
1Scientific Reports | 6:26348 | DOI: 10.1038/srep26348

www.nature.com/scientificreports

Big Data Analytics for Scanning 
Transmission Electron Microscopy 
Ptychography
S. Jesse1,2, M. Chi1,2, A. Belianinov1,2, C. Beekman3,4, S. V. Kalinin1,2, A. Y. Borisevich1,5 &  
A. R. Lupini1,5

Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, 
through the current state where many images and spectra can be digitally recorded, to a new mode 
where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly 
obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional 
microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient 
image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals 
domain differentiation despite the fact that the algorithm is purely statistical in nature and does not 
require any prior information regarding the material, any coexisting phases, or any differentiating 
structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical 
and structural information without any prior bias regarding the sample or the instrumental modality. 
Further interpretation of these types of results may still require human intervention. However, the open 
nature of this algorithm and its wide availability, enable broad collaborations and exploratory work 
necessary to enable efficient data analysis in electron microscopy.

Scanning transmission electron microscopy (STEM) and associated spectroscopies have emerged as powerful 
tools for the visualization of structure and functionality of materials at atomic resolution1,2. The widespread 
implementation of aberration correction, and the associated increase in spatial resolution has allowed sub-50 pm 
resolution and, consequently, determination of atomic positions with sub-10 pm precision3–6. These capabilities 
enable direct visualization of chemical and mechanical strains7, order parameter fields including ferroelectric 
polarization8–11, and octahedral tilts12–16. Additional opportunities are enabled by more sophisticated analysis 
of the images, with examples including extracting atomic column shapes, which have been shown to contain 
information with regards to otherwise inaccessible parameters, like the tilt system in the beam direction16–18. 
In a related development, the increase in convergence angle (necessary for improved transverse resolution) also 
enables focal series imaging, yielding three-dimensional images of materials structure. Similar information has 
been obtained from the reconstruction of tilt series17 and the combination of these two techniques in a “tilt-focal 
series”18 appears extremely promising. However, in all these cases, the image contrast originates from one or two 
(e.g. bright field and dark field) information channels sampled over 2D (imaging) or 3D (series) spatial grids. 
Therefore, the structural information is inferred by a mathematical analysis under implicit assumptions about the 
image formation mechanisms. For example, maxima in high-angle annular dark field (HAADF) image intensities 
are usually identified as atomic columns, and hence analysis of contrast provides enhanced information regarding 
atomic positions.

A typical STEM imaging detector integrates the response over a range of scattering angles (e.g. high-angle 
scattering). However, the fundamental physics of the image formation mechanism in STEM offers a significantly 
richer source of information in the form of a local diffraction image also refered to as a Ronchigram19. The term 
Ronchigram is rather loosely defined, as it sometimes refers to the STEM shadow map without an aperture. All 
of the diffraction patterns discussed here have an angle-defining aperture, we therefore use the term Convergent 
Beam Electron Diffraction (CBED) pattern throughout the rest of the manuscript. CBED patterns offer far more 
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information because instead of integrating over a range of scattering angles to arrive at a single representative data 
point, the whole scattering distribution is recorded. Previous theoretical and experimental works suggest that full 
acquisition of the CBED patterns at each spatial location in a scan can enable super resolution, phase-contrast 
imaging, as well as imaging of internal fields, and 3D sample reconstruction20–23.

Traditionally, problems in attempting to access the complete dataset were threefold: first, limitations imposed 
by the detector acquisition speed, second the data storage demands, and third, processing, synthesis and visu-
alization of the of the data to extract useful information. In the last several years, data acquisition and storage 
have evolved to a point where it is now possible to capture and save high-resolution multi-dimensional data sets 
rapidly. However, the underlying complexity and dearth of mathematical tools used to visualize and analyze 
these data are compounded by the nebulous information content of the data itself. The basic assumptions about 
the image formation process might precondition the expectation of what information is available. Alternatively, 
to put it bluntly, prior expectations might both limit the potential information that can be extracted24 and create 
false positives for expected results25–27. Here, we describe a comprehensive framework for processing and mining 
of large (multi-GB) data sets, to distil the most salient aspects of the data while separating out the statistically sig-
nificant variations from noise to hopefullyextract useful information about the material being examined,. Here, 
we will discuss the extraction of the physically-relevant parameters based on the statistically relevant similarities 
of CBED patterns. Furthermore, we deliberate on a roadmap for data streaming and storage for ptychographic 
imaging of complex materials.

