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Abstract

Purpose—We evaluated the ACMG/AMP variant pathogenicity guidelines for internal 

consistency and compatibility with Bayesian statistical reasoning.

Methods—The ACMG/AMP criteria were translated into a naïve Bayesian classifier, assuming 

four levels of evidence and exponentially scaled odds of pathogenicity. We tested this framework 

with a range of prior probabilities and odds of pathogenicity.

Results—We modeled the ACMG/AMP guidelines using biologically plausible assumptions. 

Most ACMG/AMP combining criteria were compatible. One ACMG/AMP likely pathogenic 

combination was mathematically equivalent to pathogenic and one ACMG/AMP pathogenic 

combination was actually likely pathogenic. We modeled combinations that include evidence for 

and against pathogenicity, showing that our approach scored some combinations as pathogenic or 

likely pathogenic that ACMG/AMP would designate as VUS.

Conclusion—By transforming the ACMG/AMP guidelines into a Bayesian framework, we 

provide a mathematical foundation for what was a qualitative heuristic. Only two of the 18 

existing ACMG/AMP evidence combinations were mathematically inconsistent with the overall 

framework. Mixed combinations of pathogenic and benign evidence could yield a likely 

pathogenic, likely benign, or VUS result. This quantitative framework validates the approach 

adopted by the ACMG/AMP, provides opportunities to further refine evidence categories and 

combining rules, and supports efforts to automate components of variant pathogenicity 

assessments.

INTRODUCTION

In 2008, Plon et al. published recommendations for sequence variant classification for seven 

cancer susceptibility genes1. They coupled quantitative, probability-based thresholds for 

variant classification to a Bayesian approach for estimating probabilities of pathogenicity for 

variants of uncertain significance (VUS).1,2 Recently, Richards et al. (representing the 

American College of Genetics and Genomics and the Association for Molecular Pathology, 

ACMG/AMP) published guidelines for evaluating Mendelian disease gene variants.3 The 

ACMG/AMP guidelines codified multiple approaches to variant pathogenicity assessments 

in use by clinical genetic/genomic testing laboratories. The first stage of their process 

reduced this assessment into qualitatively distinct evidence types (functional, genetic, 

population, in silico, etc.) and stratified the strength of evidence into categories (supporting, 

moderate, strong, very strong, and stand alone). The second stage tallied evidence for or 

against pathogenicity using “combining criteria”, where various combinations would lead to 

semi-quantitative categorical pathogenicity assessments (pathogenic, likely pathogenic, 

VUS, likely benign, or benign) similar to the five Plon et al.1 categories.

Juxtaposing these two achievements raises two questions. First, whether the ACMG/AMP 

rules are internally consistent. Second, whether the systematic, qualitative, categorical 

ACMG/AMP combining criteria represent a Bayesian heuristic similar to that used for 

hereditary cancer variants. To address these questions, we analyzed the ACMG/AMP 

approach in a Bayesian framework.
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METHODS

Bayesian reasoning starts with a prior probability (Prior_P), which is modified using 

conditional factors, expressed as probabilities, odds, or likelihoods, to raise or lower the 

Prior_P. Using Bayes rule to combine these factors results in a posterior probability 

(Post_P). We interpreted the evidence categories given in Tables 3 and 4 of Richards et al.3 

as categorical conditional probabilities or odds of pathogenicity (OP), which could 

mathematically favor a pathogenic (odds >1) or benign (odds <1) interpretation. To test 

Bayesian compatibility of the ACMG/AMP combining criteria, we created an Excel 

spreadsheet that uses Bayes rule to calculate a Post_P from a Prior_P and the OP from four 

categories of pathogenic and two categories of benign data. Each of the “Rules for 

combining criteria to classify sequence variants” described in Table 5 of Richards et al.3 was 

encoded (Table S1). In principle, this approach could transform their qualitative Table 5 

“combining criteria”3 into a formal, quantitative framework, based on several assumptions:

1. Each piece of evidence considered by ACMG/AMP was independent, which 

allows use of a naïve Bayesian classifier with multiple data types expressed 

individually as OP, the overall OP being obtained by multiplying the odds from 

each piece of evidence.

