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ABSTRACT Newly synthesized G protein of vesicular stomatitis virus is not transported to the 
surface of cultured mammalian cells during mitosis (Warren et al., 1983, J. Celt Biol. 97:1623- 
1628). To determine where intracellular transport is inhibited, we have examined the post- 
translational modifications of G protein, which are indicators of specific compartments on the 
transport pathway. G protein in mitotic cells had only endo H-sensitive oligosaccharides 
containing seven or eight mannose residues, but no terminal glucose, and was not fatty 
acylated. These modifications were indicative of processing only by enzymes of the endo- 
plasmic reticulum (ER). Quantitative immunocytochemistry was used as an independent 
method to confirm that transport of G protein out of the ER was inhibited. The density of G 
protein in the ER cisternae was 2.5 times greater than in infected G1 cells treated similarly. 
Incubation of infected mitotic cells with cycloheximide, which inhibits protein synthesis 
without affecting transport, did not result in a decrease in the density of G protein in the ER 
cisternae, demonstrating that G protein cannot be chased out of the ER. These results suggest 
that intracellular transport stops at or before the first vesicle-mediated step on the pathway. 

Transport of proteins between the membrane-bound organ- 
elles of the cell appears to be mediated by budding and fusion 
of carrier vesicles. Vesicular traffic occurs continuously in all 
animal cells, except for cells undergoing division. During 
mitosis a number of specific examples of membrane transport 
have been shown to be inhibited. These include endocytosis 
(Fawcett, 1965; Berlin et al., 1978; Berlin and Oliver, 1980), 
receptor recycling (Warren et al., 1984; Sager et al., 1984), 
and stimulated secretion (Hesketh et al., 1984). 

The examples outlined above all concern transport to or 
from the plasma membrane. In a previous study, we showed 
that a model plasma membrane protein, the glycoprotein of 
vesicular stomatitis virus (VSV), j is not transported to the 
surface of mitotic cells (Warren et al., 1983), but in this case 
it was not clear whether transport was inhibited at the level 
of the plasma membrane, or earlier in the transport pathway. 

J Abbrev ia t ions  used  in this  paper.  CHO, Chinese hamster ovary; 
endo H, endo/3-N-acetylglucosaminidase H; ER, endoplasmic retic- 
ulum; GM, growth medium; MEM, minimal essential medium; 
PMSF, phenylmethylsulfonyl fluoride; VSV, vesicular stomatitis vi- 
rus. 

2036 

Proteins destined for the plasma membrane must pass through 
a series of compartments from their site of synthesis in the 
rough endoplasmic reticulum (ER), through the cisternae of 
the Golgi complex, to the cell surface (Bergmann et al., 1981; 
Green et al., 1981). The first vesicle-mediated step on this 
pathway is probably the step between the transitional elements 
of the ER and the Golgi complex (Jamieson and Palade, 
1968). If inhibition of membrane transport acts on a common 
feature of all vesicle-mediated transport, then one would 
expect that all vesicular traffic, not only that to and from the 
plasma membrane, would be inhibited in mitotic cells. A 
prediction from this hypothesis is that a newly synthesized 
plasma membrane protein would not be transported out of 
the ER. In this study we tested this prediction by attempting 
to identify the first step in transport to the plasma membrane 
that is inhibited during mitosis. 

We have studied mitotic Chinese hamster ovary (CHO) 
cells, infected with VSV. This virus directs the synthesis of 
five viral proteins, one of which, the glycoprotein (G protein), 
is an integral membrane protein. This protein undergoes a 
well-defined temporal sequence of post-translational modifi- 
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cations, including oligosaccharide processing (Hubbard and 
lvatt, 1981) and fatty acylation (Schmidt and Schlesinger, 
1980), which provide biochemical markers for the compart- 
ments through which G protein must pass en route to the 
plasma membrane. Furthermore, since G protein is synthe- 
sized in large amounts in infected cells, it can be easily 
detected by quantitative immunocytochemical techniques 
(Bergmann et al., 1981). The results reported here support 
the notion that G protein does not leave the ER in the mitotic 
cell. 

MATERIALS AND METHODS 

Preparation of Mitotic CHO Cells Infected with VSV: The 
CHO cell line, obtained from Dr. Stuart Kornfeld (Washington University, St. 
Louis, MO), was grown and maintained as monolayers on 75-cm 2 plastic flasks 
in growth medium (GM) comprising minimal essential medium (MEM) (Gibeo 
Europe, Glasgow) supplemented with 10% (vol/vol) fetal calf serum and 100 
U/ml  each of penicillin and streptomycin, in an atmosphere of 5% CO~/95% 
air. 

Mitotic cell populations were isolated from monolayer cultures grown in 
850-cm z plastic roller bottles (Falcon Labware, Oxnard, CA). Each bottle was 
seeded with half of the cells from a confluent 75-cm z flask in 100 ml GM. The 
bottles were gassed with 5% CO2/95% air for 3 min and then rotated at 0.2- 
0.3 rpm at 37°C. They were used to prepare mitotic cells 2 d later when the 
monolayers were ~50% confluent. 

Bottles were subjected to two spins at 300 rpm for 5 min at 37"C, separated 
by an interval of 20 min, to remove debris. The cells were then incubated for 
20 min with GM containing 0.04 ug/ml Nocodazole (Sigma Chemic GmbH, 
Taufkirchen, FRG) (Zieve et al., 1980), before being spun again at 200 rpm for 
3 min to remove interphase cells that had become loosely attached as a result 
of the Nocodazole treatment. The cells that remained were washed twice with 
infection medium (MEM, 100 U/ml  penicillin, 100 U/ml  streptomycin, 0.2% 
(wt/vol) bovine serum albumin (BSA), 10 mM HEPES [final pH 6.8]) contain- 
ing 0.04 ~g/ml Nocodazole and infected with 10-20 infecting units (defined 
below) of VSV per cell (0.85-1.7 x 109 infecting units per bottle) in a total 
volume of 10 ml for 30 min at 37*C and 0.2-0.3 rpm. The infection medium 
was carefully removed and replaced with 50 ml GM that contained 0.04 ug/ml 
Nocodazole. Mitotic cells were selectively detached from the bottle by rotation 
at 200 rpm (Klevecz, 1975) for 3 rain at 37"C and recovered by centrifugation 
at 400 g for 5 min at room temperature. 1-3 x 104 cells were routinely obtained 
from one bottle by this procedure. Of these, usually >90% were mitotic, as 
determined by staining with Hoechst dye 33258 (Berlin et al., 1978), and 95% 
infected, as determined by immunofluorescence microscopy (see below). 

