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Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially
expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and
regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is
critical to understand the relationship (e.g., interactions) between genes across different types of cancer in order to gain insights
into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-
Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes
in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate
that it is capable of finding meaningful alterations in gene relations.
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1. Introduction

Microarray technology, monitoring mRNA abundance of
tens of thousands of genes simultaneously, provides an
efficient tool to characterize a cell at the molecular level. It
has been applied to a variety of research areas, ranging from
biomarker detection [1, 2] to gene regulatory networks [3–
5] and cancer classification [6–8]. When applied to cancer
research, microarray technology typically measures gene
expressions of cancer and normal tissues or different types
of cancer. One important area in microarray-based cancer
research is to identify genes that are differentially expressed
between cancerous and normal cells and to discover diagnos-
tic and prognostic signatures in order to predict therapeutic
responses. Over the years, many statistical methods for the
identification of differentially expressed genes have been
developed, and most of them focused on the expression
analysis of individual genes [9–15]. However, the simple list
of individual differentially expressed genes can only tell us
which genes are altered by biological differences between
different cell types and/or states. It cannot explain the reasons
for the significant alterations in gene expression levels and

the effects of such changes on other genes’ activities. It is well
known that in a biological system genes interact with each
other forming various biological pathways in order to carry
out a multitude of biological processes. To better understand
the roles of these differentially expressed genes and their
interactions in a complex biological system, a comprehensive
pathway analysis is needed. Since the identification of biolog-
ical pathways is significantly influenced by those differentially
expressed genes from different datasets or different statistical
methods [16, 17], we reason here that an integration of
multiple cancer microarray datasets and identification of the
most common pathways from these data would reveal key
relationships between crucial genes in carcinogenesis. Our
focus on the interactions and pathways of cancer-related
genes is important since changes in gene relations and key
pathways are more relevant to carcinogenesis than individual
genes alone.

Several statistical methods have been proposed for
the analysis of differential gene coexpression patterns. Li
[18] observed differences of gene coexpression patterns in
different cellular states and attributed these changes in gene
coexpression patterns to some third set of influential genes.
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Lai et al. [19] proposed a similar method to identify differ-
ential gene-gene coexpression patterns in cells from normal
state to cancerous state. However, these methods often
perform the analyses on one single microarray dataset and
typically generate unreliable results; the results from different
microarray datasets and various statistical methods could
hardly overlap using these methods [20, 21]. Therefore, the
confidence level for discoveries based on these methods is
low. Furthermore, these methods fail to grasp the common
molecular changes in cells transitioning from a normal
state to the cancerous state. Choi et al. [22] introduced a
model to find differential gene coexpression patterns related
to cancer by combining independent datasets for different
cancers. They used a model similar to the t-test, which only
considered the mean and variance of two groups of samples.
It is well known that traditional t-test has two disadvantages
for microarray data analysis: first, it assumes that the datasets
under analysis have a normal distribution, which is usually
violated in microarray datasets; second, if the number of
genes is large and the number of samples is small, some of
the standard deviations will be extremely small, and therefore
the test statistics will be very high, which may lead to a
significant bias. Nonparametric statistical test methods, such
as the K-S test, require fewer assumptions for the data and
may be preferred, especially, when the number of samples is
small.

In this paper, we propose a novel method to detect the
differentially changed gene relations in cancer versus normal
tissues. We collect 36 datasets across different microarray
platforms and from various types of cancer. These 36 datasets
contain both normal and tumor samples, which can subse-
quently yield two Pearson correlation coefficient vectors for
every gene pair, one for normal samples and the other for
tumor samples. We then perform a bootstrapping K-S test
to identify some differentially changed gene relations. Finally
we verify our results with three key pathways related to cancer
and demonstrate that our method can find some meaningful
alterations of gene relations.

2. Materials and Methods

2.1. Microarray Datasets. We collected 36 microarray
datasets from NCBI (Gene Expression Omnibus GEO) [23].
As shown in Table 1, these microarray datasets contain both
normal and tumor samples across 21 different types of
cancer, and their platforms come from one of the three
platforms: GPL570 (Affymetrix GeneChip Human Genome
U133 Plus 2.0 Array), GPL96 (Affymetrix GeneChip
Human Genome U133 Array Set HG-U133A), and GPL91
(Affymetrix GeneChip Human Genome U95 Version Set
HG-U95A). We divided every dataset into two expression
data matrices: one matrix includes all normal samples, and
the other includes all tumor samples. To integrate multiple
microarray datasets across different platforms, we mapped
each probe in different platforms to a unique Entrez Gene ID
or a unique UniGene symbol. For genes with more than one
probe in one platform, we chose the probe with the highest
mean expression value.

