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REVIEW
Proteome Turnover in the Spotlight:
Approaches, Applications, and Perspectives
Alison Barbara Ross1 , Julian David Langer2,3,* , and Marko Jovanovic1,*
In all cells, proteins are continuously synthesized and
degraded to maintain protein homeostasis and modify
gene expression levels in response to stimuli. Collectively,
the processes of protein synthesis and degradation are
referred to as protein turnover. At a steady state, protein
turnover is constant to maintain protein homeostasis, but
in dynamic responses, proteins change their rates of
synthesis and degradation to adjust their proteomes to
internal or external stimuli. Thus, probing the kinetics and
dynamics of protein turnover lends insight into how cells
regulate essential processes such as growth, differentia-
tion, and stress response. Here, we outline historical and
current approaches to measuring the kinetics of protein
turnover on a proteome-wide scale in both steady-state
and dynamic systems, with an emphasis on metabolic
tracing using stable isotope–labeled amino acids. We
highlight important considerations for designing proteome
turnover experiments, key biological findings regarding
the conserved principles of proteome turnover regulation,
and future perspectives for both technological and bio-
logical investigation.

In all cells, proteins are continuously produced and
degraded, a process referred to as protein turnover. Protein
turnover is regulated by several tightly controlled processes
that help facilitate protein homoeostasis, also known as pro-
teostasis (1–7). Proteostatic mechanisms are some of the
cell’s most essential processes, as they ensure that functional
proteins are maintained at their correct concentrations and in
the proper locations needed for cellular activities to proceed
(8–10). These processes also ensure that misfolded, aged, or
damaged proteins are removed from the cellular protein pool
as needed (11). Accordingly, disruption of proteostasis con-
tributes to the pathophysiology of a variety of disease states,
most notably neurodegenerative disorders and cancer (11).
Probing the kinetics of proteome-wide protein turnover lends
insight into how cells perform crucial functions such as dif-
ferentiation and stress response in both normal and disease
contexts, and can illuminate the guiding principles that un-
derlie the regulation of protein turnover across protein families,
cell types, and species.
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Protein turnover is monitored and regulated by several
cellular surveillance systems. Although protein production in-
cludes all of the processes that precede mRNA translation,
including RNA transcription, maturation, and processing, in
this review, we will focus on the time frame between protein
synthesis and degradation. mRNA translation is controlled by
regulatory motifs in mRNA nucleotide sequences; these se-
quences are bound by RNA-binding proteins and small RNA
guides (such as microRNAs) to modulate their expression
(12–16). Molecular chaperones, insertases, and translocases
control maturation of nascent polypeptide chains, and post-
translational modifications are added to proteins in the
secretory pathway or through signaling cascades (17–19).
Protein degradation occurs via two proteolytic machineries:
the lysosome and the proteasome. The ubiquitin–proteasome
system (UPS) is the main pathway for selective protein
degradation, which uses a diverse collection of E1, E2, and E3
ubiquitin ligases to add ubiquitin to both cytosolic and nuclear
proteins, targeting them for degradation by the proteasome
(20, 21). In lysosomal proteolysis, proteins are engulfed by
membrane-enclosed vesicles, such as autophagosomes or
endocytotic vesicles, which then fuse with the membrane-
enclosed lysosome. The lysosome then degrades proteins
through its endogenous digestive enzymes (22).

When cells are perturbed, they change expression levels of
specific proteins to respond to their new requirements and
adjust their cellular functions accordingly. Historically, prote-
ome studies quantified protein abundances to track differen-
tially expressed proteins in various cell states. Technical and
methodological developments in the past 15 years, however,
now enable researchers to specifically monitor protein syn-
thesis and degradation on a proteome-wide level and in dy-
namic systems. By providing insight into the processes by
which cells maintain and dynamically adjust their proteomes
to suit their needs, these emerging technologies can provide
another dimension of information to quantitative proteomics
studies. This information has already yielded important new
insights into the molecular mechanisms involved in cellular
protein homeostasis during physiological processes such as
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FIG. 1. Schematic plots illustrating the correlations and interdependencies found between protein turnover parameters. A, increase of
proteome-wide newly synthesized protein (green) and decay of pre-existing protein (red) plotted over time at steady state, with constant total
protein levels indicated in blue. Protein half-life (T1/2) is indicated by dashed lines. B, the plot of the general relationship between half-life (T1/2)
and degradation rate constant (kdeg): T1/2 = ln(2)/kdeg. Note that small changes at low kdeg values lead to more pronounced changes in T1/2 than
at high kdeg values. C, the schemes of interplay between synthesis, degradation, and total protein amounts in different exemplary conditions: if
synthesis is reduced (first column), stays constant (middle column), or is increased (right column), and if degradation is increased (top row), stays
constant (middle row), or is decreased (bottom row). Effects on total protein amounts schematically represented by blue lines. The asterisk
indicates constant kdeg and therefore equal protein turnover, although the absolute protein amount could change because of protein synthesis
rate changes.

Proteome Turnover in the Spotlight
cellular differentiation, various neuronal functions, and the
immune response, which we will highlight throughout this
review.
Today’s high-throughput methods for analyzing proteome

turnover are extensions of decades of previous biochemical
and biophysical investigations. Both modern and historical
metabolic turnover and protein half-life measurements are
based on the so-called “pulse” approach, which requires the
introduction of radioactive, biochemical, or stable isotope–
labeled tracers into target proteins. These tracers are intro-
duced into the target cell’s metabolism either through the
solvent (e.g., H2O and hydrogen isotopes), carbon, or nitrogen
metabolism (e.g., 13C-labeled carbohydrates or 15N-labeled
ammonia salts), or complete amino acids (e.g., 13C6-lysine or
13C6

15N4-arginine). Tracers can then be monitored using a
corresponding detection system (23). In the “pulse-chase”
paradigm, the “pulse” is followed by a “chase” period, in
which the labeled tracer is replaced—“chased” away—by an
excess of the same unlabeled compound after a certain period
of time. Depending on the experimental setup, following the
labeled tracer over time measures its incorporation (protein
2 Mol Cell Proteomics (2021) 20 100016
production) and/or its loss (protein degradation). We will pri-
marily focus on the use of amino acid–based tracers coupled
to mass spectrometry–based proteomics to determine the
turnover rates of hundreds to thousands of proteins, but we
will briefly outline alternative and complementary approaches,
as well.
DEFINITION OF TERMS AND TURNOVER RATE MODELING

General Assumptions About Synthesis and Degradation
Rates

We will first define a few key terms used to describe pro-
teome turnover. In general, cellular protein amount is deter-
mined by the rate at which that protein is synthesized and
degraded (Fig. 1A). Inherently, synthesis rates and degrada-
tion rates differ in their mathematical properties. This is due to
the fact that synthesis is a zero-order process whose rate of
change is measured in units of protein amount over time;
accordingly, the synthesis rate constant ksyn can be
expressed in units of moles/time. Degradation, on the other
hand, is a first-order process whose rate corresponds to the
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fractional removal of proteins from an existing pool in the cell.
The degradation rate constant kdeg is therefore quantified with
the dimension of time only (1/time). As the amount of protein
decreases at a rate (kdeg) proportional to its current value, the
amount of protein lost follows an exponential decay function.
As such, the amount of protein produced over a certain time
window depends only on the integration of its synthesis rate
constant, ksyn:

dP/dt(syn) = ksyn (1)

while the amount of protein lost over that time frame depends on
the existing protein pool multiplied by its degradation rate con-
stant, kdeg (24):

dP/dt(deg) = [P]*kdeg (2)

or if expressed as an exponential decay function:

