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Background: The molecular mechanisms of EWS-FLI-mediating target genes

and downstream pathways may provide a new way in the targeted therapy of

Ewing sarcoma. Meanwhile, enhancers transcript non-coding RNAs, known as

enhancer RNAs (eRNAs), which may serve as potential diagnosis markers and

therapeutic targets in Ewing sarcoma.

Materials and methods: Differentially expressed genes (DEGs) were identified

between 85 Ewing sarcoma samples downloaded from the Treehouse

database and 3 normal bone samples downloaded from the Sequence

Read Archive database. Included in DEGs, differentially expressed eRNAs

(DEeRNAs) and target genes corresponding to DEeRNAs (DETGs), as well

as the differentially expressed TFs, were annotated. Then, cell type

identification by estimating relative subsets of known RNA transcripts

(CIBERSORT) was used to infer portions of infiltrating immune cells in

Ewing sarcoma and normal bone samples. To evaluate the prognostic

value of DEeRNAs and immune function, cross validation, independent

prognosis analysis, and Kaplan–Meier survival analysis were implemented

using sarcoma samples from the Cancer Genome Atlas database. Next,

hallmarks of cancer by gene set variation analysis (GSVA) and immune

gene sets by single-sample gene set enrichment analysis (ssGSEA) were

identified to be significantly associated with Ewing sarcoma. After

screening by co-expression analysis, most significant DEeRNAs, DETGs and

DETFs, immune cells, immune gene sets, and hallmarks of cancer were

merged to construct a co-expression regulatory network to eventually
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identify the key DEeRNAs in tumorigenesis of Ewing sarcoma. Moreover,

Connectivity Map Analysis was utilized to identify small molecules targeting

Ewing sarcoma. External validation based on multidimensional online

databases and scRNA-seq analysis were used to verify our key findings.

Results: A six-different-dimension regulatory network was constructed based

on 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells, 24 immune gene sets, and

8 hallmarks of cancer. Four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1)

showed significant co-expression relationships in the network. Connectivity

Map Analysis screened two candidate compounds, MS-275 and pyrvinium, that

might target Ewing sarcoma. PHLDA1 (key DEeRNA) was extensively expressed

in cancer stem cells of Ewing sarcoma, which might play a critical role in the

tumorigenesis of Ewing sarcoma.

Conclusion: PHLDA1 is a key regulator in the tumorigenesis and progression

of Ewing sarcoma. PHLDA1 is directly repressed by EWS/FLI1 protein and

low expression of FOSL2, resulting in the deregulation of FOX proteins and

CC chemokine receptors. The decrease of infiltrating T-lymphocytes and

TNFA signaling may promote tumorigenesis and progression of Ewing

sarcoma.

KEYWORDS

Ewing sarcoma, EWS/FLI, PHLDA1, CC chemokine receptors, infiltrating
T-lymphocytes

Introduction

Ewing sarcoma is an aggressive tumor, which typically affects

bones and soft tissue in children, adolescents, and young adults

(Grunewald et al., 2018). With significant racial disparity, the

overall incidence for Ewing sarcoma is ~1.5 cases per million in

Europe, and the peak age is 15 years old (Jawad et al., 2009).

Ewing sarcoma is also the second common bone cancer

(Ferguson and Turner, 2018) and it usually develops in the

diaphysis of bones and metastasizes to lungs and bones.

Besides, the primary tumor site varies with age, older patients

(20–24 years of age) with a higher proportion of pelvic and axial

primary tumors, metastatic diseases, and worse outcomes

(Worch et al., 2018). Treatment of patients with Ewing

sarcoma includes surgery, chemotherapy, and/or radiation

therapy and so on (Grunewald et al., 2018). Currently, the 5-

year overall survival is 65–75 percent for patients with localized

disease. However, patients with metastatic disease have a strikingly

lower 5-year overall survival of less than 30 percent, and those with

isolated pulmonary metastasis have approximately 50 percent 5-year

overall survival (Gaspar et al., 2015).