2.2. Cancer-Associated Pathways and Extended Gene Net-
works. We applied our method to analyze three cancer-
associated pathways. These pathways are related to three
common traits in most and perhaps all types of human
cancer: self-sufficiency in growth signals, insensitivity to
antigrowth signals, and evading programmed cell death
(apoptosis) [24]. In fact, Hanahan and Weinberg have
already identified some signaling pathways to demonstrate
the capabilities cancer cells acquire during tumor develop-
ment in [24]. We extended these signaling pathways to three
relatively complete and larger cancer-associated pathways
(antigrowth signaling, apoptosis, and growth signaling path-
ways) from the cell cycle pathway, the apoptosis pathway
and the MAPK pathway in KEGG [25]. We used these three
pathways (i.e., cell cycle, apoptosis, and MAPK pathways) as
our seeds and the genes in these pathways as our seed genes.
Next we constructed three gene networks corresponding to
the three cancer-associated pathways from HPRD (Human
Proteins Reference Database, http://www.hprd.org/) and
TRANSFAC [26] based on seed genes and their interacting
partners. We downloaded the protein-protein interaction
(PPI) data released by HPRD on September 1, 2007. This
PPI dataset contains 37107 human binary protein-protein
interactions whose supporting experiments are indicated as
in vivo, in vitro, or yeast two-hybrid. We also collected 1042
transcription factor-target gene relations on human species
from TRANSFAC. So our gene networks included seed genes,
protein interaction partners, and transcription factors (TFs)
of seed genes or target genes for which seed genes served as
their TFs.

2.3. Detecting Differential Relations by Bootstrapping K-S
Test. We used the Kolmogorov-Smirnov test (K-S test) to
determine whether the distributions of values in two datasets
differed significantly. The two-sample K-S test is the most
useful for comparing two samples because it is nonparamet-
ric and distribution-free [27]. The null hypothesis for this
test is that two datasets are drawn from the same distribution.
The alternative hypothesis is that they are drawn from
different distributions.

For n i.i.d samples X1, . . . ,Xn with some unknown dis-
tribution, we can define an empirical distribution function
by

Sn (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x < X(1),

k

n
, if X(k) ≤ x < X(k+1)

1, if x ≥ X(n),

for k = 1, 2, . . . ,n− 1,

(1)

where X1, . . . ,Xn are ordered from the smallest to the
largest value. The Kolmogorov-Smirnov statistic for a given
function S(x) is

Dn = max
x
|Sn (x)− S (x)| . (2)

Dn will converge to 0 if the sample comes from distribution
S(x) [27]. Moreover, the cumulative distribution function of
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Table 1: List of 36 microarray datasets.