2. In encoding the combining criteria, we accepted all but one type of ACMG/AMP 

evidence, building a mathematical model that preserves the relative strengths of 

each type of evidence. We excluded BA1, “benign stand alone” because it is used 

as absolute evidence that a variant is benign, irrespective of other evidence, 

which is contrary to Bayesian reasoning. The BA1 filter is useful for excluding a 

variant from entering a Bayesian framework, and will be addressed separately by 

the ClinGen Sequence Variant Interpretation (SVI) Working Group.

3. We transformed the adjectival ACMG/AMP descriptors (supporting, moderate, 

strong, or very strong) into four conditional probabilities; the odds of 

pathogenicity relationships. The strength of evidence relationships among the 

categories supporting (OPSu), moderate (OPM), strong (OPSt), and very strong 

(OPVst) defined by the ACMG/AMP guidelines3 were scaled exponentially such 

that OPSu
X = OPM, OPM

X = OPSt, etc. The “evidence of benign impact” categories 

were assigned reciprocal OP to the corresponding pathogenicity categories. If N 
is the number of criteria with a given strength of evidence category in a 

classification rule (detailed in Richards et al.3 Table 5), with categories named as 

subscripted above, the OP attributable to each of the pathogenic data combining 

rules given in Table 5 is expressible as a specific example of equation 1:

OP = OPVSt

NPSu
X^3 +

NPM
X^2 +

NPSt
X +

NPVSt
1

The corresponding equation for the benign data combing rules is expressible as a 

specific example of equation 2:
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OP = OPVSt

−
NBSu
X^3 −

NBSt
X

4. The ACMG/AMP defined the term ‘likely pathogenic’ to mean >90% certainty 

of a variant being disease-causing, but below a higher “pathogenic” threshold. In 

Bayesian terms, these translate to a Post_P of >0.90 for likely pathogenic and, if 

compatible with the Plon et al.1 definitions, a higher pathogenic threshold at 

Post_P >99% certainty of pathogenicity. These probability thresholds, plus the 

extent to which different combining rules do (or don’t) arrive at equivalent 

Post_P’s, provide criteria for judging the internal consistency of the qualitative 

rules and their compatibility with a Bayesian framework.

5. Obtaining numeric results for purposes of illustration requires that we either 

select a Prior_P or test a range of Prior_P’s. For simplicity, we have provided a 

set of calculations using a Prior_P of 0.10. This Prior_P is reasonable for a panel 

testing scenario where it is likely that the laboratory would encounter on the 

order of ten variants in a panel of biologically relevant susceptibility genes and 

perhaps one of them is the actual pathogenic variant. It is also the approximate 

empirically measured Prior_P for the combination of missense substitutions, in-

frame indels, and proximal splice junction variants in BRCA1 and BRCA2.2,4,5 

Finally, the structure of the ACMG/AMP criteria include an implicit lower 

constraint of 0.10 for a Prior_P, as they specify that if none of the criteria are 

met, the variant is a VUS, thus the prior must be between 0.10 and 0.90, which is 

the Post_P range for a VUS. There are many other potential Prior_P’s for 

different scenarios if the underlying assumptions of the ACMG/AMP framework 

were discarded. For the present analysis, as described above, we chose to accept 

the ACMG/AMP assumptions, but future work should be undertaken to explore 

whether other approaches that violate those assumptions may yield improved 

results.

We then tested the ACMG/AMP guidelines in this quantitative framework, under the 

hypothesis that we could identify an algorithmically plausible value of the exponent X and 

then biologically plausible combinations of numerical values of: 1) the strength of the very 

strong evidence (OPVSt) (which, combined with the exponent X, determines the strength of 

the strong, moderate, and supporting evidence) and 2) the Prior_P that would yield similar 

Post_Ps as those defined by the ACMG/AMP. Specifically, (i) the Post_Ps of the likely 

pathogenic combinations would be between 0.90 and 0.99, (ii) the Post_Ps of the likely 

benign combinations would be between 0.001 and <0.10, (iii) the pathogenic combinations 

would have Post_Ps >0.99, and (iv) the one benign category has Post_P <0.001. In fact, 

there was a uniquely optimal value for the exponent X, under which many combinations of 

OPVSt and Prior_P meet these criteria for a large majority of the combining rules. In Table 1 

we calculate several Post_P’s using X=2.0, a Prior_P of 0.10, and OPVSt = 350 (other 

combinations were calculated, data not shown).
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Code availability

Exploration of the Bayesian compatibility of the ACMG/AMP combining criteria that we 

describe here can be entirely replicated using the supplementary file Table S1.

