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A novel β-glucan produced by Paenibacillus polymyxa JB115 induces 
nitric oxide production in RAW264.7 macrophages
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  The effect of extracellular β-(1→3), (1→6)-glucan, produced 

by Paenibacillus polymyxa JB115, on nitric oxide (NO) 

production in RAW264.7 macrophages was investigated. 

β-glucan induced the production of NO by RAW264.7 

macrophages in a concentration- and time-dependent manner. 

Moreover, β-glucan stimulation increased the mRNA expression 

of iNOS, COX-2 and IL-6 in RAW264.7 macrophages in a 

concentration-dependent manner.
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Introduction 

  NO is induced during macrophage activation and thereby 
contributes to controlling the replication or neutralizing 
intracellular microbial pathogens [13]. Various studies 
indicated that NO is an important messenger in diverse 
biological functions, including neuronal transmission, 
vascular relaxation, immune modulation, and cytotoxicity 
against tumor cells [13,14].
  β-glucans are heterogeneous groups of glucose polymers 
usually found in the cell walls of fungi [17], plants [11] and 
some bacteria [7]. They consist of linear β-1, 3-linked D- 
glucose molecules with β-1,6-linked side chains of varying 
length occurring at different intervals along the backbone, 
and can form complex tertiary structures stabilized by 
inter-chain hydrogen bonds [2,3].
  Some animal studies addressed the beneficial effects of β- 
glucans on the growth performance of pigs [5,19], on the 
survival rate of mice challenged with Staphylococcus 
aureus or Candida albicans [16], and on the somatotropic 

axis and immune function in weaned piglets challenged 
with lipopolysaccharide (LPS) [12].
  The problems associated with conventional methods of β- 
glucans extraction from mushrooms and plants, such as 
low purity and yield, high cost of production, as well as the 
adverse effects associated with intravenous administration 
β-glucans, such as inflammation, granuloma formation, 
and microembolization [18] prompted us to develop a 
more efficient method for extraction of extracellular β-(1→3), (1→6)-glucan from the soil based Paenibacillus (P.) 
polymyxa JB115 [7]. This study investigated the effects of 
β-glucans extracted from P. polymyxa JB115 on NO 
production in RAW264.7 murine macrophages.
  In order to investigate the cytotoxicity of β-glucan on 
RAW264.7 macrophages, RAW264.7 cells (5 × 104 cells/ml) 
were incubated in a medium containing either β- glucan 30, 
100 or 300 μg/ml or LPS (0.5 μg/ml) for 24 h. The viability 
of cells was then determined by MTT assay [8]. β-glucan 
decreased the viability of cells in a concentration- dependent 
manner (Fig. 1), with a statistically significant decrease (p ＜ 
0.05) being observed at a concentration of 300 μg/ml. LPS 
at 0.5 μg/ml also showed a significant decrease (p ＜ 0.05) 
of approximately 60% relative to the control.
  The effect of β-glucan on NO production in RAW264.7 
macrophages was examined using a Griess reaction [4]. After 
24 h of β-glucan exposure (30, 100 or 300 μg/ml), RAW264.7 
cells showed a concentration-dependent production of NO 
(Fig. 2). This effect was also time dependent (Fig. 3).
  Polysaccharides isolated form Phellinus linteus [8], 
Lentinus edodes [10] and Hericium erinaceum [20] are 
effective inducers of NO in macrophages. However, there 
have been other studies that demonstrated the inhibitory 
effect of β-glucans on macrophages stimulated by LPS or 
other factors [4,15]. In the present study, β-glucan from P. 
polymyxa JB115 activated RAW264.7 macrophages and 
induced the production of NO in a concentration- and 
time-dependent manner. However, this effect was not as 
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Fig. 2. β-glucan induced nitric oxide production in RAW264.7 
macrophages. RAW264.7 cells were treated with either LPS (0.5
μg/ml) or β-glucan. Data represents the mean ± SD. *Significant
difference (p < 0.05) compared to the control group.

Fig. 3. β-glucan induced nitric oxide production in RAW264.7 
macrophages. RAW264.7 cells were treated with β-glucan (300 μg/
ml) for (0, 1, 2, 4, 6, 8, 12 or 24 h). Data represents the mean ± SD.
*Significant difference (p < 0.05) compared to the control group.

Fig. 1. Effects of β-glucan and lipopolysaccharide (LPS) on the 
viability of RAW264.7 macrophages. Data represents the mean  ±
SD. *Significant difference (p < 0.05) compared to the control group.

Fig. 4. Role of polymyxin B (PB) on nitric oxide production in 
RAW264.7 macrophages treated with either LPS or β-glucan. 
RAW264.7 cells were pretreated with 50 μg/ml of PB for 30 min
and then activated with either LPS (0.2 μg/ml) or β-glucan (300
μg/ml). Data represents the mean ± SD. *Significant difference 
(p < 0.05) compared to the control group, #Significant difference
(p < 0.05) compared to the LPS group.

potent as that of LPS (Figs. 2 and 3).
  The cytotoxic effect of LPS in different cells including 
macrophages [21] and endothelial cells [6] has been well 
documented, and one of the most important factors associated 
with cell death is induction of NO [1,9]. These may also hold 
true in this study as the cytotoxicity of β-glucan may possibly 
be due to the NO production during macrophage activation.
  Polymyxin B has shown inhibitory effects on the lethal 
endotoxic activity of LPS in vivo and on the in vitro mitogenic 
activity of LPS by forming a stable molecular complex 
with the lipid A of LPS [21]. Therefore, this study also 
investigated the effects of polymyxin B on the activity of β- 
glucan and LPS in order to exclude any possible contamination 
due to endotoxins during the preparation process. Polymyxin 
B significantly (p ＜ 0.05) inhibited NO production by LPS 
actvation. Nevertheless, polymyxin B had no significant 

effect on NO production induced by β-glucan (Fig. 4).
  Finally, the mRNA expression of various cytokines was 
investigated in RAW264.7 macrophages which were 
exposed to β-glucan or LPS. P. polymyxa JB115 β-glucan 
induced mRNA expressions of i-NOS in a concentration- 
dependent manner, which might play a key role in NO 
production. A similar result was also observed for the mRNA 
expression of COX-2 and IL-6 (Fig. 5).
  Based on our findings, we suggest further studies to be 
conducted to examine the potential use of the novel β-glucan 
purified from P. polymyxa JB115 as an immunostimulant or 
as an adjuvant of some animal vaccines. 
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Fig. 5. β-glucan induced mRNA expression of cytokines in 
RAW264.7 macrophages. RAW264.7 cells were exposed to β- 
glucan at various concentrations, or LPS. After an 8 h incubation, 
i-NOS, COX-2, IL-6 and TNF-α mRNA were assessed by semi- 
quantitative RT-PCR.
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