation. 
SPIONs not only enhance the stability of silk fibroin/hydroxyapatite scaffolds but also show a stronger bone-forming effect by 
incorporating magnetic particles. In addition, bone regeneration can be monitored non-invasively by MRI.65

Hydroxyapatite Nanoparticles
Hydroxyapatite (HAP), with the chemical formula of Ca10(OH)2(PO4)6, has a unique structure that closely resembles 
bone tissue, making it a promising material for biomedical applications in bone diseases. One potential application of 
HAP is as a bone cement and bone graft due to its osteoconductive and injectable properties, as proposed by Ginebra et al 
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(1999). Numerous studies have explored the use of bone cement to strengthen osteoporotic bones.122–126 HAP-based 
bone cement offers several advantages, such as low-temperature solidification reactions and inherent porosity, which 
enable it to carry drugs or active ingredients for joint action.127 Panzavolta et al128,129 have successfully combined 
bisphosphonates with HAP, resulting in drug-carrying bone cement with good mechanical properties. This combination 
of drugs and HAP has the potential to resist bone resorption, which can be beneficial in relieving osteoporosis.

Recently, researchers have synthesized HAP nanoparticles (nHAP) and combined them with various polymers to 
create bio composite materials with enhanced osteoconductive properties.122,130 These nanoscale biomaterials are crucial 
in orthopedic surgery as they have a small size and possess structure and chemical properties similar to natural bone, 
which allows them to remain stable in the acidic and alkaline environment of the body and resist degradation by 
enzymes. In addition, the inherent degradation products of Ca2+ and PO4

3- in the body are not non-toxic and do not cause 
immune reactions.

Researchers are hopeful that nHAP can serve as a carrier for delivering drugs and therapeutic proteins for the 
treatment of OP.131–133 Besides its role as a drug carrier, nHAP is also expected to supplement bone defects. Dave et al 
synthesized nHAP carriers loaded with PTH, achieving targeted delivery of PTH to osteoporotic bones.66 The nano-
carriers dissolve in the osteoporotic bone, enhancing the matrix components of the bone while playing a role in PTH 
synthesis and metabolism locally. Furthermore, nHAP has been combined with recombinant human bone morphogenetic 
protein-2 (rhBMP-2) in another study. The nanocarrier carrying rhBMP-2 was implanted into rabbits’ unilateral radial 
bone defects, and it was found that nHAP with growth factors could stimulate more bone formation, highlighting its 
excellent growth factor carrier performance.67 The advantages of bisphosphonates in the treatment of OP have become 
the focus of research by scientists. Delivery of bisphosphonates with nHAP as a carrier has a favorable anti-OP effect. In 
vitro experiments confirmed that nHAP could enhance the function of bisphosphonates to inhibit osteoclast formation, 
and the combination with hydrogel could induce mineralization, which is a new bone repair material.68 Surface-stabilized 
nHAP prepared by aqueous precipitation was used to deliver salmon calcitonin (SCT), and the nHAP showed high 
loading efficiency, permeability, and stability. In an osteoporotic rat model, the nHAP delivered SCT demonstrated 
excellent bone repair ability and is an injectable treatment for OP.69 Similarly, by loading novel zoledronic acid (ZOL) in 
nHAP (ZOL-nHAP) by the classical adsorption method, researchers explored the role of ZOL-nHAP in osteoporotic rats. 
After three months of treatment, it was found that treating OP rats with nHAP-delivered ZOL was more effective than 
ZOL alone. Apparently, ZOL-nHAP better reversed bone loss, better preserved trabecular structure and improved 
mechanical strength in the OP rat model.70

In addition, researchers are keen on modifying various substances in combination with nHAP to enhance the 
performance of nanoparticles on the original basis. For example, zinc is a suitable combination with nHAP. For example, 
Risedronate (RDN), which is a high-quality osteogenic drug, was loaded onto zinc-nHAP by researchers through 
adsorption. Using an animal model of OP, the researchers compared the effects of zinc-nHAP delivered RDN and 
RDN alone for the treatment of OP. The results strongly suggest that preparations of zinc-nHAP-delivered RDN have 
a therapeutic advantage over administration alone, with better preservation of cortical and trabecular bone structures.71

Overall, the potential applications of nHAP in orthopedic surgery are vast and promising, and ongoing research may 
uncover additional benefits.