RESULTS

The classical formulation of Bayes rule is specified as follows (equation 3):

P(A ∣ B) = P(B ∣ A) ∗ P(A)
P(B)

For the purposes of this analysis, we defined P(A) as the probability of pathogenicity (or 

prior probability (Prior_P), P(B) as the probability of the evidence for pathogenicity, P(A|B) 

the probability of pathogenicity given the evidence (or posterior probability Post_P), and 

P(B|A) as the probability of the evidence, given that the variant is pathogenic. This equation 

can be rearranged to accommodate odds instead of probabilities, and simplified as follows 

(equation 4):

Post_P = OddsPath ∗ Prior_P
((OddsPath − 1) ∗ Prior_P + 1)

The spreadsheet that we created to explore Bayesian compatibility of the ACMG/AMP 

combining criteria was programmed to enable a simple grid search, or parameter sweep, that 

could be used to either optimize or find plausible values of key variables. In this spreadsheet, 

the Prior_P and Odds_Path for the “very strong” category (OPVSt) were independently 

searchable variables. The four categories of pathogenic data included in the spreadsheet 

were used to model the ACMG/AMP pathogenic evidence categories “supporting”, 

“moderate”, “strong”, and “very strong”. Each of the ACMG/AMP combing rules was 

modeled in the spreadsheet.

An obvious constraint on the relative strength of the pathogenic evidence categories is that 

their OP had to ascend from supporting to very strong. In a naïve Bayesian calculation, the 

OPs from all of the observational evidence are multiplied together to get an overall OP. 

Here, this multiplication process implies that if an ACMG/AMP combining rule included 

two evidence criteria from the same category, then the OP from that category would equal 

the OP of a single evidence squared. That element of Bayesian reasoning led to the 

hypothesis that, if the ACMG/AMP combining criteria are Bayes-compatible, then the most 

natural way to model the relative strength of the evidence categories would be to treat the 

ordered series of categories as an exponential series with a uniform exponential step from 

one category to the next. Hence, the relative strength of the ordered evidence categories 

“supporting”, “moderate” and “strong” were linked to “very strong” through a single 

exponent, X, which was a third variable that could be optimized by a grid search.

An initial observation from the grid search was that when the exponent X was set to exactly 

2.0, seven pairs of pathogenic combining rules had identical overall OP and identical 

Post_Ps, as did ten pairs of likely pathogenic combining rules; no other value we tested 
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resulted in more than one pair of rules with identical Post_Ps. This result was independent to 

Prior_P and the OPVst. Summing across the exponents of the odds path equations presented 

in Table 1 (or Table S1) from the ACMG/AMP guidelines shows that the matching pairs of 

combined OP and Post_Ps is a feature that emerges from the repeating structure of the 

ACMG/AMP combining rules and the arithmetic used to encode them in the exponent of the 

OP equation

With the value of the exponent X set at 2.0, we were left with two critical variables to 

explore, the prior probability (Prior_P) and the combined odds of pathogenicity (hereafter, 

OP), which is the totality of the various types of evidence from Table 3 of ACMG/AMP. We 

tested a range of OP for the x category, as all other levels of evidence strength can be derived 

from this value via assumption 3. We explored a range of values for OPVSt and Prior_P to 

test whether the ACMG/AMP heuristic could be modeled as a Bayesian formulation. We 

judged these trials by determining if the calculations could yield a value for Post_P that was 

internally consistent with the ACMG/AMP rules. We first set out to find a minimum OPVSt. 

The OPVSt of 81 was a unique minimum bound that could simultaneously meet the likely 

pathogenic and likely benign Post_P thresholds, but only if the Prior_P = 0.25 (Figure 1). 

This is because OP of 81 are the exact odds required to convert a Prior_P of 0.10 to a Post_P 

of 0.90 using Bayes’ rule, and the ratio of OP between the likely pathogenic rules (ii, iii, iv, 

v, and vi) and the likely benign rule (ii) was exactly OPVSt
1.00 .

Equations representing each of the ACMG/AMP combining rules are presented in Table 1 

and combinations of Prior_P and OPVSt that simultaneously satisfy the six rules likely 

pathogenic (ii, iii, iv, v, and vi) and likely benign (ii) are graphically summarized in Figure 1. 