P(t) =P0*e−kdeg*t (3)

together Equations 1 and 2 define the total change in protein
amount over time:

dP/dt(total) = ksyn−[P]*kdeg (4)

Turnover Rates in Steady-State Versus Dynamic Systems

In this review, we distinguish between cells at steady state
and those undergoing a dynamic change. At steady state, we
can make two basic assumptions (1): for all proteins, the net
change in protein levels is zero, which means that (2) the
number of protein molecules produced is equal to the number
of proteins lost.
At steady state:

dP/dt= ksyn−[P]*kdeg = 0 (5)

ksyn = [P]*kdeg → [P] = ksyn/kdeg (6)

The turnover rate of a protein is often defined as the time
needed to both degrade and resynthesize half the proteins
present in a specific cellular state. At steady state, however,
owing to the equivalency described in Equation 6, the turnover
rate is simply equal to the time it takes to remove half of the
existing protein pool—and as such, relative turnover rates can
simply be expressed through the degradation rate constant
kdeg. Oftentimes, relative turnover rates are also defined in
terms of half-life (T1/2), which is simply a reciprocal derivative
of kdeg (24) (Fig. 1B):

T1/2 = ln(2)/kdeg. (7)

During dynamic processes, protein levels often change over
time. Protein-level changes may be due to changes in protein
production rates, protein degradation rates, or both (Fig. 1C).
When a new steady state is reached after the perturbation, a
protein may be expressed at a very different abundance than
before, but its turnover rate will only differ if its degradation
rate constant, kdeg, and therefore its half-life, has changed. In
other words, based on the definitions above, protein synthesis
changes alone will not affect a protein’s turnover rate, but only
its abundance (Fig. 1C).
Modeling true changes in turnover rates during dynamic

processes requires considerably more mathematical manipu-
lation than modeling turnover rates at a steady state (25)—in
fact, achieving an accurate model of dynamic turnover rate
changes remains an open challenge in the field. So far, dy-
namic changes in turnover rate constants have only been
approximated using linear rate change assumptions, which do
not likely fully represent the true physiological behavior of
dynamically adjusting proteomes (25). However, the above
steady-state assumptions can and have been used effectively
to compare relative end-point synthesis and degradation rates
between conditions as we will describe below.

“Old” Proteins and Non-exponential Decay

Different methods described in the text below each confer
particular advantages and disadvantages for tracking protein
degradation and synthesis rates at steady state (supplemental
Table S1). Modeling turnover rates according to the definitions
at steady state described above is relatively straightforward,
with one notable exception. We assume that the first-order
process of protein loss is stochastic and all proteins from
the same species have the same probability of getting
degraded. Under this assumption, a newly synthesized protein
has the same probability of being degraded as a pre-existing
proteins synthesized much earlier (24), and as such, protein
loss follows an exponential decay function as described in
Equation 3. This also explains why the synthesis signal from
metabolic labels appears logarithmic rather than linear,
despite protein synthesis following zero-order kinetics as
described in Equation 1 (Fig. 1). However, recent studies have
demonstrated that the assumption of exponential decay does
not hold true for all cellular protein populations. For certain
subsets of proteins, the probability that any given protein
molecule is degraded can change as a function of its molec-
ular age, with newly synthesized proteins being typically less
stable than “older” proteins. The loss of these proteins follows
a pattern of non-exponential behaviors (see the text below for
more details) (26–29).

Cell Division and Protein Turnover

As outlined above, the critical protein turnover parameter,
kdeg, corresponds to the time it takes for a cell’s pre-existing
protein pool to be reduced by half. This is certainly true for
nondividing cells, but for dividing cells, the pre-existing protein
pool will be reduced to half with every cell division even
without active protein degradation. In dividing cells, therefore,
the reduction of a pre-existing protein pool occurs because of
Mol Cell Proteomics (2021) 20 100016 3
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FIG. 2. The dynamic SILAC workflow. A, sample preparation. In a standard two-label dynamic SILAC experiment, cultures are plated for
example in an unlabeled media and then the media is swapped for the one containing stable isotope–labeled amino acids (e.g., 13C6

15N4-Arg–
“heavy” arginine). Samples are then collected over a time course, with a separate culture harvested at each time point. After sample digestion
and purification, isobaric labeling (e.g., by TMT, as depicted) can be used to multiplex samples from multiple conditions and time points of
interest. A fully labeled sample using a third stable isotope (e.g., 13C6-Arg), typically a "semi-heavy /medium-heavy" isotope, can also be
generated as normalization standard for data analysis. It should be noted that label switches can also be performed in a different way than
depicted here (e.g., cells good be grown in "heavy" amino acids and then pulsed with "light" amino acids). B, data acquisition. LC-MS/MS
enables direct monitoring of "light" (red) and "heavy" (green) peptide signals, which correspond to pre-existing and newly synthesized pro-
teins, respectively. For dynamic SILAC-TMT experiments, relative quantification of each sample is completed at the MS2 level (far right). In three-
channel designs, the signal from the constant "semi-heavy"-labeled sample (yellow), spike-in provides an internal normalization standard be-
tween different mass spectrometry measurements, allowing for relative signal from "light" and "heavy" channels to be quantitated. C, data
analysis. Here, we show data for an example protein measured from a two-channel dynamic SILAC experiment (left), a three-channel dynamic
SILAC experiment (middle), and a combined two-channel dynamic SILAC-TMT experiment (right). With two-channel dynamic SILAC, half-lives
and kdeg can be calculated using ln-transformed "heavy" over "light" (H/L) peak ratios over time, but owing to run-to-run variability during the
mass spectrometry measurements, it is difficult to separate the contributions of synthesis and degradation. On the other hand, data from three-
channel dynamic SILAC and dynamic SILAC-TMT can be used to determine ksyn separately from kdeg. For three-channel dynamic SILAC, this
can be achieved by plotting "heavy" isotope over "semi-heavy" isotope (H/S) signal to generate a synthesis curve, whereas plotting light-isotope
over "semi-heavy" isotope signal (L/S) generates a curve for protein degradation. In dynamic SILAC-TMT, all the "heavy" (H) and "light" (L)
signals are measured in the same run, which allows for separate synthesis and degradation curves. LC-MS/MS, liquid chromatography coupled
to tandem mass spectrometry; SILAC, stable isotope labeling by amino acids in cell culture; TMT, tandem mass tag. SILAC, stable isotope
labeling of amino acids in cell culture.