PLGA Nanoparticles
Poly(DL-lactide-co-glycolide) (PLGA) is a biocompatible material that has been used as a growth factor carrier in the 
1990s.134 It can be easily synthesized and modified to optimize polymer degradation and drug release kinetics.135 With 
advances in nanotechnology, PLGA NPs are being extensively investigated as drug delivery carriers.136 For instance, to 
improve the bioavailability of hydrophobic drugs, Xi et al successfully encapsulated Astragaloside (AS) in the hydro-
phobic core of PLGA NPs and enabled them bone-targeting properties by conjugated PLGA nanocarrier with 
Alendronate (AL) sodium via polyethylene glycol.72 In vivo and in vitro experiments have demonstrated the improved 
oral bioavailability and anti-OP effect of this nanocarrier, with the addition of AL further enhancing its bone targeting 
properties.
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PLGA nanoparticles are also being explored as carriers for simvastatin, a drug that enhances bone formation and 
density but has limited use due to its hydrophobic and non-targeted nature.137,138 To overcome this, researchers have 
combined PLGA NPs with tetracycline to give the nanocarrier bone targeting properties. In vivo experiments have shown 
that simvastatin-loaded tetracycline-modified PLGA NPs significantly increase bone density in osteoporotic rats com-
pared to free simvastatin and non-targeted NPs.73 Similarly, using PLGA NPs as carriers, the researchers delivered 
estradiol to OP rats and administered the drug via iontophoresis. The results showed that the negative ions on the surface 
of the PLGA NPs combined with the special delivery method could enhance the concentration of estradiol in the blood 
and treat the OP rats more effectively.74 Zhang et al loaded secretome (Sec) from MSC into PLGA NPs and endowed the 
carrier with bone targeting via CXCR4. In the OP rat model, they found that this NP accumulated in the bone and 
exhibited inhibition of osteoclast differentiation and promotion of osteoblast proliferation, which reduced bone attenua-
tion from the surgical model.75

In another study, composite nanocarriers of PLGA/HAP were implanted subcutaneously in mice to deliver BMPs, 
resulting in increased mouse bone formation.76 The PLGA/HAP nanofiber exhibited good morphology and mechanical 
strength and using it as a carrier allowed BMP to be released while maintaining good biological activity in vivo.139

Chitosan Nanoparticles
Chitosan, a natural polysaccharide derived from chitin found in crustaceans, insects, and fungi, is known for its 
hydrophilicity, biocompatibility, and biodegradability.77,140,141 Chitosan nanoparticles (CS-NPs) have gained popularity 
as drug carriers due to their small size, high encapsulation efficiency, and loading capacity,142–144 and ability to combine 
with a wide range of molecules, including plant components, nanomaterials, hormones, and proteins.145,146

To overcome the low bioavailability and toxic side effects of drugs commonly used in clinics, like RLX, lipid 
nanocarriers have been effectively used for delivery. Saini et al used CS-NPs to deliver RLX, which improved its oral 
bioavailability.77 Similarly, PEGylated chitosan nanoparticles were used to deliver PTH, yielding similar effects.78 CS- 
NPs were also used to deliver bisphosphonates, resulting in a significant improvement in bone density and microstructure 
in osteoporotic rats, while cortical porosity on bone surfaces decreased.79 CS-NPs were used to load Human Parathyroid 
hormone 1–34 (PTH1-34), and the experimental results suggested the biocompatibility and high encapsulation efficiency 
of this delivery strategy. In addition, the researchers affirmed the efficiency of oral CS-NPs in delivering PTH1-34, and 
this strategy is a potential way to treat OP in the future.80 Shilajit is a class of natural minerals whose extracts (SWE) 
have been shown to affect bone development. In a study, researchers utilized CS-NPs encapsulated with SWE and 
evaluated the efficacy of the pair combination in OP rats.The results suggested that CS-NPs encapsulated SWE could 
enhance the anti-OP effects of SWE.CS NPs delivered SWE could be recommended as a potential treatment for OP.81

In another study, researchers sought to deliver RDN and TPD together in a targeted manner using CS-NPs as carriers, with 
the carrier surface modified with hyaluronic acid. This carrier, which loaded both RDN and TPD, could be stably preserved at 
low temperatures and exhibited stronger bone regeneration effects, indicating a promising new strategy for treating OP.82