Ewing sarcoma is driven by a recurrent t (11; 22) (q24; q12)

chromosomal translocation (Aurias et al., 1984) that results in the

FET–ETS fusions. The most common fusion is EWS–FLI1

(Delattre et al., 1992), which encodes an oncogenic

transcription factor (May et al., 1993), regulating different

target genes (Cidre-Aranaz and Alonso, 2015) governing the

initiation and progression of Ewing sarcoma (Riggi et al., 2014).

Therefore, the molecular mechanisms of EWS-FLI–mediating

target genes and downstream pathways may provide a new way

in the targeted therapy of Ewing sarcoma.

Enhancers are discrete DNA regulatory elements with

specific sequence motifs; they interact with target gene

promoters and then enhance the transcription of target genes

(Blackwood and Kadonaga, 1998). Meanwhile, enhancers also

transcript non-coding RNAs, known as enhancer RNAs (eRNAs)

(Kim et al., 2010). Recent progress have found that the

transcription of active enhancer mostly initiates cell

transcription and 40,000–65,000 eRNAs express in human

cells (Andersson et al., 2014; Arner et al., 2015; Lee et al.,

2020). Besides the direct mechanism, eRNA can also be

elicited by tissue-specific transcription factors (TFs).

Importantly, activation of tumorigenesis often converges to

the destabilization of eRNAs (Zhang et al., 2019; Lee et al.,

2020). However, the functional mechanisms of eRNAs in

Ewing sarcoma are still unknown. We proposed that eRNAs

may serve as potential diagnosis markers and therapeutic targets

in Ewing sarcoma.

In this study, based on an integrated bioinformatics

analysis, differential expressed eRNAs, transcription factors,

hallmark signaling pathways, and immune cells/functions

were identified between Ewing sarcoma samples and

normal bone samples. Moreover, we also constructed a

complete regulatory network to reveal the potential

upstream and downstream mechanisms of further exploring

the prognostic biomarkers and treatment targets, which

provided a basis and reference for the prognostic risk of

Ewing sarcoma tumorigenesis.
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FIGURE 1
Identification of DEGs, DEeRNAs, and DETFs. (A) The DEG analysis between 85 Ewing sarcoma patients and 3 normal samples. (B) The volcano
plot of a total of 4,941 DEGs identified between Ewing sarcoma samples and normal samples. (C) TheGOenrichment analysis of DEGs. (D) The KEGG
enrichment analysis of DEGs. (E) The heatmap of 669 DEeRNAs identified between Ewing sarcoma samples and normal bone samples. (F) The
volcano plot of DEeRNAs. (G) The heatmap of 664DETFs identified between Ewing sarcoma samples and normal bone samples. (H)The volcano
plot of DETFs.
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Materials and methods

Data collection

RNA-sequencing (RNA-seq) data of 85 Ewing sarcoma

samples were downloaded from Treehouse database (https://

treehousegenomics.soe.ucsc.edu/public-data/#datasets), an

RNA database of children’s tumors. RNA-seq data of

3 normal bone samples were downloaded from SRA database

(https://www.ncbi.nlm.nih.gov/sra/). For validation, we also

obtained gene expression profiles of 256 sarcoma samples

from TCGA database (https://tcga-data.nci.nih.gov). Also

single-cell RNA sequencing (scRNA-seq) data of

GSE146221 were downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE146221) to verify our results. Batch effects of

these RNA-seq data were reduced using normalization and

batch-effect correction methods.

Next, the eRNA expression profiles of Ewing sarcoma and

the target gene list corresponding to eRNAs were downloaded

from eRNA in cancer (eRic) database (https://hanlab.uth.edu/

eRic/) (Zhang et al., 2019), which benefits researchers to obtain

eRNA expression profile, as well as the target genes and drug

response of eRNA across TCGA samples. Besides, based on the

gene location in hg38 genome, ChIP seeker package was utilized

to annotate the official gene symbol of each eRNA (Yu et al.,

2015).

Moreover, expression profiles of 318 transcription factors

(TFs) were downloaded from Cistrome database (http://

cistrome.org/) (Zheng et al., 2019). 50 hallmarks of cancer

and 29 immune gene sets were obtained from the Molecular

Signatures Database (MSigDB) (http://software.broadinstitute.

org/gsea/msigdb) (Liberzon et al., 2015). This study was

approved by the Ethics Committee of Tongji University

School of Medicine.