G1 Cells: To obtain G~ cells, infected, mitotic cells were washed once 
with 50 ml GM to remove Nocodazole, recovered by centrifugation al 400 g 
for 5 min at room temperature, resuspended in 2 ml GM, and incubated at 
37"C for 30 rain to allow the cells to complete mitosis. 

Asynchronous Cells: CHO cells fur"inter-phase" controls were grown 
on 3.5-cm-diam plastic Petri dishes in GM. They were infected using the same 
protocol as described for roller bottle cultures. 

Preparation of Virus and Radioactive Virus: Indiana M4 strain 
of VSV was grown in baby hamster kidney cells as described by Marlin et al. 
(1982). ts045 VSV was prepared by essentially the same method, but the cells 
were grown on 24 x 24 cm plates and infected for 30 h at 31 °C. [3H]mannose- 
labeled virus was prepared as described by Mattila et al. (1976) for Semliki 
Forest virus. 

Estimation of VSV Infecting Units: We usedimmunofluorescence 
microscopy rather than plaque assay to determine the tiler of our stock virus 
preparation, because we found it to be a simpler, more rapid and reliable 
method. 

A suspension of VSV in phosphate-buffered saline containing 0.2% (wt/vol) 
BSA, 0.5 mM EDTA (pH 7.0), was serially diluted 102-107 fold in infection 
medium. Baby hamster kidney cells grown on coverslips were washed three 
times with 2 ml infection medium and incubated with 0.6 ml of diluted virus 
for 60 min at 37"C. This was replaced with 2 ml GM containing 0.1 mM 
chloroquine to prevent further infection (Helenius et al., 1980) and the incu- 
bation was continued at 37"C for 4 h. The cells were fixed and processed for 
immunofluorescence microscopy as described below, using a rabbit anti-G 
protein antiserum followed by a rhodamine-conjugated sheep anti-rabbit sec- 
ond antibody, and then 1 ug/ml Hoechst dye 33258 in Dulbecco's PBS. Cells 
within a field of known area ( 1.1 × 10 -4 cm 2) were scored as positive or negative 
for G protein immunofluorescence, and the total number of cells per field was 

estimated from the number of Hoechst-stained nuclei visible. The percentage 
of infected cells was plotted against dilution of virus, and the dilution at which 
50% of cells were infected was determined. Assuming that each infected cell 
was infected by only one virus particle, and knowing the number of cells per 
unit area and the total area of the well in which the cells on the coverslip was 
infected, the number of virus particles contained in 0.6 ml infection medium 
was calculated. Thus, the number of infecting particles per milliliter of virus 
suspension was determined. This method usually gives about 10-fold fewer 
infecting units than plaque-forming units determined by plaque assay of the 
same preparation. 

Labeling with [3SS]Methionine: VSV-infected, mitotic cells were 
washed twice with methionine-free M EM containing 100 units/ml of penicillin 
and streptomycin, 2 mM glutamine, 0.2% (wt/vol) BSA, 10 mM HEPES (pH 
7.3), nonessential amino acids, and 0.5 ug/ml unlabeled methionine, in the 
presence or absence of Nocodazole. Cells were recovered after each wash by 
centrifugation at 400 g for 5 min at room temperature. The washed cells were 
resuspended in 2 ml (0.5-1.5 x 104 cells/ml) of the same medium containing 
100 taCi L-[3~S]methionine (7-800 Ci/mmol,  Amersham Buchler GmbH, 
Braunschweig, FRG) and incubated at 37°C for 60 min before chasing with 0.1 
mM unlabeled methionine in GM for 60 min. At the end of the chase period, 
the cells were transferred onto ice, resuspended, and recovered by centrifugation 
at 400 g and 4"C. The cells were extracted with 250 tal 1% (wt/vol) Triton X- 
114 in PBS containing 0.23 mM phenylmethylsulfonyl fluoride (PMSF) and 
2.8 ug/ml Trasylol, and extracted on ice for 10 min. Insoluble material was 
removed by centrifugation at full speed (10,000 g) in a microfuge at 4"C. 
Integral membrane proteins were isolated by cloud-point precipitation, essen- 
tially as described by Bordier (1981). The supernatant was warmed to 30°C for 
3 rain and centrifuged at 2,500 g in a microfuge for 3 rain at room temperature. 
The detergent pellet was washed with ice-cold PBS by three successive rounds 
of warming to 30"C and resedimentation. 

endo H Digestion and SDS PAGE: Proteins extractedwith Triton 
X-114 were digested with endo 13-N-acetylglucosaminidase H (endo H) from 
Staphylococcus plicatus (Miles Laboratories Inc., Elkhart, IN) by the addition 
of an equal weight of Triton X-100 to the detergent pellet on ice, then of 250 
ul ice-cold 0.2 M sodium citrate pH 5.5, 0.23 mM PMSF, and 5 mU endo H 
per sample. The mixture was rotated at 37"C for 16-20 h, and the protein was 
recovered by the addition of trichloroacetic acid (TCA) to a final concentration 
of 10% (wt/vol) and precipitation on ice for 2 h. TCA precipitates were 
recovered by centrifugation at ~5,000 g for 5 min at 4"C in a microfuge, 
washed twice with I ml ethanol/ether (1:1, vol/vol) and ether, then dissolved 
in SDS sample buffer and electrophoresed in a 10% (wt/vol) polyacrylamide 
gel as described by Maizel (1969) with the modifications described by Green et 
al. (1981). Gels were fixed, soaked in EN3HANCE (New England Nuclear, 
Dreieich, FRG), dried, and fluorographed at -70"C using preflashed Kodak X- 
OMAT x-ray film as described by Laskey and Mills (1975). 