Bone-Targeted Nanoparticles for the Treatment of Osteoporosis
In clinical practice, there are several drugs available for the treatment of OP, as outlined in Table 1. However, these drugs face 
limitations when administered orally or intravenously, as they struggle to target specific tissues for release. Most drugs are 
absorbed or excreted by other organs in circulation, making it difficult to achieve the therapeutic effect.147–149 Consequently, 
higher drug doses or more frequent administration may be required, leading to adverse reactions and organ toxicity. To 
overcome these limitations, targeted drug delivery strategies are required, with the combination of targeted delivery and 
nanotechnology offering a more effective approach. For OP, scientists need to focus on bone targeting as the primary strategy. 
Since the concept of “bone targeting” was first proposed in 1986 by Pierce et al,150 research in this area has developed rapidly.

Bone tissue has a surface-mineralized extracellular matrix primarily that primarily consists of HAP and hosts 
a variety of movements, such as ion exchange, crystal growth, dissolution, and combinations of foreign molecules on 
the bone surface. Therefore, this mineralized component offers an option for bone targeting.14,151 Studies indicate that the 
crystal size of HAP in the bone tissue of osteoporotic patients is larger,152 making targeted treatment of the bone surface 
with drugs more feasible.
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Bone targeting strategies involve binding the target molecule to HAP in bone, enabling NPs carrying the drug to aggregate 
and exert their effects on bone tissue.151 The surface of these NPs can also be modified with cell/tissue-targeting groups, such as 
bisphosphonates or osteoclast/osteoblast-targeting peptides, to enhance the biological distribution of the drug in bone tissue. 
Additionally, bone marrow presents itself as a potential target for bone-targeting delivery systems. Figure 2 illustrates the bone 
targeting strategy, which, when combined with nanocarrier delivery systems, can offer a more satisfactory drug treatment for OP. 
Understanding the bone targeting strategy is essential to develop effective targeted drug delivery systems for OP. Table 3 
summarizes typical examples of the targeted strategy of nanoparticles to enhance the treatment of OP.

Tartrate-Resistant acid Phosphatase
Tartrate-resistant acid phosphatase (TRAP) is an acid hydrolysis enzyme mainly found in osteoclasts, making it a useful 
indicator for identifying these cells.153,154 Moreover, TRAP is secreted by osteoclasts towards the bone surface and can 
be detected on the bone surface and in the bone matrix,155,156 making it a potential therapeutic target. Wang et al 
designed a peptide TPLSYLKGLVTVG with a high affinity for TRAP and coupled it to the corona of a nanosphere.157 

They delivered a GSK-3β inhibitor to the site of bone fractures in mice, resulting in higher drug accumulation, activation 
of the β-catenin pathway in MSCs and osteoblasts, increased formation of bone bridges and deposition of bone mass. 
This targeted approach enhanced the healing ability of bone fractures. As mentioned above, a bifunctional peptide, 

Figure 2 Targeted ligands and their targets for the treatment of OP. Bone-targeted nano-delivery systems can be specifically delivered to bone matrix, bone marrow, 
osteoblasts, and osteoclasts by using various targeting ligands, including BPs, peptides, antibodies, and many other synthetic chemical molecules.
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TBPCP05, binds to the surface of EVs, causing them to display TRAP-binding peptides on the surface, and in vivo and 
in vitro experiments have demonstrated the ability of such EVs to target osteoclasts. This vector carrying anti-miR-214 
can focus on osteoclasts and exert anti-OP effects.63

Although targeting TRAP is still in its early stages of research, these successful examples provide valuable insight for 
future directions in using TRAP-based peptide and NP coupling for drug delivery to treat bone diseases.

Tetracycline
Tetracycline is a yellow crystalline amphipathic substance derived from the metabolism of Streptomyces rimosus, and it was 
first used as a broad-spectrum antibiotic in the 1940s.158,159 It is effective in inhibiting bacterial growth at high concentra-
tions and plays an important role in the prevention and treatment of human and animal infections.160 Shortly after 
tetracycline was used in medicine, an interesting phenomenon was discovered where bright yellow fluorescence could be 
observed under UV light in the bones of animals treated with tetracycline.161 This fluorescent property of tetracycline made 
it a target marker carrier.162 Tetracycline’s ability to deposit in bone tissue also sparked an interest. Initially, it was thought 
that tetracycline interacted with the organic matrix of bones, but later evidence showed that it mainly binds to HAP on the 
bone surface.163,164 Tetracycline’s bone-binding ability is a double-edged sword. On the one hand, pigmentation was 
observed in the teeth of young people who had taken tetracycline, which may lead to a decrease in tooth hardness and 
enamel damage, limiting its clinical use.165 On the other hand, due to tetracycline’s high affinity for HAP, researchers began 
exploring its potential as an effective compound for bone targeting.