Differential expression analysis

First off, differential expression analysis was conducted to

identify differentially expressed genes (DEGs) between Ewing

sarcoma samples and normal bone samples by utilizing the

Linear Models for Microarray Data (limma) package (Smyth,

2004). Specifically, DEGs were distinguished according to |

Log2 fold-change (FC) | > 1 and false discovery rate (FDR) <
0.05. Also, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were

conducted to reveal the biological function of DEGs.

Likewise, differentially expressed eRNAs (DEeRNAs) and

target genes (DETGs), as well as the differentially

expressed TFs between Ewing sarcoma samples and

normal bone samples were also identified based on the

same criteria.

Construction of prognostic prediction
model in sarcoma

To evaluate the prognostic value of DEeRNAs, we used

sarcoma samples from TCGA database to conduct cross-

validation and independent prognosis analysis. The sarcoma

samples were randomly assigned into training set (156 samples)

and testing set (100 samples). Training set was utilized to construct

the prognostic prediction model, while testing set was utilized to

evaluate the prediction model.

Before constructing the prognostic prediction model, lasso

regression was applied to avoid overfitting. Then, univariate

Cox regression analysis was performed to select DEeRNAs in

relation to prognosis. The DEeRNAs independently

associated with prognosis, screened by multivariate Cox

regression once again, were eventually integrated into the

prognostic prediction model. Thus, the risk score of each

sarcoma sample was calculated according to the following

formula:

Risk Scorei � β1 × gene1 + β2 × gene2 + β3 × gene3 + ...

+ βj × genej.

Among the formula, “i” was the order number of sarcoma

samples, while “j” was the quantity of DEeRNAs in this model.

“β” was the regression coefficient of corresponding DEeRNAs.

Each sarcoma sample was given a risk score, and based on the

mean of risk scores, 256 sarcoma samples was classified as high-

risk group and low-risk group. The same was true in training set

and testing set. Through ranking risk score of each sarcoma

sample, scatter dot plot and heatmap were delineated to display

the survival time and the expression of independent prognostic

factors in high-risk group and low-risk group. Additionally,

receiver operator characteristic (ROC) curve was conducted to

evaluate the efficiency of the predictionmodel. In high-risk group

and low-risk group, function enrichment analysis was also

conducted using GO and KEGG analysis, as well as the

hallmark of cancer gene sets.

Validation of immune clustering among
DEeRNAs

To infer portions of infiltrating immune cells in Ewing

sarcoma and normal bone samples, expression of DEeRNAs

between Ewing sarcoma samples and normal bone samples as

well as the correlation in 8 immune cell types were identified

using cell-type identification by estimating the relative subsets

of RNA transcripts (CIBERSORT). CIBERSORT was

performed with 1,000 permutations, where a

threshold <0.05 was recommended. Also, correlation analysis

was applied to infer the associations between different types of

immune cells.
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To validate the prognostic value of immune proportions,

CIBERSORT was also implemented in 221 sarcoma samples in

TCGA database after removing the missing data. Defined by the

primary gene signature file LM22 of CIBERSORT, 22 types of

immune cells were identified. Through single-sample gene set

enrichment analysis (ssGSEA), the immune infiltration degrees

of 29 types of immune cells were detected using 29 immune gene

sets from MSigDB. Eventually, Kaplan–Meier survival analysis

was utilized to display the correlation between survival and

immune proportions in sarcoma samples.

Identification of differentially expressed
hallmarks of cancer and immune gene sets

Gene Set Variation Analysis (GSVA) (Hanzelmann et al.,

2013) was conducted to detect the expression of hallmarks of

cancer in Ewing sarcoma and normal bone samples. Then,

differential expression patterns of 50 hallmarks of cancer

between Ewing sarcoma and normal bone samples were

determined by differential expression analysis using limma R

package (Smyth, 2004). The immune infiltration degrees of

29 types of immune cells in Ewing sarcoma and normal bone

samples were detected using ssGSEA based on their specific

surface markers (Barbie et al., 2009).