Labeling with [3H]Mannose: VSV-infected mitotic cells were iso- 
lated as described above and resuspended in 1.5 ml glucose-free MEM contain- 
ing 2 mM glutamine, 15 mM HEPES (pH 7.3), 100 U/ml  penicillin and 
streptomycin, 0.2% (wt/vol) BSA, nonessential amino acids, 10 mM sodium 
pyruvate, 1 mCi D-[23H]mannose (10-20 Ci/mmol,  Amersbam Buchler 
GmbH) containing 0.04 ~g/ml Nocodazole. The cells were pulsed at 37"C for 
60 rain and chased by washing with the same medium containing 10 mM 
unlabeled mannose and incubating for 60 rain more at 37"C. Pulsed and chased 
cells were recovered by centrifugation at 400 g for 5 min, washed once with 
ice-cold PBS, and extracted with Triton X-114 as described above. Glycopep- 
tides were prepared from the detergent extracts and analyzed on a Biogel P4 
(200-400 mesh) column as described below. 2 h after infection with VSV, 
interphase CHO cells were labeled with 1 mCi [3H]mannose in the presence or 
absence of Nocodazole, as described for mitotic and Gt cells. The labeled cells 
were chased for 60 min and processed in the same way as mitotic and G~ cells. 

Preparation of GIycopeptides: Glycopeptideswere preparedeither 
in the manner described by Tabas and Kornfeld (1978) or by a simpler and 
quicker procedure described below which gave essentially the same results. 

[3H]Mannose-labeled cells were extracted with Triton X-114 as described 
above, and the pellet containing G protein and dolichol-linked oligosaccharides 
was washed to remove the excess, water-soluble [3H]mannose. G protein 
represented >50% of the total [3H]mannose-labeled protein in these extracts as 
determined by SDS gel electrophoresis. Glycopeptides were separated from the 
dolichol-linked oligosaccharides by the addition of 500 ul 50 mM HEPES (pH 
7.0) containing l0 mg/ml proteinase K, and rotation at 37"C for 60 rain. This 
released all [3H]mannose-labeled glycopeptides into the supernatant after phase 
separation, leaving dolichol-linked oligosaccharides in the pellet, which could 
then be released by digestion with endo H. The glycopeptides were washed by 
increasing the concentration of Triton X-114 to 2% (wt/vol) and repeating the 
phase separation. SDS was added to the supernatant to a final concentration 
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of 0.1% (wt/vo]) and sodium azide to 0.2% (wt/vol), and the mixture was 
incubated at 56"C for 16-24 h to complete digestion. Proteinase K was 
inactivated by heating to 95"C for 3 min, cooling, and adding 0. l mM PMSF. 
Debris was removed by centrifugation at 10,000 g in a microfuge for I min, 
and the supernatant was lyophilized. 

Digestion of Gtycopeptides with endo H and a-Mannosi- 
dase: Lyophilized glycopeptides (1-2 x 104 cpm) were either dissolved in 
100 mM Tris-HCl (pH 7.0), 0.1% (wt/vol) SDS, and 0.1% (wt/vol) sodium 
azide and applied directly to a Biogel P4 (200-400 mesh) column equilibrated 
in the same buffer (Green et al., 1981), or first digested with endo H by the 
addition of 0.5 ml 200 mM sodium citrate (pH 6.0) containing 0. l mM PMSF. 
2.8 vg/ml Trasylol, 5 mU endo H and incubation for 48 h at 37"C. 0.7-ml 
fractions were collected. The column was calibrated as described by Rosner et 
al. (1982) using [t4C]-BSA and [14C]mannose as markers for the excluded and 
included volumes respectively. Markers ranging in size from MansGlcNAc to 
GIc3MangGlcNAc were provided by Martin Snider, Carnegie Institution of 
Washington, Baltimore, MD. 

The ManT.sGIcNAc peak obtained from mitotic cells was desalted on a 
Biogel P2 column equilibrated in 0.1% (wt/vol) sodium azide, the product was 
lyophilized and treated with jack bean a-mannosidase as described by Pesonen 
et al. (1982), and the products ( I-2 x I 0 a cpm) were analyzed using the Biogel 
P4 column. 0.7-ml fractions were collected. 

Labeling with [3H]Palmitic Acid and [3SS]Methionine: VSV- 
infected, mitotic CHO cells, isolated from 10 roller bottles (1-3 x 107 cells), 
were washed once with 100 ml methionine-free MEM containing 1% (vol/vol) 
fetal calf serum, nonessential amino acids, penicillin and streptomycin, and 
0.04 ug/ml Nocodazole. They were recovered by centrifugation at 400 g for 5 
rain at room temperature and resuspended in 10 ml of the same medium. 9 
ml of the cell suspension was plated onto a 6-cm-diam dish and labeled for 60 
min at 37°C with 2.25 mCi [3H]palmitic acid (25-30 Ci/mmol)  (New England 
Nuclear) added dropwise from a 50 uCi/ul solution in 100% ethanol. The 
remaining I ml was plated onto a 3.5-cm-diam dish and labeled with 50 uCi 
[3~S]methionine for 60 rain at 37"C. lnterphase cell controls were CHO clone 
15B cells (obtained from Dr. Stuart Kornfeld and maintained as for the wild 
type), growing on 3.5-cm-diam dishes. They were washed twice with 2 ml of 
the medium described above and labeled for 60 rain at 37"C either with 125 
#Ci [3H]palmitic acid or with 50 ~tCi [35S]methionine. After labeling, the cells 
were chased for 60 rain by the addition of an equal volume of MEM containing 
20% (vol/vol) fetal calf serum, 2 mM unlabeled methionine, 100 ~tM unlabeled 
palmitic acid, and 0.04 ~tg/ml Nocodazole. At the end of the chase the dishes 
were transferred to metal trays on ice, mitotic cells were resuspended in 4 vol 
of ice-cold PBS and centrifuged at 400 g for 5 rain at 4"C, while the interphase 
cells on dishes were washed with 2 ml ice-cold PBS. [3H]Palmitate-labeled 
mitotic cell pellets were extracted with 2.25 ml 1% (wt/vol) Triton X-114 in 
PBS, containing 0.23 mM PMSF and 2.8 ~tg/ml Trasylol. The [3~S]methionine- 
labeled mitotic cell pellet, and cells on dishes, were extracted with 250 ~1 of the 
same Triton X-114 solution. The detergent extracts were processed, digested 
with endo H, and run on an SDS polyacrylamide gel as described above. 