In recent years, the drug delivery strategy for OP based on the combination of tetracycline bone-targeting agents and 
nanocarriers has been widely studied. Que et al used TC-mPEG-PLGA to establish a bone-targeting nanodrug delivery system 
and loaded it with astragaloside to treat OP.166 In vivo and in vitro results showed that TC-mPEG-PLGA effectively increased the 
accumulation of astragaloside in bone and improved bone density in ovariectomized rats compared to free astragaloside. 
Similarly, Wang et al used TC-PLGA NPs to load SIM to treat OP and demonstrated higher bone-targeting efficiency and 
improved efficacy in restoring bone density.73 In addition, tetracycline can also serve as a bone-targeting agent for another type of 
nanocarrier. Researchers have constructed tetracycline-modified and SIM-loaded amorphous calcium carbonate (ACC) hybrid 

Table 3 Targeting Group-Modified Nanoparticles Enhance the Therapeutic Potential of Drugs to Treat OP

Targeting 
Moiety

Nanocarrier Delivery 
Agent

Outcome References

(Asp)14 or 

(AspSerSer)6

Cationic 

liposomes

siRNA CKIP-1 (AspSerSer)6 is favorable for binding to the bone formation surface, 

enhancing CKIP-1 gene silencing, significantly increasing osteoblast activity, 

and improving bone mass and trabecular structure.

[184]

CH6 aptamer LNPs siRNA CKIP-1 CH6 aptamer can specifically target osteoblasts, delivering siRNA to induce 

efficient gene knockdown and enhance bone metabolism

[185]

SDSSD Nanomicelles Anti-miR-214 Anti-miR-214 promotes bone formation, improves bone microstructure, 
and increases bone mass in a mouse OP model with ovariectomy

[182]

SDSSD Exos siRNA-Shn3 siRNA-Shn3 inhibits osteoclast formation to treat OP [60]

(DSS)6 Liposomes quercetin Osteotropic delivery of quercetin can effectively enhance the clearance of 
senescent cells and promote bone formation.

[198]

C11 peptide, 
CH6 aptamer

Dendrimer N.A The drug can quickly accumulate in the bone, especially in the sites of active 
osteoblasts.

[199]

CXCR4 Hybrid  

Exo-liposomes

Antagomir-188 CXCR4 can accumulate rapidly in bone, especially in areas of active 

osteoblasts. It also aggregates in bone marrow, promoting osteoblast 
differentiation and inhibiting adipocyte differentiation, thereby reversing 

age-related bone loss.

[61]

GLG1 Exos Wnt agonist GLG1-NP can reside in bone tissue over an extended period and has good 
bone targeting and BMSC targeting properties.

[197]
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nanoparticles (TC/ACC/SIM) and found that TC/ACC/SIM can enhance its accumulation in osteoporotic sites and synergisti-
cally promote bone formation with calcium supplementation and SIM.167

Although tetracycline combined with nanocarriers has shown good results in treating OP, its side effects, complex chemical 
structure, and poor stability during chemical modification seem to hinder further utilization of tetracycline as a bone-targeting 
agent.168 Therefore, researchers hope to develop molecules with similar tetracycline-like abilities but with fewer side effects and 
greater stability. As a result, a minimized chemical structure B (3-amino-2,6-dihydroxy-benzamide) derived from tetracycline 
was designed, which has significantly fewer side effects compared to tetracycline while retaining 50% of its bone-binding 
ability.168 Moreover, molecule C, which is a derivative of B with a succinate linker, has an even greater bone-binding ability than 
tetracycline. The structures of tetracycline and modified tetracycline molecules are shown in Figure 3.