Series ID in GEO Cancer type
Numbers
of normal
samples

Numbers
of tumor
samples

Numbers
of genes

Platform
ID in GEO

GSE3744 Breast cancer 7 40 54681 GPL570

GSE5764 Breast cancer 20 10 54681 GPL570

GSE7904 Breast cancer 19 43 54681 GPL570

GSE3678 Thyroid cancer 7 7 54681 GPL570

GSE3467 Thyroid cancer 9 9 54681 GPL570

GSE8977 Breast cancer 15 7 54681 GPL570

GSE8671 Colorectal cancer 32 32 54681 GPL570

GSE4290 Glioma 23 157 54681 GPL570

GSE4183 Colorectal cancer 8 30 54681 GPL570

GSE4107 Colorectal cancer 10 12 54681 GPL570

GSE8514 Aldosterone-producing adenoma 5 10 54681 GPL570

GSE6791 Cervical cancer 8 20 54681 GPL570

GSE6791 Head and neck cancer 18 38 54681 GPL570

GSE6338 Lymphoma 20 40 54681 GPL570

GSE5563 Vulvar intraepithelial neoplasia 9 9 54681 GPL570

GSE6004 Thyroid Cancer 4 14 54681 GPL570

GSE2549 Malignant pleural mesothelioma 10 44 22283 GPL96

GSE781 Kidney cancer 9 8 22283 GPL96

GSE7670 Lung cancer 27 27 22283 GPL96

GSE6344 Kidney cancer 10 10 22283 GPL96

GSE1542 Pancreatic ductal carcinoma 25 24 22283 GPL96

GSE6883 Breast cancer 6 6 22283 GPL96

GSE2724 Uterine fibroid 11 7 22283 GPL96

GSE2503 Skin cancer 6 5 22283 GPL96

GSE3268 Lung cancer 5 5 22283 GPL96

GSE9476 Acute myeloid leukemia 38 26 22283 GPL96

GSE6008 Ovarian tumor 4 99 22283 GPL96

GSE6477 Multiple myeloma 12 150 22283 GPL96

GSE4115 Lung Cancer 90 97 22283 GPL96

GSE3167 Bladder cancer 14 46 22283 GPL96

GSE2514 Pulmonary adenocarcinoma 19 20 12651 GPL91

GSE6631 Head and neck cancer 22 22 12651 GPL91

GSE6604
Prostate tumor 18 25 12651 GPL91

GSE6605

GSE6606
Prostate tumor 63 65 12651 GPL91

GSE6608

GSE2379 Head and neck cancer 4 34 12651 GPL91

GSE1987 Lung Cancer 9 28 12651 GPL91

Kolmogorov distribution is

K (x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2 =
√

2π
x

∞∑
i=1

e−(2i−1)2 π2/(8x2 ).

(3)

It is easy to prove that
√
nDn = √

nmaxx|Sn(x) − S(x)| will
converge to the Kolmogorov distribution [27]. Therefore if

√
nDn > Kα = Pr(K ≤ Kα) = 1 − α, the null hypothesis for

the Kolmogorov-Smirnov test will be rejected at level α.

For the case of determining whether the distributions
of two data vectors differ significantly, the Kolmogorov-
Smirnov statistic is

Dn,m = max
x
|Sn (x)− Sm (x)| , (4)
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and the null hypothesis will be rejected at level α if

√
nm

n + m
Dn,m > Kα. (5)

The P-value from the K-S test can measure the confidence
of the comparison results against the null hypothesis.
Obviously, the smaller the P-value, the more confident we
are of rejecting the null hypothesis.

Assume that we have n microarray datasets and a list of
m genes, we denote the expression data matrix for normal
samples as

Nk =

⎛
⎜⎜⎜⎜⎜⎜⎝

Xk
11 Xk

12 · · · Xk
1p

Xk
21 Xk

22 · · · Xk
2p

. . . .

Xk
m1 Xk

m2 · · · Xk
mp

⎞
⎟⎟⎟⎟⎟⎟⎠

k = 1, . . . ,n, (6)

and the expression data matrix for tumor samples as

Tl =

⎛
⎜⎜⎜⎜⎜⎜⎝

Yl
11 Yl

12 · · · Yl
1q

Y l
21 Yl

22 · · · Yl
2q

. . . .

Y l
m1 Yl

m2 · · · Yl
mq

⎞
⎟⎟⎟⎟⎟⎟⎠

l = 1, . . . ,n, (7)

where p(k) is the number of normal samples in the kth
dataset, and q(l) is the number of tumor samples in the lth
dataset.

For these two types of expression data matrices, each row
represents one gene, and each column represents one sample.
The correlation coefficient for gene i and gene j from the kth
normal sample can be calculated by

NPCk
i j =

∑p

a=1

(
Xk
ia − X

k
i

)(
Xk

ja − X
k
j

)
√∑p

a=1

(
Xk
ia − X

k
i

)2
√∑p

a=1

(
Xk

ja − X
k
j

)2
, (8)

where X
k
i is the average value of expression levels for gene

i. The correlation coefficient for every gene pair from tumor
samples can be calculated similarly.

We use the bootstrapping K-S test to detect some gene
relations with different PC (Pearson coefficient) distribu-
tions. The bootstrapping method generates N bootstrapping
samples NPC and TPC by repeatedly sampling with replace-
ment from the original NPCi j and TPCi j (e.g., Step 4),
respectively. It can give us an empirical distribution of P-
value θ, with which, we can estimate the probability that
the distribution of two PC vectors are different. In our
computational experiment, for a gene pair, if its value of
Pr(θ < 0.05) was larger than 0.8, we considered it as a pair
of genes with the correlation relation significantly different
between normal and cancer cells.