Proteome Turnover in the Spotlight
a combination of dilution due to cell division and true protein
degradation. In such a system, the cell division rate must be
taken into account and should be included as its own term,
kdil. The total rate of protein loss, kloss, measured in such a
system is defined by the following equation:

kloss = kdil + kdeg (8)
4 Mol Cell Proteomics (2021) 20 100016
Consequently, kdeg can be determined by measuring kloss
and the division rate, kdil, of the studied system. Taking the
division rate into account is extremely important, not just
for comparing systems for which cell division rates vary
greatly, but for accurately detecting the kdeg of proteins that
turn over slowly, which can be confounded by kdil (24). More
details about the non-trivial relationship between protein
synthesis, degradation rate, and cell division rate are
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discussed in depth in a recent publication by the Busse group,
who emphasize that taking the cell division rate into account
significantly improves the “hit rate” of differential gene
expression profiling (30).

RADIOACTIVITY, DRUGS, AND FLUORESCENT LIGHTS—EVEN BEFORE
THE 70S

In the first protein turnover studies more than 80 years ago,
15N-isotope–labeled amino acids were fed to mice to analyze
protein synthesis and degradation, with detection based on
mass spectrometry (2–6). These groundbreaking studies
showed that cellular proteins are not static but rather are in
constant flux of production and loss. In the following decades,
the most commonly used reporters were amino acids with
radioactive isotopes of carbon, hydrogen, or sulfur, with
subsequent detection in proteins using scintillation counting
(31). Radioactive decay–based detection of synthesis and
degradation of specific proteins enabled direct analyses of
their half-lives, particularly in combination with antibody-
based purification of the target proteins (32). Later on, the
combination of autoradiography with 1D and 2D gels allowed
for more comprehensive differential turnover studies, as
dozens of different proteins can be separated on such gels
(33, 34). However, these analyses were limited by the relatively
high radioactivity doses required (and their associated effects
on cell and animal health), the significant protein loss during
sample preparation, and the challenging identification of
candidate proteins displaying differential synthesis or decay
kinetics (35).
Subsequently, the application of biochemical tools, such as

small-molecule inhibitors of synthesis (e.g., cycloheximide,
puromycin) or degradation (e.g., MG-132, bortezomib, lacta-
cystin), alongside the invention of genetically engineered
proteins, enabled new insights into proteome stability and
turnover. Fusion proteins tagged with constructs such as GFP
or the tandem affinity purification tag allowed for compre-
hensive, highly multiplexed studies with specific and sensitive
detection of protein synthesis and degradation; with these
tags, no introduction of tracer amino acids was required
(36–38). For example, a systematic study in yeast, performed
in the year 2006, reported degradation rates for more than
3750 tandem affinity purification–tagged proteins after inhibi-
tion of protein synthesis by cycloheximide, with detection of
protein loss over time determined by immunoblotting (36).
Two years later, the stability of more than 8000 proteins was
profiled in HEK293T cells using a combination of GFP tagging,
flow cytometry, and microarrays (37). These studies all
required the construction of thousands of reporter-tagged
strain or cell line collections—a mammoth task to accom-
plish in both resources and manpower.
Technical advances in mass spectrometry–based prote-

omics then allowed for more generalized protein tracing,
without the need for tagged constructs. In combination with
translation inhibition, shotgun proteomics facilitated the
tracking of protein degradation rates. This approach has been
applied alongside subcellular fractionation and proteasome
inhibition to quantify the differences in subcellular proteome
turnover and match degradation pathways to each cellular
compartment (39).
Although all of these tools provided valuable new insights,

they incur considerable limitations (supplemental Table S1).
First, the inhibition of protein synthesis or degradation (e.g., by
drugs) may lead to compensatory and off-target effects that
can make determining physiological turnover rates chal-
lenging (40). Second, protein tags can potentially compromise
physiological protein function and half-life. This is particularly
critical for small proteins and membrane proteins (41–43).
Third, the construction of large libraries of tagged protein
constructs is both time and resource intensive. Nevertheless,
these approaches are still widely used, particularly in targeted
studies exclusively examining either protein synthesis or
degradation. They are also still commonly used for specific
and sensitive detection of a particular protein of interest with
techniques such as Western blotting or immunofluorescent
imaging to determine subcellular localization.
DYNAMIC SILAC APPROACHES

In the early 21st century, the use of nonradioactive isotopes
in combination with mass spectrometry became popular in
proteome turnover studies. The combination of high-
resolution liquid chromatography, nanoelectrospray ioniza-
tion, and ultrahigh-resolution tandem mass spectrometry with
fast MS/MS cycles enabled the quantitative analysis of thou-
sands of peptides and proteins in a few hours. The required
tracer isotopes were initially introduced via carbon sources
(44), in which heavy isotopes were incorporated into proteins
by sugar/carbon metabolism. However, the incorporation of
heavy isotopes via metabolic pathways normally leads to a
variation in the degree to which heavy-labeled amino acids
were incorporated into proteins, such that full labeling was
often not achieved. This made the separation of overlapping
isotopic envelopes, and therefore quantification of the differ-
ently labeled peptides, very challenging (1, 44–46).
This was largely overcome by the addition of amino acids

with a defined and selectable number of stable isotopes into
culture media or food sources, allowing for comprehensive
and systematic proteome turnover studies in a variety of or-
ganisms (47). These “heavy” amino acids were initially used
for quantitative studies as part of stable isotope labeling by
amino acids in cell culture (stable isotope labeling of amino
acids in cell culture [SILAC]), in which proteome abundance
differences in unlabeled and fully labeled samples are
compared (48, 49). Because specific amino acids—normally
lysine and/or arginine—were labeled with a fixed mass in
SILAC, the isotopic envelopes of “light” and “heavy” peaks are
separated by predefined shifts (e.g., 13C6-lysine or 13C6

15N4-
arginine), greatly facilitating data acquisition and
Mol Cell Proteomics (2021) 20 100016 5
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interpretation. Coupling lysine/arginine labeling with trypsin as
a protease for sample preparation guarantees that nearly each
peptide has a labeled amino acid.
This quantitative approach was then repurposed to study

proteome turnover by making use of “pulsed-only” experi-
ments. In these so-called dynamic SILAC experiments, cells
are switched from unlabeled medium to a medium containing
isotopically labeled amino acids, still typically heavy lysine
and/or arginine (50). Samples are then measured via liquid
chromatography coupled to tandem mass spectrometry (LC-
MS/MS) over a time course. The rate at which a heavy amino
acid–labeled peptide signal appears corresponds mainly to
that peptide’s rate of synthesis, whereas the rate at which a
light amino acid–containing peptide decreases represents its
rate of degradation. The ratio of heavy to light peptide signal
thus directly reflects protein turnover (Fig. 2).
It should be noted here that dynamic SILAC and a similar