Bisphosphonates and Analogues
Bisphosphonates (BPs) are a class of drugs that inhibit bone resorption and are widely used in skeletal diseases such as OP.169,170 

At the cellular level, the mechanism of action of BPs, especially their effect on osteoclasts, is mainly manifested as the inhibition 

Figure 3 General structures of bisphosphonate, tetracycline, Asp-rich peptides, and its analogues with variable groups extending the function for bone target.
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of cell activity, shortening of cell lifespan, and inhibition of their recruitment and adhesion to the mineral matrix.171 Additionally, 
BPs act as bone-targeting agents.172 Studies have shown that BPs are similar to pyrophosphates (P-O-P), which naturally exist in 
the bone matrix. Pyrophosphate is a non-metabolic endogenous substance composed of an oxygen atom and two phosphate 
groups, while BPs are composed of a carbon atom and two phosphate groups (P-C-P).173 The molecular structures of BPs and 
their analogs are shown in Figure 3. The two phosphonate groups on BPs have a strong affinity for Ca2+ in HAP and can bidentate 
bind to the bone. For most BPs, if R1 is a hydroxyl or amino group, it can trigger tridentate binding to HAP, which makes it have 
a higher bone-binding affinity.174,175 With the deepening exploration of BPs, three generations of BPs have been approved for 
clinical use. The second generation contains nitrogen-containing BPs, such as alendronate (ALN), and the third generation 
contains nitrogen-containing heterocycles, such as risedronate. The nitrogen-containing group on the R2 side chain exhibits 
a higher affinity for HAP through hydrogen bonding.176 Therefore, BPs have the dual advantages of being bone-targeting agents 
and anti-bone resorption agents and are widely used as targeting ligands for anti-OP NPs. For example, Hoque et al used ALN as 
a bone-targeting agent for the nanocarrier loaded with adenosine, which was administered systemically to ovariectomized 
mice.177 Compared with the non-targeted nanocarrier, ALN could guide more than 45% of the nanocarrier to accumulate in the 
mouse vertebrae and restore the trabecular bone characteristics of ovariectomized mice to the level of the healthy group. 
Furthermore, similar to the study of TC-mPEG-PLGA loaded with astragaloside discussed in the previous chapter, researchers 
replaced the targeting agent from tetracycline with ALN. The targeted nanocarrier greatly improved the affinity and bone tissue 
concentration of astragaloside to HAP, and the oral bioavailability of astragaloside was significantly improved. The addition of 
ALN made the prevention and treatment of OP more effective.72

Targeting Other Bone-Formation Surfaces
In addition to the typical targeting of bone surface ligands mentioned above, the affinity between certain bone proteins and HAP 
in nature has also sparked interest in bone-targeting strategies. Some studies have found that non-collagenous proteins in the bone 
matrix, such as bone sialoprotein and osteopontin, play important regulatory roles in the growth and dissolution of HAP and have 
an affinity for HAP to bind to it.178 These proteins share a common feature of repetitive acidic amino acid sequences of L-aspartic 
acid (L-Asp) and L-glutamic acid (L-Glu).179 In 2000, Kagugai et al found that when administered systemically, peptides 
containing repeating Asp or Glu amino acid residues can selectively deliver drugs to bone tissue.180 Compared with peptides and 
proteins, oligopeptides have higher stability, better tissue penetration, and lower immunogenicity.181 Compared with BPs 
containing P-C-P bonds, oligopeptides have a shorter half-life, do not produce long-term adverse reactions, and do not form 
micelles with metal ions, making them easier to be enzymatically metabolized into non-toxic substances.12

Using acidic oligopeptides as bone-targeting agents to modify NPs also shows promising prospects. Sun et al designed 
a five-amino acid motif oligopeptide Ser-Asp-Ser-Ser-Asp (SDSSD), which has a binding affinity with osteoblast membrane 
inhibitor (also known as osteoblast-specific factor 2, OSF-2) expressed by osteoblasts.182 They combined it with polyurethane 
(PU) nanomicelles to create a targeted nanocapsule, SDSSD-PU, that can target the bone formation surface to deliver anti- 
miR-214 to osteoblasts. This can increase bone formation, improve bone microstructure, and increase bone mass in 
ovariectomized osteoporotic mice without causing obvious toxicity or triggering an immune response in the body. 
Similarly, using this bone-targeting oligopeptide to modify MSC-Exos and loading siRNA targeting Shn3 can specifically 
inhibit the expression of the Shn3 gene in osteoblasts and inhibit osteoclast formation, providing inspiration for cell-free 
therapy for OP.60 Kagugai et al found that fluorescently labeled Asp6 only accumulated in bone and teeth after systemic 
administration to rats for 24 hours.180 Using the targeting ability of the peptide, a novel drug conjugated with L-Asp- 
hexapeptide and estradiol exhibited a good anti-OP treatment effect in the ovariectomized mice.183 Tao et al used L-aspartic 
acid oligopeptide Asp6 as a bone-targeting peptide to deliver SIM-loaded novel LNPs to the osteoporotic bone, significantly 
enhancing the therapeutic effect of OP and demonstrating the advantages of bone-targeted drug delivery systems.58