Higher values of OPVSt expand the range of Prior_P under which a Bayesian interpretation is 

viable. For example, if OPVSt = 350, this re-interpretation is compatible with Prior_P’s of 

0.10–0.32. At each of the (Prior_P, OPVSt) combinations specified above, broad consistency 

within the combining rules was evident. Five of the six likely pathogenic rules had Post_Ps 

of exactly 0.90 and multiple pairs of pathogenic rules had identical Post_Ps that were >0.99 

with OPVst = 350 and Prior_P = 0.10. We noted that there were two problematic 

ACMG/AMP combining rules; Pathogenic (ii) and Likely Pathogenic (i) (bolded entries, 

Table I). We could identify no combination of Pior_P and OPVSt that would make all 18 

rules internally consistent and conclude that the ACMG/AMP framework has a degree of 

internal inconsistency.

Sequence variants will sometimes present with a mix of evidence for and against 

pathogenicity. One weakness of the ACMG/AMP combining criteria was that VUS rule (ii) 

given in the ACMG/AMP guidelines Table 5 was “the criteria for benign and pathogenic are 

contradictory”3, without defining the relative strengths of “contradictory” evidence. 

Although the ACMG/AMP guidelines noted that “expert judgment must be applied when 

evaluating the full body of evidence to account for differences in the strength of variant 

evidence”, more guidance on how to address conflicting evidence would reduce variation in 

the application of expert judgment. Indeed, with the exponent X set to 2.0, equations 1 and 2 

can be combined into a single equation 5:
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OP = OPVSt

NPSu
8 +

NPM
4 +

NPSt
2 +

NPVSt
1 −

NBSu
8 −

NBSt
2

which allows such combinations of evidence types to be combined and calculated. We 

evaluated four plausible situations where several moderate or strong pathogenic criteria 

coexist with a supporting benign criterion (e.g., in silico). For example, the combination of 

one very strong pathogenic criterion (PVS1, null variant), plus two moderate pathogenic 

criteria (PM2, absent from controls & PM6, assumed de novo) is designated as pathogenic 

(combination ib from Richards et al Table 5). If one were to add one supporting benign 

criterion to these (e.g., adding a benign evidence BP5 “variant found in a case with an 

alternate molecular basis for disease” to pathogenic rule ib), this would yield a Post_P of 

0.997, which remains in the pathogenic range. In contrast, the combination of two strong 

pathogenic criteria (ACMG/AMP pathogenic combination (ii)), plus one strong benign 

(adding BS1 “allele frequency is greater than expected for disorder”), yields a posterior 

probability of 0.675, which is VUS. Indeed, a variety of combinations led to either 

pathogenic, likely pathogenic, or VUS; these and additional examples are explored in Table 

2.

DISCUSSION

While there was no a priori reason for a consistent Bayesian interpretation to emerge from 

the ACMG/AMP guidelines, it did. Interestingly, the ACMG/AMP committee did not 

consider Bayes rule when they were formulating their guidelines (personal communications, 

H. Rehm and E. Lyon). Our analysis showed that the ACMG/AMP guidelines3 delineated a 

heuristic system for variant classification that is compatible with a formal, quantitative, 

naïve Bayesian classifier. This is an important observation because it provides a 

mathematical foundation to what could be considered to be (or dismissed as) simply a 

pragmatic description of existing clinical laboratory practice. Our most important conclusion 

is that the ACMG/AMP framework is Bayesian in character and fundamentally sound.

We set out to understand the repeating structure within the ACMG/AMP combining criteria 

and to learn why it was compatible with scaling the relative strength of the ordered evidence 

categories to the power of 2.0. On close inspection, we noted that multiple pairs of the 

ACMG/AMP pathogenic combining criteria were related to each other through the rubric of 

“one criterion from a given strength of evidence category can be replaced with two criteria 

from the next weaker category”. Indeed, each pair of combining criteria that have the same 

OP and Post_P feature either an instance of this rubric or else its higher order version “one 

criterion from a given strength of evidence category can be replaced with four criteria from 

the two steps weaker category”. Because in a naïve Bayesian calculation the OPs from all of 

the observational evidence are multiplied together to get an overall OP, this rubric is 

equivalent to the quantitative assertion that “OP attributed to a given strength of evidence 

category is equal to the square of OP attributed to the next weaker category”. Hence, the 

repeated use of this structural rubric is deeply compatible with the exponential scaling to the 
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power 2 that we found through a grid search and used in our subsequent analyses of the 

Prior_P and OPVSt.