term—pulsed SILAC (pSILAC)—are often used interchange-
ably in the literature. However, although both approaches are
“pulsed-only” experiments with a similar setup, dynamic
SILAC actually refers to experiments that determine
proteome-wide protein turnover rates using only two SILAC
channels, “light” and “heavy”. pSILAC, on the other hand,
originally referred to a labeling approach in which two “light”
cell populations are pulse-labeled with either “semi-heavy” or
“heavy” amino acids to quantify relative differences in de novo
protein synthesis. The term was first coined by Selbach et al.
(51), who used pSILAC to assess the impact of microRNAs on
protein synthesis, and subsequently described in more detail
by Schwanhäusser et al. (52). Although the terms are now
often used interchangeably, we will honor their original defi-
nitions and refer to dynamic SILAC in all studies that
measured protein turnover (the majority of studies described
here) and use pSILAC only in the manner that it was originally
intended—to measure relative differences in de novo protein
synthesis.
Although classical dynamic SILAC experiments have many

advantages, they do have some limitations (supplemental
Table S1). It should be noted that owing to the reuse of
existing, light amino acids, the true synthesis rate of a protein
may be higher than that measured by the increase in its heavy-
labeled peak. This “recycling issue” can be addressed by
monitoring peptides with missed cleavage sites and correct-
ing for their uptake of light amino acids (53). In addition,
because each sample over a time course must be harvested
separately, it is difficult to make absolute comparisons of
either the heavy or light isotope peak intensities over time
because of experimental differences in sample preparation
and data acquisition. In general, dynamic SILAC data yield
protein turnover information (half-lives at steady state—see
“Definition of Terms and Turnover Rate Modeling” section) but
do not allow clear separation of the contribution of synthesis
and degradation to the measured turnover rate without further
internal standards or quantification strategies (Figure 2 and
6 Mol Cell Proteomics (2021) 20 100016
supplemental Table S1) (54, 55). Despite these limitations,
dynamic SILAC approaches have provided valuable insights
into cellular mechanisms of proteostasis in different cells,
tissues, and diseases and can help elucidate the mechanisms
by which cells, for example, differentiate, respond to pertur-
bations, and perform their essential functions.
The first dynamic SILAC study was performed by the Bey-

non lab in 2009, where they determined the turnover rate for
nearly 600 proteins in human A549 adenocarcinoma cells and
examined the intrinsic properties correlated with protein
turnover (50). Soon thereafter, a seminal article showing the
power of the dynamic SILAC approach was published in 2011
by the Selbach group (53). In this study, Schwanhausser et al.
(53) measured both protein and mRNA turnover by metabolic
labeling in unsynchronized, dividing NIH 3T3 mouse fibroblast
cells. They found that mRNA levels and mRNA translation
rates contributed the most to the final protein levels, whereas
mRNA and protein stability only had a minor global effect.
Moreover, they found that mRNA and protein turnover rates
themselves showed no correlation to one another. This study
illustrates one of the most straightforward applications of
dynamic SILAC-based technology, which is to probe
proteome-wide turnover rates and then match these rates with
bioinformatic analysis to other parameters (e.g., primary
sequence, motifs, mRNA turnover, etc.) to identify the gener-
alizable parameters that determine turnover rates under the
measured conditions (Fig. 3A). More recently, Martin-Perez
and Villén (56) also reported such a study, in which they
measured total proteome turnover in exponentially growing
yeast and determined which parameters had the most influ-
ence on protein turnover rates. They determined that prote-
ome turnover depended upon functional characteristics such
as subcellular localization, membership of a protein complex,
and gene ontology process more than it did on sequence-
intrinsic or biochemical features and expression levels. Sur-
prisingly, in contrast to the aforementioned study by the Sel-
bach lab, they discovered a strong relationship between
mRNA turnover and protein turnover rates (56). Further
investigation is necessary to see if the different findings be-
tween studies like those of Martin-Perez and Villén (56) and
Schwanhausser et al. (53) reflect genuine biological differ-
ences between yeast and mammalian systems.
Dynamic SILAC approaches have since been used in a

variety of applications, including to determine how consistent
protein half-lives are between different cell types. Although
earlier studies found that orthologous proteins have
conserved half-lives within different yeast and mammalian
species (57, 58), with more closely related species displaying
more similar protein half-lives (59, 60), Mathieson et al. (61)
determined proteome-wide half-lives in 5 different nondividing
primary cell types and found that protein half-lives from three
human immune cell types (B cells, natural killer cells, and
monocytes) were more similar to one another than they were
to human hepatocyte and mouse neuron half-lives. A later



FIG. 3. Determinants of protein turnover rates. A, several intrinsic, functional, and contextual parameters have been identified as possible
determinants of protein turnover behaviors, with various degrees of consensus found within the published literature. Intrinsic features include
mRNA features (mRNA half-lives and codon optimality), primary amino acid sequence features (presence of particular amino acids or motifs),
and secondary structure features (alpha helices versus beta sheets versus disordered sequences). Functional features include relative abun-
dance, complex membership and assembly, pathway relationships, and usage (such as shorter half-lives of proteins involved in biosynthesis of
an amino acid after that amino acid is removed from the growth media). Contextual determinants include subcellular localization, cell and tissue
type, and microenvironment (including presence of cell–cell interactions). B, proteome turnover studies have led to greater understanding of the
dynamics of protein-complex synthesis, assembly, and degradation. Proteins involved in multimeric complexes tend to have turnover rates that
are generally coherent. Although cells are capable of translating complex members at stoichiometric equivalencies, as has been shown in yeast
and mammals, they can overexpress one or more members of the complex and then degrade a subset of them post-translationally to achieve
stoichiometric equivalency (shown in orange, dashed lines). Some complex members may be synthesized in excess but not degraded and may
perform additional functions either as free subunits or as members of other complexes (shown in teal). These proteins may actually have two
different turnover rates depending on complex association or subcellular location, but only one aggregate turnover rate will be measured in
standard dynamic SILAC-based approaches. Despite overall agreement in turnover rates, complex subunit half-lives show even greater co-
herency within subcomplex architecture (shown here in gray and black, with the two internal subunits showing the most similar degradation
behavior). SILAC, stable isotope labeling by amino acids in cell culture.

Proteome Turnover in the Spotlight
study by the Aebersold group revealed that even culturing the
same cell line over many passages can lead to similar dis-
tinctions in proteome turnover between stocks. In this
investigation, Liu et al. (62) examined the degree of molecular
and phenotypic variation in 14 different stocks of HeLa cells
from 13 different laboratories around the world. After
Mol Cell Proteomics (2021) 20 100016 7
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measuring genome-wide copy numbers, mRNA, protein, and
proteome turnover for each cell line, they found substantial
heterogeneity between samples and over the course of 50
passages of the same line. This may have been due to the
genomic instability inherent in cultured cancer cells such as
HeLa, resulting in varying degrees of aneuploidy across cell
stocks, which affected gene expression at all levels. This
study suggests important implications about using cultured
cell lines in biological studies, as clearly culturing conditions
change fundamental properties of cell stocks and subse-
quently the measurements of proteome turnover rates (62).
With the cell-type specificity of protein half-lives estab-