Irnmunofluorescence Microscopy: Normal rat kidney cells were 
processed for immunofluorescence microscopy following the general procedure 
of Wang et al. (1982), with modifications described by Warren et al. (1984). 
The anti-(]  protein antibody was a rabbit antiserum raised against Triton X- 
114 extracts of VSV virions. The second antibody was an affinity-purified 
rabbit anti-mouse IgG conjugated to rhodamine as described by Brandtzaeg 
(1973). 

Immunoelectron Microscopy: VSV-infected cells were fixed for 
immunoelectron microscopy using formaldehyde because low concentrations 
of glutaraldehyde were found to abolish the reaction of G protein with the 
antibody. The cells were centrifuged at 4,000 g for 1 rain at room temperature 
in a microfuge to form a pellet l -2 -mm thick. The supernatant was discarded 
and 100 gl of 4% (wt/vol) formaldehyde in 100 mM PIPES (pH 7.0) was 
carefully layered onto the pellet without disturbing it. At 10-rain intervals 8% 
(wt/vol) formaldehyde, 100 mM PIPES, (pH 7.0) was added to the supernatant 
to bring the final volume to 1.5 ml after 30-40 rain. 

Small pieces (<1 mm 3) of pellet were infused for 15 rain with 2.1 M sucrose, 
frozen in liquid nitrogen, and sectioned at -110*C (Griffiths et al., 1983) using 
a tungsten-coated glass knife (Griffiths et al., 1984). The sections were thawed 
and labeled with a rabbit ant i-G protein antibody, affinity purified on VSV (a 
gift from Dr. Kai Simons), and then protein A conjugated to 5-nm gold, as 
described by Warren et al. (1983), The sections were dried and contrasted as 
described by Griffiths et al. (1984). 

Gold-labeling of ER was quantitated by a simple, relative procedure. The 
volume density of ER was estimated stereologically by point counting (Weibel, 
1979) on micrographs at 55,000 magnification. Gold particles on or within 10 
nm of the ER membrane were attributed to the ER. 
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RESULTS 

Processing of G Protein Oligosaccharides in 
Mitotic Cells 

G P R O T E I N  IS S E N S I T I V E  TO D I G E S T I O N  W I T H  E N D O  

H: VSV-infected cells, arrested in mitosis with Nocodazole, 
were pulse-labeled for 60 min with ['S]methionine and 
chased for 60 min with an excess of  unlabeled methionine. 
All of  the labeled G protein isolated from these cells was 
sensitive to digestion by endo H (Fig. 1, lanes a and b), which 
indicates that the oligosaccharides of the glycoprotein were of 
the immature, high mannose form. If the mitotic cells were 
chased in the absence of Nocodazole, the G protein was 
converted to a resistant form, which shows that oligosaccha- 
ride processing was completed when cells were allowed to 
enter Gl (Fig. l, lanes c and d). 

The failure of G protein to acquire complex oligosaccha- 

FIGURE 1 Endo H sensitivity of G protein in mitotic CHO cells 
infected with VSV. Mitot ic cells were isolated from roller bottles 30 
min after infection, pulse-labeled with [35S]methionine for 60 min 
at 37°C, and chased in the presence or absence of Nocodazole for 
60 min. Integral membrane proteins were extracted with Triton X- 
114, half of each sample was digested with endo H, and both halves 
were electrophoresed on SDS polyacrylamide gels and visualized 
by fluorography. Lanes a and b, mitotic cells pulse-labeled and 
chased in the presence of Nocodazole. Lanes c and d, mitotic cells 
pulse-labeled in the presence of Nocodazole and chased in the 
absence of the drug, which al lowed them to enter G1. Lanes e and 
f, Interphase cells pulse-labeled and chased in the presence of 
Nocodazole. Gs, G protein sensitive to digestion with endo H. GR, 
G protein resistant to digestion with endo H. 



rides in cells arrested in mitosis was probably not due to a 
side effect of Nocodazole for the following three reasons: 

(a) Complex oligosaccharides were formed on G protein in 
infected interphase cells, pulse-labeled for 60 minutes, and 
chased for 60 min in the presence of Nocodazole (Fig. l, lanes 
e and f ) .  

(b) The time course of the conversion of endo H-resistant 
to endo H-sensitive G protein in infected interphase cells was 
unaffected by the presence of Nocodazole (Fig. 2). 

(c) Transport of G protein to the surface of interphase cells 
in the presence of 100 times more Nocodazole than was used 
to arrest cells in mitosis had no effect on the appearance of G 
protein at the cell surface (Fig. 3). This was determined using 
a temperature-sensitive mutant of VSV, ts045, in which G 
protein remains in the ER at the nonpermissive temperature 
(39.5°C) but is transported to the plasma membrane at 3 l°C. 
After 4 h of infection with ts045 at the nonpermissive tem- 
perature, in the presence or absence of Nocodazole, normal 
rat kidney cells were either fixed immediately (Fig. 3, A and 
E) or transferred to the permissive temperature for 60 min 
(Fig. 3, B-D, F-H). Surface G protein was detected by im- 
munofluorescence microscopy (Fig. 3, A-D). No obvious 
differences between surface fluorescence intensity of cells 
treated with 100-fold excess Nocodazole (Fig. 3 B) or 1% (vol/ 
vol) dimethylsulfoxide (Fig. 3D), and control cells without 
Nocodazole (Fig. 3 C) could be detected. 