Our method can be described as follows.

Step 1. Compute n correlation coefficient Matrices
NPC1–NPCn from the normal samples in n datasets
for every gene pairs. For example, NPC1 is an m × m

Matrix from normal samples in the first dataset, and NPC1
i j

represents the correlation coefficient between gene i , and
gene j.

Step 2. Compute n correlation coefficient Matrices
TPC1–TPCn from the tumor samples in the n datasets
for every gene pair.

Step 3. For every gene pair (gene i and gene j), let

NPCi j =
[

NPC1
i j NPC2

i j NPC3
i j · · · NPCn

i j

]
,

TPCi j =
[

TPC1
i j TPC2

i j TPC3
i j · · · TPCn

i j

]
,

(9)

Step 4. Perform the following (N is the number of samples
we will generate using bootstrapping).

for k = 1 to N
Do generate bootstrap samples NPC and TPC from

NPCi j and TPCi j , respectively.
θk = P-value of K-S test on NPC and TPC.
End-for
Output Pr(θ < 0.05) = � (θ < 0.05)/N .

3. Experimental Results

In this section, we applied the bootstrapping K-S test method
to analyze three cancer related pathways.

3.1. Antigrowth Signaling Pathway. Antigrowth signals can
control proliferation in normal samples. Cancer cells have
the ability to evade these antiproliferation signals. In the
antigrowth signaling pathway, transforming growth factor
beta (TGFβ) initiates this pathway by binding to two TGFβ
receptors, Tgfbr1 and Tgfbr2. These two activated Tgfβ
receptors can phosphorylate Smad2, Smad3, and Smad4
[28]. The SMAD family proteins then transduce antigrowth
signals to the cell cycle inhibitors p21, p16, p27, and
p15, which can inhibit the action of cyclin-CDK complex.
The cyclin-CDK complex can phosphorylate RB and make
RB dissociate from the E2F/RB complex to liberate E2F
to activate the cell cycle procession from G1 to S phase
(Figure 1(a)).

There are 19 genes in the antigrowth signaling pathway
(Figure 1(a)). We found 689 unique genes related to these 19
genes from TRANSFAC and HPRD. Among these 708 genes,
there were 4215 paired gene interactions, among which
the correlation relations of 47 gene pairs were identified
as significantly changed between normal and cancer cells.
Among these 47 relations, we detected a cluster around
SMAD family proteins which contained 15 relations with
different distributions between normal samples and tumor
samples (Figure 1(b)). Most of them came from large-
scale protein-protein interaction experiments without the
associated molecular function. For example, (Smad1–Arl4d),
(RHOD–Smad2), and (WEE1–Smad3) in [29], (PAPOLA–
Smad2), (SNRP70–Smad5), (GPNMB–Smad4), (PSMD11–
Smad3), and (Smad9–MBD1) in [30], and (EWSR1–Smad4)
in [31], all of them were detected based on large-scale
protein-protein interaction experiments without annotation
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Figure 1: Antigrowth signaling pathway and cluster around SMAD proteins. (a) Antigrowth signaling pathway. Nodes and edges represent
human proteins and protein-protein interactions, respectively. Edges with direction represent a regulatory relation. → means an activating
relation and, � means an inhibitory relation. (b) Cluster around smads. Red edges represent differentially changed relations. Blue edges
represent unchanged relations. Red nodes represent tumor suppressor genes, and green nodes represent oncogenes.

of molecular function. Our results indicate that although
their associated functions and internal mechanisms are still
unclear, these gene pairs are related to the TGFβ-SMAD
signaling pathway, and the relation between the two genes
in each pair is significantly different in cancer and normal
cells. Additionally, we identified some differentially changed
relations with known molecular functions as follows:

(1) MAGI2 (a.k.a. ARIP1)–Smad3. MAGI2 (ARIP1) can
interact with Smad3, and overexpression of ARIP1

can significantly suppress Smad3-induced transcrip-
tional activity [32]. We validated this from the
boxplot for MAGI2 (ARIP1)–Smad3 (Figure 2(a)). In
normal samples, MAGI2 (ARIP1) and Smad3 showed
a high positive correlation, while they had a high
negative correlation in tumor samples.