Results
Experimental Details.  To enable rapid acquisition of the CBED data, we utilized a DE-12 camera (Direct 
Electron, LP, San Diego, CA), equipped with a 4096 ×​ 3072 pixels Direct Detection Device (DDD®​) sensor 
installed on an aberration corrected FEI Titan operating at 300 kV. The camera and the microscope were inte-
grated through a custom FPGA control system to synchronize frame capture and beam positioning to acquire 
4D scanning-scattering data sets. The schematic of the data acquisition system is illustrated in Fig. 1a. In this 
specific example, we raster scanned the electron beam over 192 ×​ 192 physical positions on the sample, collecting 
384 ×​ 384 pixel CBED patterns at each beam location. We have utilized a capture rate of ~300 frames per second 
to give a total acquisition time approximately 1 minute for the entire 4D dataset. We note that this acquisition 
speed is comparable to STEM spectrum imaging and hence allows (in principle) a transition to “full data” acqui-
sition imaging in STEM using existing instrumental infrastructure once the associated data streaming pipelines 
and data analytic tools are established, similar to the approach recently demonstrated for scanning probe micros-
copy28–30. For the analysis presented here, the CBED pattern data was binned down to 96 ×​ 96 pixel images (from 
the full 384 ×​ 384) to enable calculation on a desktop computer. However, high-performance computational envi-
ronments will enable this methodology for much larger data sets.

From a physical perspective, the data set is stored as a 4D array in the form S(x, y, u, v), where S is the meas-
ured signal intensity, x, y are the coordinates of the electron beam in the image plane (probe position), and u, v are 
the coordinates in the k-space of the system in the camera detector plane (detector pixel or angle). For a combined 
ptychographic focal-series dataset, the dimensionality increases to 5D, taking on the form S(x, y, z, u, v), where z 
is the focal plane of the beam. The multidimensional nature of the data necessitates the development of systematic 
ways to easily explore the associated structure in real and reciprocal-spaces, with real time analytics, analysis and 
visualization.

We chose a highly strained polymorph bismuth ferrite (BFO) thin film as a model system for this study. The 
thin film was grown by PLD on a LaAlO3 substrate, forming coexisting T’ and S’ phases. Detailed growth condi-
tion and phase information were described previously31. As these two neighboring phases have identical chemical 
composition, but different crystal symmetry32, their phase boundaries exhibit interesting interfacial phenomena, 

Figure 1.  Schematic of the data acquisition system. (a) The control system synchronizes beam positioning 
and image capture from a direct electron detector of the CBED pattern and recording of the HAADF signal. 
(b) The resulting 4D data set (where a 2D CBED pattern is captured at each spatial location across a M by N 
2D array of points) is analyzed to construct (c) 2D maps showing variations in material properties across the 
samples.
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such as local elastic and electric susceptibilities, which are confined at a small length scale but may lead to unique 
physical properties33,34. A precise two-dimensional map of the structure at atomic scale across the phase boundary 
is prerequisite to unravel the complex correlations between interfacial structure and physical properties in this 
system.

We note, as a first step of the analysis it is helpful to emulate the response of a bright field or a low angle annu-
lar dark field detector by calculating the mean intensity of the specific regions of the 4D CBED pattern dataset 
(u, v) at all scan locations (x, y). Such representations allow rapid, qualitative assessment of the data, including 
resolution and drift, as well as an overview of material structure (e.g. the presence of topological and structural 
defects, dissimilar phases, etc.) (see supplementary Figure 1). Once these basic relationships are established one 
can take a more in-depth, statistical look at the whole dataset.

For periodic and nearly-periodic systems, an initial insight into the structure of the data can be obtained by 
using fast a Fourier transform (FFT) on the spatial coordinates, i.e. the transformation of S(x, y, u, v) to S(ρx, ρx, 
u, v), where ρ is used to indicate spatial frequency.

Figure 2 illustrates the FFT of the multidimensional data set for the BFO sample. Here, the coordinate sys-
tem in the image corresponds to the reciprocal lattice vectors of the main lattice, whereas each (compound) 
pixel represents the characteristic CBED pattern at a particular spatial frequency. Note that if the CBED pattern 
information is averaged to a single pixel, this information is reduced to the classical FFT of an image, with clearly 
visible maxima corresponding to the inverse lattice vectors of the material. However, detailed examination of the 
data illustrates the rich internal structure of the data set, as visualized in Fig. 2b–e. The CBED pattern amplitude 
information of peaks labeled 1 & 2 in Fig. 2a, is shown in detail in panels b & d, with the phase shown in Fig. 2c,e. 
The phase images (Fig. 2c,e) contain information on the details of the aberrations and illumination coherence35. 
Furthermore, FFT on a 4D dataset shows clear peak splitting of the <​210>​ peak, highlighted by a square and 
label “2” in Fig. 2a with a zoomed view in Fig. 2d, similar to a 2D FFT of BFO. The 2D equivalent has been used 
to capture material crystal orientation, asses the quality of the grown material, as well as ferroelectric domains 
in relevant materials36. However, the 4D representation enables access to individual CBED patterns, which can 
be selected, averaged and inversely Fourier transformed to spatially map a given orientation’s contribution to 
the overall image. In addition, the phase portion of the signal, shown in Fig. 2e, can serve as a quick quantita-
tive assessment of the lattice strain difference between different orientations, and potentially provide informa-
tion on polarization. This fusion of classical analysis with modern data capabilities enables entirely new ways of 
interpreting results and pushing the limits of instrumentation to at least qualitatively asses, hitherto inaccessible 
properties.