The endo H-sensitive form of G protein predominated in 
cells held in mitosis with Nocodazole for at least 2.25 h after 
infection with VSV (Fig. 4 b). Between 3 and 5 h after infection 
this G protein gradually became resistant to digestion by endo 
H. This correlated with a drop in the mitotic index of the 
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FiGure 2 The effect of Nocodazole on the rate at which G protein 
in infected interphase cells acquires oligosaccharides resistant to 
endo H. CHO cells were infected with VSV for 30 min and all 
further treatments were performed in the presence or absence of 
Nocodazole. After 4 h of incubation at 37°C, the cells were pulse- 
labeled for 5 min with [3SS]methionine and chased for various times 
with an excess of unlabeled methionine. The cells were extracted 
with Triton X-114, the detergent pellets were digested with endo 
H, and the samples were fractionated by SDS PAGE. The endo H- 
resistant and -sensitive G protein bands, detected by fluorography, 
were cut out and counted. Closed symbols, with Nocodazole; open 
symbols, without Nocodazole; squares, endo-H-sensitive G pro- 
tein; circles, endo H-resistant G protein. 

FIGURE .3 Transport of G protein to the surface of interphase cells 
infected with ts045 VSV, in the presence of Nocodazole. Normal 
rat kidney cells growing on coverslips were infected at the nonper- 
missive temperature (39.5°C) in the presence of 4 #g/ml Nocoda- 
zole (A, B, E, F), or 1% (vol/vol) dimethylsulfoxide (D, H) to control 
for the effect of solvent in the stock Nocodazole solution, or in the 
absence of both (C, G). 4 h after infection the cells were fixed (A, 
E) or transferred to the permissive temperature (31 °C) (B-D, F-H) 
and incubated for 60 rain more before fixation and processing for 
surface immunofluorescence. (A-D) Surface immunofluorescence. 
(E and F) Nomarski images of the same field. Bar, 20 i~m. 

cells from >90% to ~30%. Almost 70% of cells had divided 
and returned to an interphase condition after 5 h of infection, 
as judged by staining with Hoechst 33258, despite the contin- 
ued presence of Nocodazole (Fig. 4a). For this reason the 
following experiments were completed within 3 h of infection 
when ~90% of the cells were still in the mitotic state. 

THE O L I G O S A C C H A R I D E S  C O N T A I N  EIGHT OR NINE 

S U G A R  R E S I D U E S :  TO determine the structure of the oli- 
gosaccharides on G protein, VSV-infected CHO cells, held in 
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FIGURE 4 The effect of incubation t ime on the endo 
H sensitivity of G protein in mitotic cells. Mitot ic CHO 
cells were isolated from roller bottles 30 min after 
infection and pulse-labeled with [~SS]methionine for 
60 min at 37°C in the presence of Nocodazole. 2.25 
h after infection half of the cells were al lowed to 
divide by washing with Nocodazole-free medium, and 
the incubation was continued. At various times sam- 
ples were stained with Hoechst dye 33258 to deter- 
mine the mitotic index (a), or extracted with Triton X- 
114 and digested with endo H. The products were 
separated by SDS PAGE and visualized by fluorogra- 
phy (b). O, mitotic cells. O, mitotic cells washed into 
medium without  Nocodazole after 2.25 h of infection. 
Cs and GR as in Fig. 1. 
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FIGURE 5 Gel filtration of [3H]mannose-labeled glycopeptides and 
oligosaccharides from infected mitotic and G~ cells. Mitotic CHO 
cells, isolated 30 rain after infection with VSV, were pulse-labeled 
with [3H]mannose for 60 min at 37°C and chased for 60 rain with 
an excess of unlabeled mannose in the presence or absence of 
Nocodazole. Membrane proteins were extracted with Triton X-114, 
and proteinase K glycopeptides were prepared and analyzed by gel 
filtration before and after digestion with endo H. (a) [3H]mannose- 
labeled glycopeptides from mitotic cells (broken line), and oligosac- 
charides resulting from endo H digestion of these glycopeptides 
(solid line). (b) [3H]mannose-labeled glycopeptides and oligosac- 
charides from G~ cells after digestion with endo H (solid line), and 
glycopeptides from VSV virions labeled with [3H]mannose (broken 
line). V0, void volume. D, position of elution of Glc3MangGlcNAc. 
MsN, MaN, positions of elution of MansGlcNAc and ManaGlcNac 
standards. 
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mitosis with Nocodazole, were pulse-labeled for 60 min with 
[3H]mannose and chased for 60 rain with an excess of unla- 
beled mannose. G protein was isolated from the cells by 
Triton X- 114 extraction, and glycopeptides were prepared by 
proteinase K digestion. The glycopeptides were analyzed by 
gel filtration on Biogel P4 before and after digestion with 
endo H. Those isolated from cells in mitosis were completely 
sensitive to endo H, detected as a decrease in molecular weight 
of [3H]mannose-labeled material on gel filtration after diges- 
tion (Fig. 5 a). In the experiment shown here the major peak 
of endo H-sensitive oligosaccharide eluted in the same posi- 
tion as markers containing eight sugar residues, with minor 
amounts equivalent to those of oligosaccharides containing 
seven and six sugar residues. In similar experiments a peak 
containing nine sugar residues was also often observed. When 
mitotic cells were allowed to enter G~ by removal of Nocod- 
azole during the chase period, endo H-resistant glycopeptides 
were found (Fig. 5 b). That these eluted in the same position 
as glycopeptides prepared from VSV virions confirms that the 
inhibition of oligosaccharide processing in mitotic cells is 
reversible upon entry into G~. The lower molecular weight 
peak that appeared in the G~ extracts after digestion with 
endo H eluted in the same position as an oligosaccharide 
containing at least nine sugar residues, slightly larger than the 
major peak found in mitotic cells. This perhaps indicates that 
some oligosaccharide trimming occurs in mitotic cells during 
the second hour of mitotic arrest, that is, during the chase 
period. 