lished, dynamic SILAC-based approaches can furthermore
elucidate how proteome turnover relates to the ways that
specific cell types perform their higher-order, specialized
functions. For example, studies measuring proteome turnover
rates in cultured neurons have identified mechanisms of pro-
teostasis with direct implications for neurobiological pro-
cesses such as memory formation and aging. The Ziv lab used
dynamic SILAC to explore synaptic processes by measuring
the half-lives of synaptic proteins and the influence of pro-
teostasis on metabolic load. They found that protein turnover
rates were not significantly different for presynaptic and
postsynaptic proteins, or for proteins whose corresponding
mRNAs have been found to localize to dendrites (63). Later
work in neuronal cultures sought to determine which proteins
are degraded by the UPS by identifying those whose half-lives
increased upon proteasome inhibition. Although some pro-
teins, including those related to glutamate receptor trafficking,
were slowed by UPS inhibition, most synaptic proteins were
not affected, indicating that they may be degraded by alter-
nate pathways. They also found that inhibition of the protea-
some also led to a profound blockage in the synthesis of a
large number of synaptic proteins, indicating that there may be
crosstalk between protein production and degradation path-
ways (64).
Additional studies in neurons found that not only the cell

type but also the cellular microenvironment influences prote-
ome turnover. Dörrbaum et al. (65) used dynamic SILAC to
profile rat hippocampal neurons in neuron-enriched and glia-
enriched cultures and found that proteins from glia cells had
shorter half-lives than the same proteins in neurons. More-
over, they found that the presence of glia in co-culture
changed the turnover of proteins in neurons. This indicates
that while cell identity is an important determinant of protein
turnover, turnover rates are also influenced by cell–cell con-
tact and signaling.
A more recent study measured proteome-wide turnover

using dynamic SILAC in both naïve and memory T cells. This
study revealed that despite the quiescent state of naïve T
cells, their proteomes are not inert, but rather contain a subset
of highly turned over proteins, such as certain key transcrip-
tion factors, that both help maintain the quiescent state of
naïve T cells and facilitate a rapid transition into an activated
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state through their rapid depletion after stimulation. In addi-
tion, the authors found that, despite not being at all dependent
on glycolysis, naïve T cells maintain high levels of glycolytic
enzymes with very slow turnover rates, which allows naïve T
cells to jumpstart glycolysis upon activation. With these data,
the authors elucidated mechanisms by which the turnover
rates of certain proteins are optimized in naïve T cells to prime
them to efficiently exit quiescence after activation and main-
tain their new cell identity (66).
Proteome turnover analysis can be used to study disease

states such as cancer and their potential treatments (67–73).
One such study published by the Wiita lab examined prote-
ome turnover in MM1.S multiple myeloma cells (72). They did
not apply a global dynamic SILAC approach but rather tar-
geted proteomics (selected reaction monitoring [SRM])
coupled to dynamic SILAC to acquire high-accuracy turnover
data for 272 selected proteins. Owing to the high accuracy of
the SRM measurements, the authors provided quantitative
data for the heavy and light channel over time separately, and
therefore estimated protein production and degradation
separately. They compared the dynamic SILAC-determined
protein synthesis data with ribosome footprinting data. Ribo-
some footprinting is a next-generation sequencing–based
method to estimate the ribosome density on any given
mRNA, and therefore is considered a good proxy for protein
production (74–76). Indeed, in the unperturbed MM1.S cells,
protein synthesis estimates from dynamic SILAC measure-
ments correlated very well with synthesis estimates generated
by ribosome footprinting. However, upon treatment with the
drug bortezomib, a first-line chemotherapy drug and protea-
some inhibitor, this correlation of synthesis estimates by dy-
namic SILAC and ribosome footprinting broke down. Many
alterations in protein synthesis which could be seen by dy-
namic SILAC were not picked up by ribosome footprinting,
underscoring that dynamic SILAC provides complementary
and essential data that could be missed by ribosome foot-
printing, particularly under conditions of cellular stress (72).
Finally, dynamic SILAC can be used in whole-animal studies

to elucidate in vivo proteome turnover rates by feeding ani-
mals isotopically labeled amino acids. This approach has been
successfully applied to model organisms such as Caeno-
rhabditis elegans (77, 78), Drosophila (79), zebrafish (80, 81),
and mice (82–84). Fornasiero et al. (83) specifically measured
proteome turnover in mouse brains, and through bioinformatic
analysis, were able to characterize the pathway-, organelle-,
organ-, and cell-specific effects on proteome turnover rates.
Follow-up work examined the link between codon sequence
and proteome half-lives using the same data set and found
that codons with G or C bases at the wobble nucleotide po-
sition had longer protein half-lives than those ending with an A
or U, although no causal link was established (82). Another
in vivo dynamic SILAC study performed by Arike et al. (85)
examined how proteome turnover in intestinal epithelial cells
differed between normal and germ-free mice and across
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different segments of their intestines. They found that the
median half-life of proteins is shorter in the small intestine than
in the colon, and that proteins in germ-free mice typically have
1 day longer half-lives than proteins from conventionally
raised mice. This result echoes in vitro studies that found
cellular function and microenvironment are important de-
terminants of protein turnover rates (65). However, when they
looked at the half-lives of several long-lived proteins and a
replication-dependent protein as a proxy for cell division rates,
Arike et al. (85) actually found that the aforementioned median
global half-life differences between the small intestine, the
colon, germ-free mice, and conventionally raised mice were
highly correlated with the differences they found in the esti-
mated cell division rates. Nonetheless, ranked lists of protein
half-lives can still elucidate meaningful differences in turnover
rates of individual proteins between the cell types, which
cannot be simply explained by differences in cell division
rates, providing important insight about condition and cell-
specific protein turnover.
An isotopic labeling strategy has recently been applied to

study protein turnover in human ventricular cerebrospinal fluid
from patients who had suffered a subarachnoid hemorrhage
(86). The protocol was based on isotopically labeled leucine, a
method dubbed whole-proteome stable isotope labeling ki-
netics, rather than the arginine- and lysine-based dynamic
SILAC approach, but the experimental principle is the same.
Lehmann et al. (86) detected proteins from multiple cell types,
including neurons and immune cells, and found a link between
protein turnover rates and the cell of origin, again echoing
results from previous in vitro investigations. This approach
could potentially be applied for biomarker discovery and in-
dicates a potential crossing over of dynamic SILAC-like ap-
proaches from biology to medicine.