Multivariate Statistical Methods.  To gain further insight into the structure and information content 
of the ptychographic data set, we performed Principal Component Analysis (PCA) following the framework 
developed earlier for the reflection of high energy electron diffraction (RHEED) and STM data sets37–39. Here, 
the original 4D data set is reshaped into a 2D data set of size P ×​ Q, where the total number of spatial locations 
(Nx ×​ Ny) =​ P, and the total number pixels in the CBED pattern (Nu ×​ Nv) =​ Q. The resultant 2D data set, D, is 
decomposed using conventional principal component analysis40–46.

In PCA, defined by Equation (1), a spectroscopic data set of P populated by spectra containing Q points is 
represented as a weighted superposition of the eigenvectors V, in Equation 1

= ⁎D USV (1)

Figure 2.  Fourier analysis of the 4D scanning-scattering data set. (a) Fourier transforming across the spatial 
dimensions allows one to view periodicity in the structure of the sample as well as view the CBED patterns 
associated with a specific spatial periodicity. (b) Amplitude and (c) phase of the transformed CBED patterns 
located at peak 1 in (a). (d) Amplitude and (e) phase of the transformed CBED patterns located at peak 2 in (a).
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where the cross-product, USi,j, are the expansion coefficients at each pixel. The eigenvectors V and the corre-
sponding eigenvalues S are calculated with a covariance matrix, C =​ DDT, where D is the matrix of all exper-
imental data points Di,j, i.e. the rows of D correspond to individual scan positions (i =​ 1,…​,P), and columns 
correspond to a point in a CBED pattern, ( j =​ 1,…​,Q). The eigenvectors V are orthogonal and are ordered so that 
the eigenvalues are placed in descending order, λ1 >​ λ2 >​ …​. Hence, the first eigenvector, V1,j, contains the most 
information (where information is defined as variance) within the spectral-image dataset; the second contains the 
most “informative” (varying) response after the subtraction of the first one, and so on. In this manner, the first q 
loading maps, Ui,1:q, contain the majority of information within the 3D dataset, while the remaining Q-q sets are 
dominated by highly uncorrelated information which is likely to be noise.

The resulting 2D matrices are converted back to the real space and detector coordinates, yielding data sets of 
the form Ui(x, y) and Vi(u, v). The measure of variance associated with each loading map Ui(x, y) is taken from 
values Si,i and are used to generate scree plots (Fig. 3a,b). The Ui(x, y) are the PCA loading maps, representing spa-
tial variation of the CBED patterns between dissimilar probe locations in terms of linear combinations of eigen-
vectors Vi(u, v). Note, while PCA components are defined in a purely statistical sense and generally do not have 
well defined physical meaning (unless the structure of decomposition is identical to the physics of the system, as 
can be the case for e.g. Bayesian unmixing47–49), they do provide insight into the variability of the response and the 
information content of the ptychographic data set. In particular, unlike compound real-space and FFT images, 
(because each pixel contains a 2D CBED pattern), PCA allows representation of spatially dependent information 
in the form of a set of 2D images; which allows identification of large scale structural features, and individual 
morphological elements that are statistically significant within a given data set.