In addition, Zhang et al found that aspartic acid, serine, and six repeat sequences of serine (AspSerSer)6 have a very 
high affinity for mineralized nodules of osteoblasts and amorphous calcium phosphate. They connected these sequences 
to DOTAP cationic liposomes to develop a targeted delivery system that can specifically deliver siRNA to the surface of 
bone formation. The Plekho1 gene is an intracellular negative regulator of bone formation. Zhang et al encapsulated 
Plekho1-siRNA in liposomes connected to (AspSerSer)6 for targeted delivery. In vivo experiments found that the siRNA 
selectively accumulated on the bone surface, reduced the levels of Plekho1mRNA and protein in selective osteoblasts, 
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significantly promoted bone formation, enhanced bone microstructure, and increased bone mass in healthy and osteo-
porotic rats. Bioimaging analysis further showed that this method was effective.184

Similarly, Liang et al screened for a specific adapter molecule, CH6, for osteoblasts and developed a CH6-lipid 
nanoparticle (LNP)-Plekho1-siRNA delivery system for targeted Plekho1 delivery. By functionalizing the LNP with the 
adapter molecule CH6, the system achieved specific delivery of Plekho1-siRNA to osteoblasts. The CH6-LNP-siRNA 
targeting system showed higher accumulation in bone tissue, and its application in osteoporotic rats that underwent 
ovariectomy revealed significantly improved bone mineral density (BMD), relative bone mass (BV/TV), trabecular 
thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), and structure model index (SMI), demon-
strating good osteoblast specificity.185

Overall, targeted group-modified nanodelivery systems can improve microstructure, increase bone mass, enhance 
bone mechanical properties, and significantly reduce side effects in OP models. Gene targeting modification can further 
enhance the function of targeted delivery systems from tissue specificity to cellular specificity, making it more precise 
and effective, which is beneficial for the clinical application of osteoporosis metabolism therapy.

Another interesting discovery is that bones are rich in Ca2+ and carry positive charges, making an ideal material for 
targeting bone surfaces with negative charges, which facilitates its affinity with positively charged bone. Researchers 
found that nHAP-loaded PTH with negative zeta potential can promote its affinity for Ca2+-rich bone tissue, enabling 
targeted localization and exerting anti-OP effects.66

Targeting Bone Marrow
The development of bone-targeted delivery systems has the potential to improve the treatment of OP by targeting both bone 
surface and bone marrow. It is essential to have a clear understanding of the relationship between bone marrow and OP to 
achieve this. Increasing evidence suggests that bone loss in postmenopausal women and ovariectomized animals is always 
accompanied by abnormal accumulation of marrow adipose tissue (MAT).186–189 Anti-OP drugs such as BPs, RLX, and TPD 
have been shown to reduce bone marrow adiposity.187,189,190 The bone marrow microenvironment contains various types of 
cells, including adipocytes, stromal matrix cells, hematopoietic cells, osteoblasts, and osteoclasts, and can secrete various 
cytokines to regulate bone remodeling,191 highlighting the importance of targeting the bone marrow.

NPs with a neutral surface charge and small size are promising candidates for targeted drug delivery to the bone 
marrow, where they can accumulate and release drugs over an extended period.192 Researchers have identified various 
potential targeting ligands for bone marrow receptors, including pregnancy zone protein (PZP) in the exosomes secreted 
by endothelial cells193 and E-selectin expressed on the surface of bone marrow endothelial cells.194 Although the use of 
PZP to treat bone tumors has been explored, the use of PZP and E-selectin to treat osteoporosis has not been investigated 
and might become a novel direction for future research. Researchers have also modified LNPs with anionic amphiphiles. 
The hydrophilic head group on the modified NP can be recognized by scavenger receptors expressed on bone marrow 
macrophages, providing another potential target for the bone marrow.195,196