COMBINATORIAL APPROACHES TO DETERMINE QUANTITATIVE,
DIFFERENTIAL PROTEOME TURNOVER DATA

Ideally, quantitative analyses of proteome turnover and
protein half-lives include data on both protein synthesis and
degradation rates separately. In conventional dynamic SILAC
experiments, it is challenging to separate data for these two
processes because of experimental variabilities in sample
preparation and LC-MS/MS data acquisition (54, 55). Several
different approaches have been implemented to specifically
enable the determination of separate synthesis and degrada-
tion rates. One approach relies on the addition of an internal
standard to the dynamic SILAC experiment (three-channel
dynamic SILAC, Fig. 2), a method first used by the Lamond
group in 2012 (54). This additional channel confers three ad-
vantages: it can be used for normalization, it provides infor-
mation about protein abundance, and most importantly, it can
be used to track protein synthesis and degradation separately
(Fig. 2). Through this strategy, one can determine if protein
and also the turnover rate changes are due to changes in
protein synthesis rates, protein degradation rates, or the
combined effect of both. Therefore, such an extended dy-
namic SILAC approach is best suited to characterize dynamic
changes in these rates.
Indeed, this internal-standard approach has been applied

during dynamic processes such as differentiation and activa-
tion of immune cells (25, 87). Kristensen et al. (87) found that
over the course of the differentiation of C2C12 and THP1 cell
lines, most proteins’ expression levels change because of
differences in synthesis rates rather than degradation rates.
Jovanovic et al. (25) expanded upon this approach when they
examined the response of primary mouse dendritic cells to
lipopolysaccharide using a multi-omics approach of three-
channel dynamic SILAC and RNA-seq measurements. This
method allowed for mRNA translation and protein degradation
to be profiled independently, facilitating the modeling of dy-
namic rate changes upon dendritic cell activation. They found
that although lipopolysaccharide-induced protein production
changes were primarily driven by transcriptional changes,
proteome remodeling of pre-existing proteins, often the so-
called housekeeping genes, occurred at the level of mRNA
translation and protein degradation. The same approach was
used recently to examine proteome turnover changes during
synaptic scaling, a type of homeostatic plasticity, in primary
neurons (88). In this study, over half of the synaptic proteins in
both presynapses and postsynapses showed changes in their
turnover rates in different forms of synaptic plasticity, using
different mechanisms to adjust turnover in upscaling and
downscaling experiments.
The second strategy to measure protein production and

degradation separately and track their changes upon pertur-
bation is to combine dynamic SILAC with isobaric labeling
(dynamic SILAC-TMT, Fig. 2) (55, 89–91). Combining isobaric
labels and dynamic SILAC facilitates direct quantification of
heavy isotope– and light isotope–derived peaks and also en-
ables multiplexed analyses (55, 89–91). Tandem mass tag
(TMT)-based quantification in particular allows a dramatic
reduction of measurement time by combining up to 16
different samples in one LC-MS/MS run, while also reducing
variation in peptides selected for measurement in data-
dependent acquisition–based protocols (92). Savitski et al.
(90) showed that such a combined approach enables the
simultaneous analysis of changes in protein degradation and
synthesis in a single mass spectrometric experiment of bio-
logical replicates subject to multiple treatment conditions,
such as transcription factor inhibition, estrogen receptor
modulation, and heat shock protein 90 inhibition. However,
these approaches do incur additional reagent costs and
require careful normalization (93).
The temporal resolution of dynamic SILAC approaches is

limited by the metabolic activity of the target organism and the
half-lives of its proteins. Although metabolically active or-
ganisms, such as bacteria, may resynthesize the majority of
their proteins in hours, large, postmitotic eukaryotic cells have
proteins with half-lives in the range of several days (25, 63, 65,
Mol Cell Proteomics (2021) 20 100016 9
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83). It is important to note that, in this context, the dynamic
range of the mass spectrometer used for data acquisition
provides a hard limit on the shortest time point that protein
synthesis or degradation will be detectable. Poor ionization
efficiency of a target peptide and coelution of highly abundant
peptides may further confound detection (supplemental
Table S1). It is thus important to always use appropriate
control experiments and data analysis validation steps. A
good starting point is to perform a mock dynamic SILAC in-
cubation, that is, to treat an unlabeled sample as a dynamic
SILAC sample in data analysis; in particular, for short time
points, this control allows for the identification of false-positive
and background signal levels (94). Conversely, the use of a
fully heavy-labeled sample as a booster signal in combined
dynamic SILAC-TMT protocols can increase detection of
nascent peptides at early time points (94). This booster
channel significantly increases the chance that heavy isotope
MS1 peaks are selected for fragmentation (55, 89, 94), which
subsequently increases the likelihood that low-abundant,
newly synthesized, heavy-labeled peptides are quantified
(94). Finally, reversed-SILAC channel experiments—in which
heavy SILAC-labeled cells are pulsed with light SILAC amino
acids as an additional experimental replicate—can help
exclude signals inferred by confounding parameters such as
isotopic envelope overlap (90).
A further consideration for dynamic SILAC experiments is

that many primary cells require specific media and display
significant sensitivity to medium changes—for example, neu-
rons, which require conditioned media (supplemental
Table S1). This poses a further challenge for analyses of
short time points in these systems, as it would be impossible
to tell if protein production rate changes at early time points
are also affected or induced by the media change. Some
groups bypass this issue by adding heavy amino acids in
excess to the preconditioned media at time point zero (63) or
make use of the preconditioned media that was already
generated from a culture grown in heavy amino acids and
therefore minimizes the adverse effects of the medium change
on the cells (65, 88). These issues become even more chal-
lenging in whole-animal studies, where heavy amino acids are
injected into or ingested by the animals. In contrast to cell-
culture systems, the in vivo system does not get “flushed”
by the number of heavy isotopes; therefore, heavy isotope
incorporation will be slower. Moreover, the heavy isotopes
may not enter all of the cells at equal rates, causing noisiness
in early time-point signals (83). It is important to correct for
these biases by carefully monitoring heavy isotope incorpo-
ration (84).
ARTIFICIAL AMINO ACIDS USING AFFINITY PURIFICATION

The difficulties in detecting low-abundant, nascent proteins
using pulse-only SILAC experiments are particularly salient in
postmitotic cells. To overcome these challenges, the
10 Mol Cell Proteomics (2021) 20 100016
Schuman and Tirell labs developed bio-orthogonal non-ca-
nonical amino acid tagging (BONCAT) (95). BONCAT makes
use of natural amino acid surrogates, typically methionine
mimetics, that can be chemically targeted for purification.
They usually carry an azido or alkyne functional group and can
thus be immobilized on a solid phase using click chemistry
and affinity purification. Although initially developed for
neurobiological applications (95–98), the technique has since
been applied to multiple systems, including primary cells (99),
tissue sections (98), and in vivo in a variety of organisms,
including bacteria (100), archaea (101), plants (102), zebrafish
(97), and other higher eukaryotes (103, 104). BONCAT can
also be used to visualize overall proteome synthesis in cells
using fluorescent non-canonical amino acid tagging (105) or to
measure synthesis of target proteins in a spatially resolved
manner using a proximity ligation assay (106).
Recently, artificial amino acid incorporation was genetically

targeted to specific cell types using modified tRNA-
synthetases (107) in living mice (108, 109), Drosophila (110)
and zebrafish (111). This method enables specific analysis and
imaging of the synthesis of a cell type–specific proteome in its
physiological environment without prior cellular isolation.
The main challenge in click chemistry–based strategies is