Construction of DEeRNA regulatory
network for Ewing sarcoma oncogenesis

First of all, DEeRNAs and DETGs annotated by eRic

database, as well as DETFs were retrieved from the above

screening. Then, differentially expressed hallmarks of cancer

were quantified as continuous variables by GSVA, and

immune cells and gene sets were separately obtained from

CIBERSORT and ssGSEA. Subsequently, co-expression

analysis was conducted among the aforementioned factors,

which were illustrated in different colors. Purple indicated the

immune cell types by CIBERSORT, blue indicated the hallmarks

of cancer by GSVA, indigo blue indicated the immune gene sets

by ssGSEA, yellow indicated potential upstream DETFs of

DEeRNAs, and pink indicated potential DETGs of DEeRNAs.

The interaction pairs between DEeRNAs and DETFs, DETGs,

immune cell types by CIBERSORT, hallmarks of cancer by

GSVA, and immune gene sets by ssGSEA were utilized to

construct the regulatory network for Ewing sarcoma

oncogenesis. In the network, we set thresholds as cor.

(correlation coefficient) > 0.85 and p < 0.05 between

DEeRNAs and DETGs; cor. > 0.70 and p < 0.05 between

DEeRNAs and DETFs; cor. > 0.50 and p < 0.05 between

DEeRNAs and infiltrating immune cells; cor. > 0.50 and p <
0.05 between DEeRNAs and immune gene sets; cor. > 0.60 and

p < 0.05 between DEeRNAs and hallmarks of cancer. Besides, the

Pearson co-expression analysis was also utilized to estimate the

correlation between the six components in the regulatory

network.

FIGURE 2
Construction of prognostic prediction model in sarcoma. (A)
The differential expression of 13 DEeRNAs in the prognostic
prediction model. (B) The univariate Cox regression analysis of
training set. (C) The multivariate Cox regression analysis of
training set. (D) The summary of clinical information of
256 sarcoma samples in TCGA database. (E) The classification of
sarcoma samples based on the risk score and censor group. (F)
The ROC curves of the prognostic prediction model at 1-year, 2-
years and 3-years (G) The GO analysis of low-risk group and high-
risk group. (H) The KEGG analysis of low-risk group and high-risk
group. (I) The hallmarks of cancer identified by GSVA in low-risk
group and high-risk group.
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Identification of candidate small-
molecule drugs

In the Connectivity Map (CMap) database (https://portals.

broadinstitute.org/cmap/) (Lamb et al., 2006), DEG maps were

utilized to predict the associations between small molecule drugs

and various diseases. The positive score was the same as the

reference gene expression profile, whereas the negative score may

be the opposite. Here, CMap was used to determine small

molecule drugs that may target Ewing sarcoma based on the

expression profiles. Specifically, the database was utilized to

screen enrichment fractions < -0.85 and p < 0.05, and small

molecule drugs with negative scores were considered as

candidate therapeutic molecules.

ATAC-seq validation of key DEeRNAs

Assay for Transposase Accessible Chromatin with high-

throughput sequencing (ATAC-seq) data of key DEeRNAs were

obtained from chromatin accessibility landscape of primary human

cancers (https://gdc.cancer.gov/about-data/publications/ATACseq-

AWG), which were then used to identify the chromatin

accessibility in the location of these DEeRNAs (Corces et al., 2018).

External validation

To further demonstrate the reliability of our findings,

multidimensional external validation was conducted based on

FIGURE 3
CIBERSORT analysis and co-expression analysis. (A) The proportions of 8 immune cells in 85 Ewing sarcoma patients and 3 normal samples
explored by CIBERSORT analysis. (B) The immune infiltration of Ewing sarcoma and normal bone tissues. (C) The co-expression patterns of immune
cells in Ewing sarcoma.
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multiple online databases. First off, the Human Protein Atlas (Uhlen

et al., 2015), cBioportal (Cerami et al., 2012), and Oncomine (Rhodes

et al., 2004) databases were used to compare the expression of

DEeRNAs between normal and pathological tissues. Besides,

Encyclopedia of Cancer Cell Lines (CCLE) (Ghandi et al., 2019)

was used to show the expression ofDEeRNAs across various different

cancer cell lines. Also, Gene Expression Profiling Interactive Analysis

(GEPIA) was a web-based tool to conduct survival analysis of single

gene (Tang et al., 2017; Li et al., 2021).