It has been found that stromal cell-derived factor 1 (SDF1) in the bone marrow has been found to recruit CXCR4+ 

hematopoietic stem cells (HSCs) and promote bone metastasis of CXCR4+ tumor cells. In a prospective study, researchers 
have used this finding to develop a targeted drug delivery approach, as discussed in the exosome section.61 Hu et al genetically 
engineered NIH-3T3 cells to secrete Exos with high CXCR4 expression. They found that these Exos are selectively 
accumulated in the bone marrow. They then fused these Exos with liposomes carrying antagomir-188 to form hybrid Exos, 
which could accumulate antagomir-188 in the bone marrow. This approach promoted osteogenesis and inhibited BMSCs from 
differentiating into adipocytes, thereby reversing age-related bone loss.

Based on the receptor-ligand binding theory and inspired by the molecular mechanism of prostate cancer bone 
metastasis, scientists have expressed GLG1 (Golgi glycoprotein) on the surface of Exos and collected GLG1+ Exos from 
a tool cell line to construct GLG1+ drug-loaded nanoparticles (GLG1-NP) carrying Wnt pathway activator Wnt agonist 1. 
The results showed that peripheral administration of GLG1-NP achieved specific distribution in bone tissue. In a mouse 
model of OP induced by chronic colitis, GLG1-NP significantly improved bone mass, mechanical properties, BMSC 
osteogenic differentiation, and bone formation. Additionally, GLG1-NP promoted fracture healing in mice with 
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ulcerative colitis and reduced bone marrow fat accumulation, achieving significant therapeutic effects in bone complica-
tions of mice with ulcerative colitis.197

In summary, the utilization of NPs to enhance drug delivery across biological barriers and improve the efficacy of precision 
medicine holds the potential to accelerate the clinical translation of targeted NPs for the treatment of OP. Developing 
nanobiomaterials for precision medicine in OP requires carefully designed methods to adjust the composition of NPs, examine 
the pharmacokinetics of therapeutic drugs, and optimize drugs’ solubility, administration, and biological distribution. This 
highly customizable platform has the potential to accelerate the clinical translation of targeted NPs for OP treatment.

Conclusion and Outlook
The high prevalence of OP is a significant health concern, posing a tremendous burden on patients, their families, and society. 
Although current conventional clinical medications provide some symptomatic relief, their limitations and adverse effects 
remain unresolved, severely restricting their use. Therefore, finding low-toxic, stable, specific and efficient drug delivery 
methods for the treatment of osteoporosis has become a key area of research. Fortunately, in the past few decades, the 
development of nanomedicine has created new possibilities for the diagnosis and treatment of many diseases. In particular, the 
application of nanotechnology for bone targeting has been successful in the field of bone tumors, but the application of 
nanocarrier bone-targeted drug delivery in osteoporosis treatment is still at an early stage.

In this review, we introduce bone-targeted nano-delivery carriers, modification strategies for bone targeting, and their 
applications in OP therapy. Currently, the most studied nanocarriers for OP include LPS, Exos, SPIONs, PLGA NPs, 
nHAP, and CS-NPs. Among them, Exos, as cell-derived nanomaterials with low immunogenicity, good barrier penetra-
tion, and targeting properties, is expected to overcome the disadvantages of traditional nanomaterials such as potential 
cytotoxicity, poor biodegradability, and uncontrolled drug release and other drawbacks, showing great promise for 
effective treatment of OP. In addition, the plasticity of nanocarriers allows us to integrate their advantages to create 
more desirable nanocarriers, such as the fusion of multiple nanocarriers (eg, hybrid liposomes and Exos), which is 
a future direction for the optimization of biocompatible nanocarriers. However, these nanodrug release mechanisms need 
to be further explored, and we need to fully understand the effect of magnetic field variations on drug release, but many 
other factors such as temperature, pH, light, linkage modifications between the drug and the carrier, and bone-specific 
enzymes may also regulate drug release. Future studies should focus on these factors to better understand drug release 
from bone-targeted nanocarriers. Follow-up studies are needed to accurately address all aspects of a mature bone-targeted 
nanodrug delivery system if clinical applications are to be realized as soon as possible. We eagerly anticipate that bone- 
targeted delivery of nanomedicines will benefit every osteoporosis patient in the future.
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