Having established that the ACMG/AMP guidelines were Bayesian in character and deriving 

an equation to formalize that rubric, we next set out to determine if the combining criteria 

were internally consistent. While our analysis supported most of the “rules for combining 

criteria” from the ACMG/AMP recommendaitons3, two inconsistencies were observed, 

using a Prior_P of 0.10 and OPVst = 350. First, likely pathogenic rule (i) (one very strong 

plus one moderate evidence of pathogenicity) was equivalent in strength to pathogenic rules 

(iiia, iiib, and iiic) – all of these yielded a Post_P of 0.994. Second, and of greater concern, 

pathogenic rule (ii) (minimally, two strong criteria supporting pathogenicity) was weaker 

than the other pathogenic rules, yielding a Post_P of 0.975. This was intermediate in 

strength between the five internally consistent likely pathogenic rules (ii to vi, which yield a 

Post_P of 0.900) and the next tier of pathogenic rules (iiia, iiib, and iiic). Indeed, likely 

pathogenic rules (ii and iv) supplemented with one additional moderate criterion in favor of 

pathogenicity yielded Post_Ps of 0.975; nonetheless, these combinations would be likely 

pathogenic under the ACMG/AMP guidelines. We could identify no combination of Prior_P 

and OPVSt that would allow all 18 of the specified evidence combinations (Richards et al, 

Table 5) to be internally consistent. The two internal inconsistencies we identified could lead 

to over- or underestimating variant pathogenicity probability, leading to variant 

misclassification. Laboratories may choose to exercise their expert judgement by requiring 

that pathogenic rule ii (two strong criteria), which our analysis suggests yields a Post_P of 

0.975, may need to be buttressed by the addition of two supporting or one moderate criterion 

that support pathogenicity to raise it above the threshold of 0.990. Alternatively, the addition 

of a single supporting criterion of pathogenicity would raise it from 0.975 to 0.988, which 

can arguably be considered sufficiently close to the 0.99 threshold to warrant a designation 

as pathogenic.

The clinical consequences of the potential errors that might result from these two 

inconsistencies are not necessarily symmetric or equivalent and adjustment or revision of 

these criteria should be considered. As noted above, the asymmetry of potential errors in 

classification lead us to have greater concern that combining rule pathogenic (ii) 

overestimates pathogenicity (relative to a somewhat lesser concern that likely pathogenic 

rule (i) underestimate pathogenicity). In general, we hold the view that incorrectly 

downgrading a variant from pathogenic to likely pathogenic is less likely to cause a serious 

clinical error than incorrectly overestimating the pathogenicity of a likely pathogenic variant 

to be pathogenic. That being said, it is important to remember that the ACMG/AMP criteria 

were guidelines, not practice standards and they included the caveat that “expert judgment 

must be applied when evaluating the full body of evidence”. We encourage laboratories to 

take our analyses into consideration as a part of their expert judgment when they evaluate 

variants that fall into one of the two categories that we have identified as being inconsistent. 

Looking forward, this and other analyses should be taken into account as a part of the 

deliberative processes of the ClinGen consortium Genomic Variant Working Group and 

Sequence Variant Working Group as well as future revisions of the ACMG/AMP guidelines.
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The second major implication of our work is that there are a number of scenarios where 

there is a mix of evidence, some supporting and some weighing against pathogenicity. The 

ACMG/AMP VUS criterion (ii) was defined as “the criteria for benign and pathogenic are 

contradictory”. This has been widely discussed and it is likely that most laboratories 

interpret this to apply to situations where the evidence for and against pathogenicity are 

relatively balanced in their strength. It does not seem reasonable that a single supporting 

criterion for benign (e.g., BP4, in silico or BP6, reputable source) would sufficiently 

contravene very strong evidence for pathogenicity, resulting in a determination of VUS. Our 

approach demonstrates that this is not the case and that supporting evidence against 

pathogenicity, in combination with strong evidence for pathogenicity, can lead to posterior 

probabilities in the range of likely pathogenic or even pathogenic. We have provided a 

single, unified equation that can yield an estimate of pathogenicity for any potential 

combination of criteria. We have included as a supplemental file, a simple spreadsheet 

calculator that uses this equation such that inputting any set of criteria leads to a calculated 

Post_P (Table S1). As in the discussion above, expert judgment is always necessary and we 

do not intend this calculator to be a substitute for that.