(2) EWSR1–Smad4. Although the experiment type of
the interaction between EWSR1 and Smad4 is yeast
two-hybrid [31], mutations in EWSR1 are known
to cause Ewing sarcoma and other members of the
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Figure 2: (a) Boxplot for MAGI2 (ARIP1)–Smad3. Pr(θ < 0.05) = 0.986. (b) Boxplot for EWSR1–Smad4. Pr(θ < 0.05) = 0.954. (c) Boxplot
for TRAP1–TgfbetaR2. Pr(θ < 0.05) = 0.944.

Ewing family of tumors [33]. From the boxplot for
EWSR1–Smad4, we found that the third quartile
is the densest part of the whole distribution for
both normal and tumor samples. The third quartile
for normal samples showed a positive correlation
whereas that for tumor samples showed a negative
correlation (Figure 2(b)). Therefore, we suspect that
EWSR1 can suppress the activity of Smad4 in tumor
samples.

(3) TRAP1–Tgfbr2. TRAP1 has been shown to bind to
TGFβ receptors and play a role in TGFβ signaling
pathway. TRAP1 can interact with Smad4 and affect
the SMAD-mediated signal transduction pathway.
Mutant TRAP1 can prevent the formation of the
Smad2–Smad4 complex to inhibit the TGFβ Signal-
ing pathway [34]. In the boxplot for TRAP1–Tgfbr2
(Figure 2(c)), the densest quartile for tumor samples
showed a high negative correlation.

3.2. Apoptosis Pathway. Cancer cells have the ability to
evade programmed cell death or apoptosis. TNFα, FASL,
TRAIL, and other genes can initiate apoptosis by bind-
ing to their receptors such as TNFR1, FAS, and TRAIL-
R. Many apoptosis signals induce mitochondrial changes.

Mitochondria can help transduce the apoptosis signals by
releasing cytochrome C (Cytc), a potent catalyst of apoptosis.
There are two different Bcl-2 family members: proapoptotic
members (Bid, BAD) and antiapoptotic members (Bcl-2,
Bcl-xl), which activate and inhibit, respectively, the release of
Cytc. Finally, two key caspases (Casp8 and Casp9) activate
other downstream caspases that perform the cascading
events of cell death (Figure 3(a)).

In our results, we detected 33 relations with different
distributions in the apoptosis pathway, and some are sup-
ported by existing experimental evidence. Examples include
(Figure 3(b)) the following:

(1) PUMA–Bcl-XL (BCL2L1). PUMA can interact with
Bcl-XL and meanwhile PUMA can also neutralize
and antagonize all the Bcl-2-like proteins [35].
From the boxplot for PUMA–Bcl-XL, we can find
that Bcl-XL, and PUMA showed a higher negative
correlation in normal samples than in tumor samples
(Figure 4(a)).

(2) AKT1–BAD. Active forms of Akt can phosphorylate
BAD in vivo and in vitro to prevent it from promot-
ing cell death [36]. In the boxplot for AKT1–BAD, the
first quartile, the densest quartile for normal samples,
showed a higher positive correlation than the second
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Figure 3: (a) Apoptosis pathway. (b) Differentially changed gene relations in apoptosis pathway. Red edges represent differentially changed
relations. Blue edges represent unchanged relations. Red nodes represent tumor suppressor genes, and green nodes represent oncogenes.

quartile, the densest for tumor samples (Figure 4(b)).
So we speculated that Akt can suppress BAD’s activity
in tumor samples.

(3) KRT18–TRADD. TRADD is a KRT18-interacting
protein. KRT18 may inactivate TRADD to prevent
interactions between TRADD and the activated
TNFR1 and thus affect TNFα-induced apoptosis
[37]. In the boxplot for KRT18–TRADD, nor-
mal samples showed a higher positive correlation
(Figure 4(c)).

(4) TNFR1–RIPK1 (RIP). The interaction between the
death domain of TNFα receptor-1 (TNFR1) and
TRADD can trigger distinct signaling pathways lead-
ing to apoptosis. TRADD also interacts strongly with
another death domain protein; RIP and RIP plays
an important role in the TNF signaling cascades

leading to apoptosis [38]. In the boxplot for TNFR1–
RIPK1, TNFR1 and RIPK1 exhibited high positive
correlation in normal samples (Figure 4(d)).