the biochemical purification of the labeled proteomes, as often
only small fractions of the experimental sample are labeled
and background adsorption to the affinity resin can be sub-
stantial (supplemental Table S1). This is particularly true for
hydrophobic tissues such as brain lysates. These issues have
been addressed through several different strategies, including
covalent immobilization of nascent proteomes to enable
stringent washing (99), or the use of cleavable crosslinkers to
allow specific elution of labeled proteins (108, 109, 112, 113).
An essential step to “quality-test” a workflow for nascent or
cell type–specific proteome analysis is to perform a control
experiment using methionine instead of azido-homo-alanine
(AHA) or azido-nor-leucine (both are methionine analogs)
and determine the experimental background proteome.
A logical extension of BONCAT was to combine it with a

pSILAC approach. This approach improved the accuracy of
nascent proteome analyses by the incorporation of heavy
isotope–labeled amino acids in cell culture (114), macro-
phages (115, 116), and T cells (117). This combinatorial
approach also improved the signal-to-noise ratio as the
background will be dominated by peptides produced before
the isotope pulse and can now be easily distinguished from
the BONCAT-labeled proteins, which have to have the heavy
isotope incorporated. The combined pSILAC and BONCAT
labeling was also recently combined with TMT labeling to also
provide the advantage of sample multiplexing (118).
Although the aforementioned studies used AHA labeling to

look at production differences at shorter time windows or in
specific cell types, this approach can also be reversed to
study protein degradation, as demonstrated by the Selbach
group (29). In this study, they applied a 1-hour AHA pulse
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followed by a cold methionine chase to NIH 3T3 cells for
several different time periods. By combining this pulse-chase
AHA experiment with SILAC labeling of samples with varying
methionine chase lengths, they were able to precisely mea-
sure protein loss. This revealed that for ~15% of proteins,
protein degradation does not follow the predicted exponential
decay function but rather undergoes a two-state model in
which newly synthesized proteins are more likely to be
degraded than older proteins (29). This process, dubbed
“nonexponential degradation” (see also the “Definition of
Terms and Turnover Rate Modeling” section), was found to
be more common in subunits of complexes produced in
superstoichiometric amounts (Fig. 3B).
INTEGRATIVE MULTI-OMICS APPROACHES

Above, we laid out tracer-based approaches that enable
direct measurement of protein turnover parameters under
steady-state and dynamic conditions. A potential alternative
are multi-omics approaches using RNA levels, protein levels,
and, optionally, ribosome density as measured through ribo-
some footprinting, which can be analyzed together to estimate
protein synthesis and degradation rates. Owing to the lack of
absolute protein estimates in steady-state proteomics mea-
surements, these approaches work best on dynamic expres-
sion data, where relative changes can be very precisely
measured on both RNA and protein levels (119–122).
A good example of this type of integrative analysis is from

Peshkin et al. (120) who looked at the mRNA-to-protein rela-
tionship during Xenopus embryonic development. The authors
modeled protein synthesis and degradation by mass action
kinetics and found that there are two major behavioral classes
of proteins in the early embryo: one group with relatively stable
expression levels, which were primarily inherited from the
maternal cell, and a second group produced by the zygote
that displayed greater “dynamicity” but lower abundance and
had strong correlations with mRNA level changes. This in-
dicates that proteome changes in early Xenopus development
are primarily driven by changes in mRNA (120).
Another example of a multi-omics approach is from Eisen-

berg et al. (123) who used matched RNA-sequencing, ribo-
some profiling, and TMT-based proteomics to look at the
temporal changes in gene expression during yeast meiosis.
Here, ribosome footprinting was used as a proxy for protein
production instead of direct metabolic labeling of the proteins
themselves. As reported previously in other systems
(124–127), the authors found that members of the same pro-
tein complex showed stronger correlations with one another at
the ribosome footprinting level than at the RNA level. How-
ever, by comparing the quantitative protein measurements
with the ribosome footprint–based protein production proxies,
they found that changes in protein levels of protein complex
members matched one another significantly more closely than
ribosome footprinting changes. Taken together, this implies
that, although members of protein complexes can be syn-
thesized at ideal stoichiometry (124, 125, 127), often they are
synthesized at imprecise stoichiometry and their levels are
adjusted by protein degradation (123). These results are very
much in line with the aforementioned study by the Selbach
group, where a subset of newly synthesized proteins was
found to have significantly shorter half-lives than older pro-
teins, leading to the conclusion that these proteins are
members of protein complexes that are synthesized super-
stoichiometrically, and that excess proteins not incorporated
in the protein complex are rapidly degraded (29).
The integration of multi-omics data has long been a major

challenge because of differences in the instruments used to
capture the data and the format in which it is generated.
However, in the past few years, multiple computational tools
have been developed that are relatively easy to implement and
allow integration of such multi-omics time course data, esti-
mating key regulatory parameter changes such as changes in
protein synthesis and degradation (128–131). One such
ensemble of programs, protein expression control analysis
(PECA) plus (129), can be used as a plugin in the popular
“point and click” statistical software Perseus (132). Its various
iterations can be used to calculate the probability for
changes in mRNA or protein-level regulatory parameters at
each time point in matched, large-scale time course data.
Specifically, PECA-pS can determine synthesis and degra-
dation rates from dynamic SILAC data, whereas the PECA
core can be used to identify change points for protein-level
expression and degradation using matched RNA and protein
expression data (129). Programs such as PECA now
also provide labs with limited computational experience the
means to gain considerable regulatory insight from their gene
expression data.
CONCLUSION

Soon after the publication of the first dynamic SILAC pub-
lications, a review by Hinkson and Elias (1) outlined open
questions in the field of proteome turnover. Among these were
(1) cataloging the differences in protein turnover rates after
activation, between cell types, and across species (2), un-
derstanding to what extent functionally and physically asso-
ciated proteins are turned over in accordance with one
another, and (3) matching proteins to degradation pathways
(1). Although several of these questions have been addressed
in selected model systems as outlined above, a comprehen-
sive survey of biological systems is yet to be achieved.
However, a few patterns regarding proteome turnover have
emerged from the data that already exist.
One of the most robust findings across all of the studies

surveyed here is that protein half-lives are similar for proteins
found in the same complexes and that proteins known to
participate in protein complexes have longer half-lives than
those with no known association partners (54, 56, 61, 83, 85,
Mol Cell Proteomics (2021) 20 100016 11
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89). Complex turnover is not entirely coherent but typically
subclustered based on the architecture of multimeric com-
plexes, with more dynamic subunits showing higher turnover
than stabilizing “core” subunits, such as has been seen for the
proteasome (50, 61, 65, 123) (Fig. 3B). Additional mechanistic
studies have revealed that for some complexes, certain sub-
units may be translated in excess and then degraded down to
stoichiometric equivalencies (29, 123). The fact that members
of large, multimembered protein complexes are more likely to
have different turnover rates depending on subcellular location
(54, 62) implies that these excesses of protein complex sub-
units may be generated to favor complex formation in one
location distinct from the location where the complex func-
tions (54). More generally, the relationship between complex
membership and proteome turnover suggests the possibility
of coordinated biosynthesis and degradation mechanisms for
groups of interacting proteins (56, 63). These findings were
discovered using different conditions and model systems,
validating one another’s conclusions and suggesting that the
tight coupling of protein turnover to complex membership is a
basic feature of biological systems. Future studies could
incorporate the use of size-exclusion chromatography
(133–136) with dynamic SILAC to better understand how
proteins that are a part of several distinct complexes and/or
are involved in “moonlighting” functions display variation in
their turnover rates (137, 138). Additional robust findings
include that subcellular localization (45, 54, 63, 65, 89, 139),
proteoforms (89, 139), protein disorder (53, 56, 89), protein
abundance (54, 83, 89), gene ontology category (53, 54, 56,
65), and cell type (61) are all correlated with proteome turnover
rates to some degree (Fig. 3A).
In contrast to the aforementioned results that showed