The amount of information in a ptychographic data set can be estimated based on the shape of the scree plot, 
shown in Fig. 3a,b. In this case, the inflection point is located at approximately 300 principal components, sug-
gesting that ~300 components out of 9216 contain relevant information. The behavior of the PCA components 
for the BFO is illustrated in Fig. 3d. The first PCA component, which by definition is equivalent to the average 
signal, since we have utilized raw, non-whitened data, effectively represents a bright field image of the material. 
Interestingly, some higher order components show a differentiation between the two regions of dissimilar phases 
(visible gradations of the intensity between the domains); with some cases (component 11) exhibiting contrast 
at the interface region. We note that while physical interpretation of individual eigenvectors beyond symmetries 
can be challenging, as is the case with the original CBED patterns, this approach allows for high-veracity visu-
alization and structural examination of material structure as a purely statistical dissection based on the signal 
variance. Although PCA does not transform the data into components with direct physical meaning (owing 
primarily to the underlying eigenvector orthonormality constraint of the method), this statistical approach excels 
at compressing and de-noising large data sets very rapidly. For these reasons, PCA can serve as an effective initial 
step to clean and reduce the data to a more manageable size while maintaining the information rich content in 
preparation for more computationally intensive analysis steps downstream. More importantly, we are reducing 
the data based on a statistical evaluation of quality and content, rather than the traditional averaging route, void 
of any discrimination.

Analysis of the unfolded 4D to 2D data sets can be further extended to explore similarities and patterns in 
materials structure via clustering analysis. For example, the k-means algorithm can be used to divide M points in 
N dimensions into K clusters in such a way as to minimize the variance within each cluster, Equation (2)

∑ ∑ µ−
= ∈

xarg min
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k
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Figure 3.  PCA analysis. (a) Full log-linear scree plot of information content for all (96 ×​ 96) 9216 principal 
components. (b) Log-log scree plot of the first 1000 principal components with the first 16 corresponding to 
images in (b,c) highlighted. (c) The first 16 PCA eigenvectors. (d) The first 16 PCA loading maps.
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where μi is the mean of points in Si
50,51. Here, we have used a Matlab k-means algorithm that minimizes the sum, 

over all clusters, of the within-cluster sums of point-to-cluster-centroid distances. The measure of distance (the 
minimization parameter) is in square-Euclidian space with each centroid being the component-wise median of 
the points in a given cluster.

The k-means approach requires the k-value (the number of clusters) entered a-priori, and it is therefore a 
challenge to initially determine an appropriate number of clusters that best represents the data. To this end, we 
used a relatively large value for k =​ 36 (which is higher than necessary, and will be reduced later), and applied a 
k-means clustering method on the first 256 elements of the weighting vectors for all spatial points (U1..P,1..256) see 
Supplemental Material Figure S1. Figure 4a shows the top-down agglomerative hierarchical cluster tree (dendro-
gram) assembled from the clustering branches by determining the closest two clusters, combining them into one 
cluster, and continuing until only one cluster remained. The relative distance between cluster centroids is repre-
sented by the height of the vertical drop at which two clusters are joined in the dendrogram. Therefore, this plot 
offers a convenient representation of separations and grouping within the data. The structure of the dendrogram 
clearly illustrates a progressive division into two main branches and one sub-branch. The main branches then 
generate a continuum of cluster states. The spatial localization of resultant clusters is illustrated in Fig. 4, as shown 

Figure 4.  K-mean cluster analysis results showing hierarchical organization and spatial distribution of 
clustered CBED patterns. (a) Dendrogram showing the hierarchical clustering from 36 clusters to a single 
one. Vertical length of branches indicates relative separation distance between neighboring clusters. The red 
line shows the cut-off for generating 16 clusters as shown in (b,c), and the green lines shows the cut-off for 
generating 4 clusters as shown in (d,e). Binary spatial maps indicating the locations of clusters associated with a 
particular cluster for (b) 16 and (c) 4 total clusters. Mean CBED patterns associated with each cluster for (c) 16 
and (d) 4 total clusters.
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for the 4 (green) and 16 (red) level division. Clusters 1–36, are shown in Supplementary Materias Figure S2. Note 
that the initial decomposition (clusters 1, 2, 3 belonging to first branch and cluster 4 belonging to second branch) 
clearly separates the S’ and T’ phase of BFO, where the orientation between the c-axis of the two phase should be 
within 5 degrees.

The subsequent clustering visualizes the variability of the ptychographic data set on the atomic level, effec-
tively sorting the scattering information at atomic resolution. Note, that the resultant clusters are localized within 
phases (as can be expected based on the hierarchical character of clustering process). The high-resolution images 
are shown in Fig. 5. Note the periodicity of the cluster distribution, indicating that specific clusters are associated 
with specific probe positions in relation to the atomic columns. In other words, the mean of each cluster repre-
sents the typical CBED pattern from specific points within the unit cell. Additionally, regular tiling of cluster 
arrangements commensurate with unit cell spacing provides a means to reveal, in a systematic way, the effects of 
local fields on electron scattering behavior.