THE OLIGOSACCHARIDES LACK GLUCOSE RESI- 
DUES: Oligosaccharides containing eight or nine sugar res- 
idues after digestion with endo H would normally result from 
trimming of the three outer glucose residues plus one or two 
mannose residues. Alternatively, one could envisage that in 
mitotic cells aberrant trimming of four or five outer mannose 
residues might also occur, leaving the outer glucose residues 
on the oligosaccharides. To distinguish between these two 
possibilities the endo H-sensitive oligosaccharides were fur- 
ther digested with jack bean a-mannosidase, which can trim 
outer mannose residues but not those blocked by glucose. The 
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Gel  f i l t ra t ion o f  o l igosacchar ides  f r om  VSV- in fec ted ,  mi-  FIGURE 6 
to t i c  C H O  cells a f ter  t r e a t m e n t  w i t h  jack bean  (~-mannosidase.  The 
major peak of endo H-sensitive oligosaccharides from the column 
eluate shown in Fig. 5a was pooled, desalted, and lyophilized 
before digestion with o(-mannosidase and gel filtration on the same 
column as in Fig. 5. Vo, void volume. M1N~, G3M4N1, G3MsN~, 
positions of elution of GIcNAc /~l-4Man disaccharide, GIc3Man4- 
GIcNAc and GIc3MansGIcNAc, derived from a standard curve. M, 
position of elution of [3H]mannose. 

sensitive to endo H (Fig. 8, lane b), whereas the [3H]palmitate 
was only found in the endo H-resistant fraction of the protein 
(Fig. 8, lane a). To show that this band was truly resistant to 
endo H and not the result of incomplete digestion due to the 
presence of fatty acid on the protein, interphase CHO clone 
15B cells, in which oligosaccharides are not processed to the 
complex form, were labeled similarly and treated in parallel 
with endo H. The data shown in Fig. 8, lanes c-f, demonstrate 
that endo H digestion of fatty acylated G protein went to 
completion and that the distribution of 35S- and 3H-labeled G 
protein before and after endo H digestion was similar. In 
interphase CHO cells >90% of [35S]methionine and [3H]- 
palmitic acid were incorporated into endo H-resistant G 
protein under the conditions of the experiment (data not 
shown). We know from labeling with [aH]mannose or [3sS]- 
methionine that G protein in mitotic cells is >90% endo H 
sensitive (Figs. 1 and 5); therefore the simplest interpretation 
of these data is that [3H]palmitic acid is only incorporated 
into G protein in those cells that are not mitotic, due to 
division of mitotic cells as they begin to overcome the Nocod- 
azole block. 

products of the digestion were again analyzed by P4 column 
chomatography (Fig. 6). The major peak obtained was coin- 
cident with [14C]mannose used to calibrate the column, and 
the small peak of slightly higher molecular weight eluted at 
the position calculated for the Man #1--4 GIcNAc disaccha- 
ride, which cannot be hydrolyzed by ~-mannosidase. The 
ratio of counts in these two peaks varied between 1:8.3 and 
1:12.3 in three experiments, somewhat lower than the ex- 
pected ratio of 1:6 or 1:7. The reasons for this are unknown. 
The absence of any species of higher molecular weight, for 
example Glc3Man4GlcNAc or Glc3MansGlcNAc (Fig. 6), im- 
plies that the structure of the endo H-sensitive oligosaccha- 
rides was ManT_sGlcNAc, and that they were processed by 
the ER glucosidases. The oligosaccharides were also trimmed 
by a mannosidase, probably the E R a  1-2 mannosidase that 
normally trims high mannose oligosaccharides from Man9 to 
Mans (Bischoffand Kornfeld, 1983; Atkinson and Lee, 1984). 

It is most unlikely that Nocodazole itself affects oligosac- 
charide processing, since the elution patterns ofglycopeptides 
and oligosaccharides isolated from infected interphase cells 
treated with or without Nocodazole were essentially the same 
(Fig. 7). 

Fatty Acylation of G Protein in Mitotic Cells 

Fatty acylation of O protein probably occurs in the late ER 
or early Golgi complex, at a point before the protein becomes 
resistant to endo H (Schmidt and Schlesinger, 1980). We 
could detect fatty acylation of G protein in mitotic and Gt 
cells only if we used more than 2 mCi [3H]palmitic acid to 
label cells isolated from 10 roller bottles, but, because of the 
time required to handle this number of bottles, we could not 
complete these experiments within the 3 h that guarantees a 
high mitotic index (see Fig. 4). In experiments in which the 
mitotic index ranged from 42-84% at the end of the experi- 
ment, fatty acylation of G protein was observed, but the 
[3H]palmitic acid was always incorporated into the endo H-  
resistant form of G protein. When a preparation of mitotic 
cells was divided in two, and one-half was labeled with [3H]- 
palmitic acid and the other with [35S]methionine under iden- 
tical conditions (Fig. 8), 50% of the 35S-labeled protein was 