The transition from the ACMG/AMP categorical heuristic to a formal, quantitative Bayesian 

framework provides a number of potential opportunities to refine and evolve these criteria. 

For example, we accepted the implicit assumption of the ACMG/AMP guidelines that each 

categorical type of evidence of the ACMG/AMP framework at the same evidence strength 

level had the same mathematical support. That is to say, e.g., PS1 (same amino acid change), 

PS2 (de novo), PS3 (functional data), and PS4 (case vs. control) all had identical OP. This 

was a reasonable simplifying assumption for the ACMG/AMP heuristic, but it may be 

incorrect. Should it be determined that one of these criteria had somewhat more or less 

strength of evidence than the others, it would be trivial to adapt equation 5 to include any 

number of terms in the exponent section of the equation, adjusting the denominator of that 

term to reflect a more precise weighting of a particular piece of evidence. This is not 

practical in the current ACMG/AMP categorical heuristic because the number of combining 

criteria rules (Richards et al table 5) would rise exponentially with respect to the number of 

distinct evidence weights and the resulting combining criteria would be unwieldy.

A second example of an opportunity to improve the system is based on the recognition that 

some data types included in the ACMG/AMP guidelines are continuous variables (e.g., 

segregation), rather than categorical yes/no attributes of variants. Indeed, an inherently 

unsatisfying attribute of categorical systems is that they tend to misrepresent reality near the 

category threshold(s). A quantitative system allows continuous evidence types to be 

integrated into the system as continuous, rather than categorical criteria. A straightforward 

extension of our work would be to replace the six exponential terms in equation 5 with a 

term for each evidence type, such that it expressed P(B|A), or odds of that evidence being 

observed if the variant were pathogenic. Examples of such approaches have been developed 

for several evidence types in both breast2,5–7 and colorectal8–10 cancer genetic analyses. Our 

Bayesian re-interpretation of ACMG/AMP could provide robust mathematical guidelines, 

e.g., how much segregation corresponds to each category of evidence in favor of 

pathogenicity. This could be extended to data types not yet quantitatively integrated, e.g., 

computational predictors and functional assays. In this way, the field of variant classification 
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could transition from a primarily subjective endeavor to a primarily quantitative and 

objective endeavor.

A third opportunity is that by translating the ACMG/AMP system into a quantitative 

framework, we can begin to objectively evaluate if the various forms of evidence indeed 

have the relative weights that the system posits. As noted above, it is straightforward to ask 

the question of whether the four strong pathogenic criteria are equally strong. Our approach 

allows the various levels to be compared. Based on our assumptions, OPVSt has an odds of 

pathogenicity of 350, OPSt of 18.7 (i.e., 350), OPM 4.3 (i.e., 18.7), and OPSu 2.08 (i.e., 

4.3 ), OBSt 0.053 (i.e., 1/ 350), and OBSu 0.48 (i.e., 1/ 4.3). These various forms of 

evidence can then be tested against experimental data, such as functional assays or 

population constraint, that either support or argue against pathogenicity to determine if their 

relative weighting is valid. As well, it would be useful to determine whether real Prior_Ps 

fall within the range over which the classifiers are valid. With Ovst=350 and other 

constraints of the ACMG/AMP structure, this range was 0.10 to 0.32. It is worth noting that 

the valid range of Prior_Ps is directly dependent on the strength of OP (Figure 1).

Re-interpretation of the ACMG/AMP guidelines in a quantitative Bayesian framework 

shows that the existing classification system is fundamentally sound, albeit with minor 

weaknesses. The analysis also identifies important developmental opportunities. Concerns 

about the relative weakness of the pathogenic rule (ii), and evidence that the stronger 

pathogenic rules could accommodate one or two supporting criteria for benign, yet still 

result in a likely pathogenic classification, underline the need for clinical judgment during 

variant classification using the existing system. Looking forward, transformation of the 

ACMG/AMP system into a quantitative Bayesian calculator – coupled to refined and more 

accurately quantitated evidence – could integrate additional data types, increase overall 

flexibility, and provide a pathway towards automation of the classification process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Permissible solutions to Likely Pathogenic (LP) and Likely Benign (LB) equations. X–Y 