Discussion
We note that the analysis described above presents a starting framework for the systematic analysis of the ptych-
ographic data sets, enabling exploration of underlying materials structure, identification of the relevant materials 
behaviors, and compression for storage and analysis. The latter can include data analytics using models that 
incorporate the physics of measurement process (e.g. linear unmixing with superimposed physical constraints), 
numerical detectors optimized for specific physics, and direct comparison with libraries of simulated data for 
solution of inverse problems.

We also note that the transition to ptychographic imaging should potentially enable super resolution imag-
ing19. Similarly, since the potential information content of a single 300 ×​ 300 pixel CBED pattern is much higher 
than for a single integrated value, there will be important consequences for the signal to noise ratios. Obviously 
while this view is oversimplified and ignores noise sources (such as electron flux and 1/f noises in the system) it 
illustrates the potential for ptychographic imaging and may suggest possible directions for theoretical analyses 
and additional technique development. HAADF imaging is often the preferred mode in a STEM, because it is 
typically simple to interpret without much sample information. On the other hand, BF imaging may be more sen-
sitive to subtle changes in the electron phase, and for thin, light materials will have a far larger flux of electrons per 
solid angle than high-angle scattering under equivalent conditions. Therefore, an approach capable of combining 
the sensitivity of the BF imaging mode with the minimal prior knowledge requirements of the HAADF imaging 
could have far reaching consequences.

Figure 5.  Atomic scale, and CBED analysis of fine atomic structure. (a) An overview of the BFO film area 
where atomic resolution measurements were taken - illustrated by a black square. (b) The zoomed in HAADF 
image of the area shown by a black square in (a). (c) A subset of the image shown in (b), highlighted by a yellow 
square, illustrating a 36 cluster k-means result performed on the CBED patterns. Atomic positions are overlaid 
as contour maps, the original HAADF pixel values are shown in the upper left. (d) The same area as (c) shown 
with the original CBED patterns at each pixel. Atomic positions are shown as contour maps. (e) A subset of 
the image shown in (b), highlighted by a blue square, illustrating a 36 cluster k-means result performed on the 
CBED patterns. Atomic positions are overlaid as contour maps, the original HAADF pixel values are shown in 
the upper left. (f) The same area as (e) shown with the original CBED patterns at each pixel. Atomic positions 
are shown as contour maps.
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Finally, we briefly analyse the physical data infrastructure requirements for ptychographic imaging. Today, 
we already have the capability to capture much larger 4D datasets for multiple thousands of probe positions and 
CBED patterns resolved at 4 k by 4 k pixels with the newest high-pixel-count electron detectors. Practically, how-
ever, using 32 bit integers, a thousand points in every dimension ((1 k ×​ 1 k probe positions) ×​ (1 k ×​ 1 k CBED 
pattern resolution)) results in a 4 TB dataset. To sustain such gargantuan data output streams, ideally the micro-
scope data would be livestreamed directly from the instrument to a large database associated with sufficent com-
putational power. Initial insight presented in this work serves to develop efficient compression algorithms at the 
data generation point to ameliorate these requirements.

We can also consider how much information is available given a finite number of electrons in the probe. To 
account for the spatial beam coordinates and scattering angle of each electron, we would need approximately 
16 bytes. For a very-high resolution STEM, a typical probe current might be around 32 pA, translating to roughly 
200 electrons per microsecond and resulting in a data generation rate of 3.2 GB/sec. Obviously, precise values are 
debatable, since the probe positions may be generated from a systematic function, only the maximal detected 
intensity might be useful, or electron energy loss spectra might also be recorded. Additionally this data could 
be a function of frame, or focus, or some physical parameter (time, focal series, tilt series, etc.) adding dimen-
sionality and size, in which case higher transfer rates or more storage capacity would be necessary. These speeds 
are in-line with the current commercial connection speeds, with dedicated centres routinely having access to 
optical-fiber connections that operate in the Gb/s regimes. Similarly, although storage space and data access are 
also nontrivial requirements for such data volume generation, those issues have mostly been addressed with the 
rise of cloud-based services. A more difficult case is the total memory and processing power available instanta-
neously, since for some analysis processes the bottleneck is in the availability of random access memory, rather 
than raw CPU speed. The processor time to calculate full a PCA decomposition using a current workstation (Intel 
Xenon E5-1650V3, 32GB DDR3 RAM) for the CBED BFO dataset is approximately 30 minutes, however the 
RAM requirement to hit that benchmark is 625GB. Alternatively, the k-means clustering process is CPU limited 
taking almost entire 24 hours to complete. Clearly, in order to process much larger datasets a high performance 
computing (HPC) environment with scalable analysis code that is capable of transfer, storage and fast analysis of 
multidimensional data sets is vital.
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