Location of G Protein in Mitotic Cells by 
Immunocytochemistry 

Using quantitative i'mmunocytochemistry that employed a 
polyclonal antibody to G protein and protein A conjugated 
to gold, we demonstrated that the surface of mitotic cells, 3 h 
after infection, had 6% of the G protein found on the surface 
of Gl cells treated similarly (Warren et al., 1983). Because 
similar amounts of G protein were synthesized in mitotic and 
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FIGURE 7 Gel filtration of [3H]mannose-labeled glycopeptides 
from infected interphase cells, labeled in the presence or absence 
of Nocodazole. VSV-infected CHO cells were pulse-labeled with 
[3H]mannose for 60 min at 37°C and chased for 60 min with an 
excess of unlabeled mannose. Triton X-114 extracts were digested 
with proteinase K, and the glycopeptides released were digested 
with endo H and analyzed by gel filtration. (a) Cells pulsed and 
chased in the presence of Nocodazole. (b) Cells washed into 
Nocodazole-free medium during the chase period. V0 and D, as in 
Fig. 5. 
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test whether transport between the ER and the Golgi complex 
could occur during mitosis, we took mitotic CHO cells that 
had been infected with VSV for 2.5 h at 37"C, and divided 
them in half. One was fixed immediately, and the other was 
treated with 10 tzg/ml cycloheximide for 30 rain at 37"C 
before fixation and processing for immunocytochemistry as 
before. The density of G protein in the ER of mitotic cells 
was found to be similar before and after treatment with 
cycloheximide (Fig. 9 and Table I, experiment 2), as would 
be predicted if the transport step between the ER and Golgi 
complex was inhibited in mitosis. The small proportion of 
interphase cells in the mitotic preparations served as internal 
controls for the effective inhibition of protein synthesis. This 
is seen most clearly for labeling of the Golgi complex in 
interphase cells. Fig. l0 shows clearly the decrease in G protein 
in the interphase Golgi stacks after treatment with cyclohex- 
imide for 30 rain. 

FIGURE 8 Comparison of [3H]palmitate and [355]methionine label- 
ing of G protein in infected mitotic cells. Mitotic CHO cells isolated 
30 min after infection were labeled for 60 min at 37°C either with 
[3H]palmitic acid (lane a) or with [3SS]methionine (lane b), and 
chased in the presence o f  excess un labe led meth ion ine  and pal- 
mitic acid for 60 min more. Interphase C l i O  c lone 15B cells were 
infected and labeled similarly wi th  [3H]palmit ic acid (lanes c and d) 
or [3SS]methionine (lanes e and f). All samples were  extracted with 
Tr i ton X-114, and the washed detergent  pel lets f rom mitot ic cells 
and half o f  the pel lets f rom interphase cells (lanes a, b, c, and e) 
were  digested wi th endo  H before SDS gel e lect rophores is  and 
f luorography.  Gsand GR, as in Fig. 1. 

G~ cells, the diminished expression on the cell surface implied 
that G protein was retained in intracellular membranes. Al- 
though the ER is partially fragmented in mitotic CHO cells, 
considerable amounts of ER cisternae could be seen in the 
cytoplasm. Because >90% of the gold particles observed could 
be attributed to these ER membranes, we were confident that 
the gold particles we quantitated were representative of most 
of the G protein in the cell. The density of G protein in these 
cisternae, 3 h after infection with VSV, was more than 2.5 
times greater than that found in the ER of G~ cells treated 
similarly but released from Nocodazole after 30 min of infec- 
tion (Table I, experiment 1), which suggests that G protein 
accumulates in the ER during mitosis. 

Small cisternae that might be remnants of the Golgi com- 
plex were occasionally observed in the periphery of mitotic 
cells. These structures did not label above the background 
level, but the highly fragmented nature of the Golgi complex 
in mitosis makes if difficult to quantitate G protein in Golgi- 
derived elements using immunocytochemical techniques. To 

DISCUSSION 

Our observation that transport of the VSV glycoprotein to 
the surface of CHO cells is quite dramatically inhibited during 
mitosis (Warren et al., 1983) is the first example of a physio- 
logical inhibition of membrane protein transport through the 
pathway from ER to the plasma membrane. In this paper we 
have extended this observation by attempting to assess which 
step in the transport pathway is inhibited during mitosis. This 
has been possible by making use of the posttranslational 
modifications ofVSV G protein known to occur as the protein 
passes through the ER and Golgi complex. 

All of the posttranslational processing of G protein that we 
have observed in mitotic cells is consistent with the retention 
of the protein within the ER. We have shown that [35S]- 
methionine-labeled G protein, and [3H]mannose-labeled oli- 
gosaccharides from VSV-infected, mitotic cells are digested 
by endo H. These high mannose oligosaccharides were shown 
to have a ManT_sGlcNAc2 structure. High mannose oligosac- 
charides are transferred en bloc from dolichol phosphate- 
linked precursors to the nascent polypeptide as it is inserted 
into the membrane of the ER (see Hubbard and Ivatt [1981] 
for a review). Very soon after, three glucose residues and one 
outer mannose residue are trimmed from the oligosaccha- 
rides. ER glucosidases (Grinna and Robbins, 1979) and an 
al,2-mannosidase (Bischoff and Kornfeld, 1983) have been 
identified that can perform these trimming reactions. Further 
modifications of G protein oligosaccharides occur in the Golgi 
complex. These include trimming of mannose residues, the 
addition of N-acetylglucosamine, and then further trimming 

TABLE I. Quantitation of G Protein in the ER of Mitotic and G1 
Cells by Immunocytochemistry 

Cyclo-  
Nocoda-  hex imide 

Cell zole chase G Protein* 

Exper iment 1 Mi to t ic  + - 52.4 +-- 5.8 
G1 - - 19.0 +_ 2.7 

Exper iment  2 Mi to t ic  + - 17.4 + 1.6 
Mi to t ic  + + 25.0 _+ 2.2 

* Gold particles per square micrometer of membrane on the micrograph. 
Results are expressed as the mean + SEM of values from 20 micrographs. 
Background, counted as gold particles over mitochondria, was 1.3 +- 0.4- 
1.8 + 0.6 per/~m 2. Gold particles not attributable to ER membranes were 
7% of the total number of particles counted. 
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FIGURE 9 Immunocytochemical  location of G protein in infected mitotic cells. VSV-.infected mitotic CHO cells were incubated 
at 37°C until 2 h after infection. The cells were then halved, one-half was fixed immediately, and the second half was incubated 
for 30 min more in the presence of cycloheximide before fixation. Thin, frozen sections of both were stained with rabbit anti-G 
protein antibody, and then protein A conjugated to 5 nm gold. Labeling of ER in a mitotic cell is shown before (a) and after (b) 
cycloheximide treatment. Arrows, gold particles attributed to ER. Arrowheads, gold particles not attributable to membranes. P, 
plasma membrane. Bar, 100 nm. 
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FIGURE 10 Clearance of G protein from the Golgi complex in interphase cells after treatment with cycloheximide. The samples 
described in the legend to Fig. 9 contained contaminating interphase cells that served as internal controls for the inhibition of 
protein synthesis by cycloheximide. The Golgi stacks in interphase cells in the mitotic cell preparation were heavily labeled 
before treatment with cycloheximide (a), but no labeling was found over similar stacks in cells after treatment with cycloheximide 
(b). C, Golgi stack. Arrow, trans Golgi reticulum. Bar, 100 nm. 