general agreement between several studies in different sys-
tems, there is a lack of strong agreement regarding the re-
lationships between protein turnover rates and other key
molecular features such as mRNA half-lives (53, 56, 120), N-
terminal motifs (50, 54, 56, 65), codon sequences (82), amino
acid composition (53, 56, 82) and other intrinsic properties. It
is possible that this disagreement is due to biological differ-
ences in different systems. Large-scale meta-analyses and
literature mining (140) of proteome turnover studies will be
useful for reaching more answers, and potentially consen-
suses, particularly as more data are generated. In addition, re-
examining pre-existing data sets with an eye toward unex-
plored or overlooked parameters will yield greater insight into
the underlying biological and biochemical principles driving
proteome turnover. A first glimpse into such studies is pro-
vided by recent work from the Ghaemmaghami lab. After re-
examining a previously-published dataset reporting proteome
turnover rates of fibroblasts derived from a variety of
mammalian species, they proposed that differences in prote-
ome turnover rates underlie organism-level phenotypes such
as longevity, and that mechanisms of protein turnover regu-
lation are linked to metabolic processes. As such, the
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principles underlying the protein turnover rate differences may
vary substantially between species (60).
Proteome turnover studies are limited by two technical

factors: sample complexity and dynamic range of detection.
Sample complexity can be addressed by different fraction-
ation techniques, improved chromatographic separation, and
instrument and acquisition method development. However,
although fractionation techniques such as high pH fraction-
ation dramatically increase the number of analyzed peptides
per sample, they also impose a limit on the study sample size
because of the increase in LC-MS/MS measurement time,
effectively multiplying the acquisition time by the number of
fractions analyzed. Improvements in chromatographic sepa-
ration, both in resolution and retention time stability, could
significantly enhance peptide detection, fragmentation, and
assignment (141). The detection of low-abundant, labeled
peptide signals at, for example, short time points could be
facilitated using targeted methods such as SRM, dramatically
increasing sensitivity of a specific set of proteins at the
expense of global proteome coverage (72, 142).
Instrument development in the past years has seen a shift in

focus to ion-mobility separation. Although already a routine tool
for hydrogen–deuterium exchangemass spectrometry analyses
for a decade (143), ion mobility–based separation has only
recently seen a surge of development with the trapped ion-
mobility spectrometry time of flight–based parallel
accumulation–serial fragmentation technique (144) and high-
field asymmetric waveform ion-mobility spectrometry–based
mass spectrometers (145). While technically based on different
principles, both approaches achieve considerable separation
power in the ion-mobility dimension and can thus help decon-
volute complex spectra effectively. For example, parallel
accumulation–serial fragmentation could enable selective
accumulation and detection of short time-point, low-abundant,
heavy-labeled isotope signals and high-field asymmetric
waveform ion-mobility spectrometry could allow more efficient
detection of these peptides because of a selective acquisition of
specific charge states. Ion-mobility separation thus also im-
proves theeffective dynamic range that canbecovered, as high-
abundant, singly charged molecules/contaminants can be
separated from proteolytic peptides carrying multiple charges.
Together with data-independent acquisition strategies that
recently outperformed data-dependent acquisition methods
significantly in particular for low-input proteomics (146, 147), a
significant increase in sensitivity could be achieved. Recent
studies by the Aebersold and Liu labs already used a dynamic
SILAC–data-independent acquisition approach to monitor pro-
teome turnover at high accuracy and sensitivity (62, 73, 148).
For in vivo studies, the convolution of signals from different

cell types still represents a major challenge. The use of artifi-
cial amino acids that are specifically incorporated into a target
cell type only by genetic targeting may pose a very attractive
option for studying proteome turnover in specific cell types in
the future (100, 108, 111).



Box 1. Some open questions and considerations regarding
proteome turnover

• What are the gene-specific regulators of protein pro-
duction and degradation? For example, what are the tar-
gets of specific E3 ligases?• What are the mechanisms by which synthesis and
degradation pathways are coupled? How does inhibition of
the proteasome change synthesis rates of many genes and
vice versa?• Through what molecular events are subunits of protein
complexes coherently turned over?• To what extent can we expect turnover rates to stay
constant between two identical cultures? More importantly,
how relevant are turnover rates functionally? Are differ-
ences in turnover rates between cultures predictive of
differences in functional/phenotypic responses between
them?• What are the relative strengths and weaknesses of
gathering turnover rate information compared with other
cell parameters (e.g., RNA-seq, proteomics, etc) in terms of
giving relevant information that provides functional insight
into the cell behavior and disease, beyond insight into the
mechanisms of turnover itself?

Proteome Turnover in the Spotlight
What comes next (Box 1)? A recent study by the Walther
group is a great example of the kind of future studies that
will shift us from more descriptive, correlative protein turn-
over studies to investigations that provide comprehensive
functional insight into proteostasis and dynamic proteome
remodeling. Building on previous work from the same group
in which they compared the protein turnover rate between
two distant yeast species (58), the authors used proteome-
wide protein turnover measurements to match degradation
pathways to individual proteins in Saccharomyces cer-
evisiae (58). To this end, they combined systematic single-
gene deletions of over one hundred components of the
yeast degradation machinery (e.g., E2 and E3 ligases) with
quantitative measurements of protein turnover, thereby
mapping protein degradation pathways for hundreds of
genes. This massive effort enabled the authors to identify
the endogenous targets of the majority of E2 and E3 ligases
and could serve as a blueprint for future studies about
protein turnover (58). Owing to the technological advances
described above, combined with the availability of genetic
perturbation technologies such as CRISPR and targeted
drug screens, the time is ripe to match protein turnover to
functional pathways.
These novel combinatorial approaches could be used to

answer some of the remaining open questions regarding
proteome turnover and its regulation (Box 1). Such questions
include identification of the molecular events mediating the
crosstalk between synthesis and degradation pathways (149)
and illuminating the mechanisms by which complex assembly
is coupled to protein turnover (150, 151). Future mechanistic
studies could also elucidate how the determinants of protein
half-lives, such as proteoform identity, are able to confer such
variability in turnover kinetics (89). In recent years, enormous
effort has been expended to quantify the proteomes of various
cancer cell lines and primary tissues. We predict that similar
efforts in categorizing proteome-wide protein turnover rates
will be well worth the investment of cost and effort, as they will
provide unique, complementary information regarding the
principles underlying these essential processes driving protein
expression (62).
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