(5) TNFR1–RASSF1. RASSF1A is a tumor suppressor
gene. Apoptosis initiation by TNFα or TRAIL recruits
RASSF1A and MAP-1 to form complexes. RASSF1A
and MAP-1 are the key links between death receptors
and the apoptotic machinery [39]. This was verified
by the Boxplot for TNFR1–RASSF1. In most normal
samples, these genes showed a high positive correla-
tion. In most tumor samples, they showed a zero or
negative correlation (Figure 4(e)).

(6) IAP–CASP9. Inhibitor of apoptosis (IAP) suppresses
the activities of caspases and inhibits different apop-
totic pathways [40]. IAP and CASP9 showed a high
negative correlation in tumor samples (Figure 4(f)).
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Figure 4: (a) Boxplot for PUMA–Bcl-XL(BCL2L1). Pr(θ < 0.05) = 0.998. (b) Boxplot for AKT1–BAD. Pr(θ < 0.05) = 0.859. (c) Boxplot
for KRT18–TRADD. Pr(θ < 0.05) = 0.991.(d) Boxplot for TNFR1–RIPK1(RIP). Pr(θ < 0.05) = 0.831. (e) Boxplot for TNFR1–RASSF1.
Pr(θ < 0.05) = 0.946. (f) Boxplot for IAP–CASP9. Pr(θ < 0.05) = 0.826.

Among the eight differential gene relations in Figure 3(b),
three of them were in the seed pathway: TRAIL-R→FADD,
IAP→CASP9, and AKT→BAD, which demonstrates the
effectiveness of the proposed method.

3.3. Growth Signaling Pathway. Cancer cells have the ability
to produce their own growth promoting signals. EGF, TGFα,
and PDGF are activated and then bind to their receptors
to transduce the growth signals. The activated growth

factor receptors can in turn activate the SOS-Ras Raf Mapk
cascade. In the growth signal pathway (Figure 5), Ras, JUN,
and Fos are oncogenes.

We could find 68 relations with different distributions in
the growth signal pathway, and we discuss three relations as
follows:

(1) RASSF2–KRAS. Although different forms of Ras are
frequently thought of as oncogenes, they also have
the ability to produce antigrowth effects such as cell
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Figure 5: (a) Growth signal pathway. (b) Differentially changed relations in growth signal pathway. Red edges represent differentially changed
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Figure 6: (a) Boxplot for RASSF2–KRAS. Pr(θ < 0.05) = 0.983. (b) Boxplot for MAZ–MYC. Pr(θ < 0.05) = 0.833. (c) Boxplot for PLSCR1–
EGFR. Pr(θ < 0.05) = 0.963.
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cycle arrest, differentiation, and apoptosis. RASSF2
can bind directly to K-Ras. Moreover, RASSF2 can
inhibit the growth of tumor cells, and the activated K-
Ras can enhance this ability [41]. This might be why
RASSF2 and RAS showed a high positive correlation
in normal samples in the boxplot (Figure 6(a)).

(2) MAZ–MYC. The MAZ family can increase the onco-
gene MYC’s transcriptional activity [42]. As expected,
MAZ and MYC demonstrated a higher positive
correlation in tumor samples (Figure 6(b)).

(3) PLSCR1–EGFR. Activated epidermal growth factor
receptors (EGFRs) can both physically and func-
tionally interact with PLSCR1. In turn, PLSCR1 can
interact with Shc and thus accelerate the activation
of Src kinase through the EGF receptor, while Src
can initiate some activating pathway for the oncogene
JUN [43]. In the boxplot for PLSCR1–EGFR, the
densest quartile for normal samples showed a low
negative correlation, whereas the densest quartile for
tumor samples showed a low positive correlation
(Figure 6(c)).

4. Conclusion and Discussion

After several decades of cancer research, some details of the
underlying mechanisms of cancer at the gene level are still
unclear. In this paper, we propose an integrative method
based on the bootstrapping K-S test to evaluate a large
number of microarray datasets generated from 21 different
types of cancer in order to identify gene pairs that have
different relationships in normal versus cancer tissues. The
significant alteration of gene relations can greatly extend
our understanding of the molecular mechanisms of human
cancer. In our method, we obviate the disadvantage of
the traditional t-test, which only considers the mean and
variance of samples and fails in the analysis of microarray
data with small numbers of samples. Instead of the t-test,
we propose the use of the bootstrapping K-S test method
to detect gene pairs with different distributions of Pearson
correlation coefficient values in normal and tumor samples.
The experimental results demonstrated that our method
could find meaningful alterations in gene relations and
opened a potential door for further cancer research.
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