of mannose residues, which renders the structure resistant to 
digestion by endo H. The structure of the oligosaccharides 
isolated from mitotic cells implies that the G protein was 
processed by the ER glucosidases I and II as well as an a 1-2 
mannosidase, probably the ER enzyme. Although usually 
only one outer mannose residue is trimmed in the ER (Atkin- 
son and Lee, 1984), it has been shown that the al-2 mannos- 
idase of rat liver ER has activity in vitro towards high mannose 
oligosaccharides containing from six to nine mannose resi- 
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dues, with preference towards Man9 (Bischoff and Kornfeld, 
1983). In contrast, the Golgi al-2 mannosidase is known to 
trim high mannose oligosaccharides efficiently to Mans. 
Therefore, G protein in mitotic cells probably had access only 
to the ER mannosidase. Similar trimming has been observed 
in other instances in which a glycoprotein was retained within 
the ER; for example, bovine thyroglobulin (Godelaine et al., 
1981) and the Z variant of human plasma a~-antitrypsin 
(Hercz and Harpaz, 1980) accumulate in the rough ER of 



liver with from five to seven mannose residues per oligosac- 
charide chain. 

Although fatty acylation of G protein was always observed 
in mitotic cell preparations, this label was incorporated into 
an endo H-resistant form of G protein. We attribute this 
labeling to contamination of the mitotic cell preparations 
with interphase cells, which could not be avoided for technical 
reasons. This suggests that the G protein that accumulates in 
an endo H-sensitive form in mitotic cells does not become 
fatty acylated, indicating that transport of G protein is inhib- 
ited at a step before the compartment in which fatty acylation 
occurs. The proposed location of this enzyme is based on the 
kinetic relationship of fatty acylation to complex oligosaccha- 
ride formation, endo H-resistant oligosaccharides are con- 
structed in the trans Golgi cisternae (Roth and Berger, 1982), 
and G protein becomes labeled with [3H]palmitic acid 3-6 
min before it acquires resistance to endo H (Schmidt and 
Schlesinger, 1980). This time is very similar to the time taken 
for G protein to move from the cis to the trans side of the 
Golgi stack (Bergmann and Singer, 1983). Therefore, fatty 
acylation appears from this evidence to be a cis Golgi func- 
tion. This is supported by work on Semliki Forest virus- 
infected cells treated with monensin, where the spike glyco- 
proteins become labeled with [3H]palmitic acid in or before 
transport to the medial Golgi cisternae (Quinn et al., 1983). 
If fatty acylation occurs in the cis part of the Golgi stack, our 
data would suggest that the first vesicle-mediated step of 
intracellular transport is inhibited during mitosis. However, 
as the rates of transport through different compartments on 
the pathway are unknown, such a precise morphological 
interpretation of the kinetic evidence may be unjustified. 
Genetic evidence suggests that fatty acylation occurs in the 
ER in yeast secretory mutants blocked in transport between 
the ER and Golgi complex (Wen and Schlesinger, 1984). This 
would be consistent with the kinetic evidence only if the rate 
of transport from the ER to the Golgi complex was relatively 
fast, and if fatty acylation occurred at a late stage after protein 
synthesis, perhaps in the transitional elements of the ER. This 
is supported by the evidence that G protein of the ts045 
mutant of VSV, which accumulates throughout the ER at the 
nonpermissive temperature, is not fatty acylated (Zilberstein 
et al., 1980), which suggests that acylation is not a function 
of the rough ER. If this interpretation is correct, the absence 
of endo H-sensitive, fatty acylated G protein in mitotic cells 
suggests that the rough ER and transitional elements are 
functionally, and possibly also physically, separated during 
mitosis. In this instance we cannot draw any conclusions 
about inhibition of vesicular transport between the ER and 
Golgi complex, and will only be able to do so when the fatty 
acylation enzyme can be located by subeellular fractionation 
using a direct assay such as that described by Berger and 
Schmidt (1984). 

Neither complex oligosaccharide formation (Schlesinger et 
at., 1976; Robertson et al., 1978), trimming by mannosidase 
(Burke et al., 1984), nor fatty acylation (Rose et al., 1984) is 
essential for G protein transport. Our observations therefore, 
could be explained if some processing enzymes performing 
posttranslational modifications were inactivated during mi- 
tosis but transport continued as usual. This seemed unlikely 
since the data presented here showed that the ER glucosidases 
and 1,2-mannosidase were active in mitotic cells. Also, Quin- 
tart et al. (1979) showed galactosyl transferase activity in 
mitotic cell extracts. Because we could not detect mannosidase 

activity in homogenates of interphase or mitotic CHO cells, 
we used quantitative immunocytochemistry as an independ- 
ent method to confirm that G protein accumulated in the ER 
in mitotic cells. The observation that G protein could not be 
chased out of the mitotic ER during incubation with cyclo- 
heximide provides additional evidence that the inhibited step 
of transport occurs before, rather than within, the Golgi 
complex at a point before mannosidase action and endo H 
resistance are conferred. G protein was probably not retained 
in the ER during cycloheximide treatment due to the limited 
capacity of the Golgi cisternae for viral glycoproteins, since 
viral glycoproteins have been shown to accumulate in the 
Golgi of cells infected with a temperature-sensitive mutant of 
Semliki Forest virus, ts7 (Saraste et al., 1980) and in Semliki 
Forest virus-infected cells treated with monensin (Quinn et 
at., 1983). Given the limitations of morphometry, especially 
at early times of infection when labeling density is rather low, 
these results provide good evidence that G protein does not 
leave the ER in mitotic cells. 
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