Combinations of Prior probability of pathogenicity (Prior_P) and Odds very strong (OVst) 

lying to the right of the blue curve satisfy combining rules Likely Pathogenic (ii–vi). X–Y 

combinations of Prior_P and OVst lying to the left of the red curve satisfy the Likely Benign 

combining rule (ii). Values between the two curves and above their intersection at 

(Prior_P=0.25, OVst=81) simultaneously meet LP and LB criteria. Values outside of the two 

curves and below their intersection at (Prior_P=0.25, OVst=81) meet neither LP nor LB 

criteria. The black triangle marks the minimum simultaneous solution of LP and LB at 

Prior_P=0.25, OVst=81. The black circle marks the solution of LP and LB at Prior_P=0.10, 

OVst=350 illustrated in Table 1.
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Table 1

Calculations to Test the Internal Consistency of Current ACMG/AMP Guidelines

Combining Rulesa Odds Path Equationb Prior Pc Combined Odds Pathd Posterior Pe

Path (ia)

= 350

0PSu
8 +

0PM
4 +

1PSt
2 +

1PVst
1

0.10 6,548 0.999

Path (ib)

= 350

0PSu
8 +

2PM
4 +

0PSt
2 +

1PVst
1

0.10 6,548 0.999

Path (ic)

= 350

1PSu
8 +

1PM
4 +

0PSt
2 +

1PVst
1

0.10 3,148 0.997

Path (id)

= 350

2PSu
8 +

0PM
4 +

0PSt
2 +

1PVst
1

0.10 1,514 0.994

Path (ii)

= 350

0PSu
8 +

0PM
4 +

2PSt
2 +

0PVst
1

0.10 350 0.975

Path (iiia)

= 350

0PSu
8 +

3PM
4 +

1PSt
2 +

0PVst
1

0.10 1,514 0.994

Path (iiib)

= 350

2PSu
8 +

2PM
4 +

1PSt
2 +

0PVst
1

0.10 1,514 0.994

Path (iiic)

= 350

4PSu
8 +

1PM
4 +

1PSt
2 +

0PVst
1

0.10 1,514 0.994

Likely Path (i)

= 350

0PSu
8 +

1PM
4 +

0PSt
2 +

1PVst
1

0.10 1,514 0.994

Likely Path (ii)

= 350

0PSu
8 +

1PM
4 +

1PSt
2 +

0PVst
1

0.10 81 0.900

Likely Path (iii)

= 350

2PSu
8 +

0PM
4 +

1PSt
2 +

0PVst
1

0.10 81 0.900

Likely Path (iv)

= 350

0PSu
8 +

3PM
4 +

0PSt
2 +

0PVst
1

0.10 81 0.900

Likely Path (v)

= 350

2PSu
8 +

2PM
4 +

0PSt
2 +

0PVst
1

0.10 81 0.900
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Combining Rulesa Odds Path Equationb Prior Pc Combined Odds Pathd Posterior Pe

Likely Path (vi)

= 350

4PSu
8 +

1PM
4 +

0PSt
2 +

0PVst
1

0.10 81 0.900

Likely Benign (i)

= 350
−

1BSu
8 −

1BSt
2

0.10 0.03 0.0028

Likely Benign (ii)

= 350
−

2BSu
8 −

0BSt
2

0.10 0.23 0.025

Benign (ii)

= 350
−

0BSu
8 −

2BSt
2

0.10 0.0028 0.00032

Notes.

a
Combining criteria from Richards et al3 ACMG/AMP guidelines Table 5.

b
This column includes the specific use of either equation 1 or equation 2 from the main text, with the exponent N’s filled in for that specific 

combining criteria.

c
See text for discussion of the setting of the prior probability for these calculations.

d
This value represents the combined odds of pathogenicity, which is the product of the odds of pathogenicity equation (1 or 2) multiplied by the 

prior probability.

e
The posterior probability is calculated by the equation (OddsPathogenicity*Prior P)/((OddsPathogenicity−1)*Prior_P+1). The two combining 

criteria from the ACMG/AMP guidelines - (pathogenic (ii) and likely pathogenic (i) are bolded as they are the two combinations we identified as 
internally inconsistent (see text).
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