Moreover, CR Cistrome database (http://cistrome.org/db/#/)

(Wang Q et al., 2014)was applied to elucidate the interaction

between DETFs and DEeRNAs in the chromatin level, based on

chromatin-immunoprecipitation followed by sequencing (ChIP-

seq) for Histone 3 Lysine 27 acetylation (H3K27ac).

Furthermore, eRic database (Zhang et al., 2019) (https://

hanlab.uth.edu/eRic/) was utilized to validate the expression,

clinical relevance, target genes, and drug response of DEeRNAs.

Single-cell RNA sequencing transcriptome
analysis

The single-cell RNA sequencing (scRNA-seq) data of

GSE146221 were downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE146221), which included Ewing sarcoma cell lines

CHLA9, CHLA10, and TC71 (Miller et al., 2020). All data were

integrated by “IntegrateData” function and analyzed by the R

toolkit Seurat (http://satijalab.org/seurat/). Those cells were

extracted for the following analysis which had more than

100,000 transcripts expressing. After the top 2,000 variable

genes were filtered via “vst” method, “FindConservedMarkers,”

and “FindMarkers” function, the marker genes of each cell type

were identified. The MKI67, CD44, CD24, and PROM1, markers

of tumor stem cells, were also utilized to determine the tumor stem

cells. Data dimensionality were reduced by principal component

analysis (PCA) and the top 20 principal components (PCs) were

extracted for the next clustering analysis and Uniform Manifold

Approximation and Projection for Dimension Reduction (UMAP)

analysis. “CellCycleScoring” function and markers of phases were

utilized to visualize the cell cycle stage. At last, “iTALK” package

(Wang et al., 2019) was used to identify the ligand and receptor

pairs in different cell types, and the “edgebundleR” package

(https://github.com/garthtarr/edgebundleR) was used to

visualize the intercellular communication.

Statistical analysis

All statistical analyses of this study were conducted by R

version 3.6.1 and two-tailed p < 0.05 was required for statistical

significance.

Results

Identification of DEGs and functional
enrichment analysis

The analysis process of this study was presented in

Supplementary Figure S1. A total of 4,941 DEGs were

identified between 85 Ewing sarcoma patients and 3 normal

bone samples, the expression of which was illustrated in the

heatmap (Figure 1A). The volcano plot of the DEGs was

illustrated in Figure 1B. GO and KEGG enrichment analyses

were conducted using R’s cluster Profiler software package. The

most significant GO items of biological processes (BPs), cellular

components (CCs), and molecular functions (MFs) were skeletal

system development, extracellular matrix, and positive regulation

of cell migration, respectively (Figure 1C). Cytokine–cytokine

receptor interaction, proteoglycans in cancer, and transcriptional

mis-regulation in cancer were the most critical KEGG pathways,

in which most DEGs were enriched (Figure 1D). Furthermore, a

total of 669 eRNAs were defined as DEeRNAs between Ewing

sarcoma patients and normal bone samples from 5,100 eRNAs,

which were illustrated by the heatmap (Figure 1E) and volcano

plot (Figure 1F). The heatmap and volcano plot of 664 DETFs

identified between Ewing sarcoma patients and normal bone

samples were shown in Figures 1G,H.

Construction of a prognostic prediction
model in sarcoma

To evaluate the prognostic value, we used 256 sarcoma

samples from TCGA database to conduct cross-validation and

independent prognosis analysis. The sarcoma samples were

randomly assigned into training set (156 samples) and testing

set (100 samples). First off, lasso regression was applied to screen

DEeRNAs to avoid overfitting (Supplementary Figures S2A,B).

The univariate Cox regression analysis and multivariate Cox

regression analysis of training set were displayed in Figures

2B,C. Eventually, 13 DEeRNAs significantly related to prognosis

were merged into the prediction model. According to the

computing formula of risk score, the sarcoma samples were

sorted into high-risk group and low-risk group (Supplementary

Figures S2D,E). The differential expression and heatmap of

13 prognostic-related DEeRNAs were illustrated in Figure 2A

and Supplementary Figure S2C. Ranking by the risk score of

each sample, the scatter dot plot, and the distribution curve

were shown in Supplementary Figures S2D,E. The area under

the curve (AUC) of ROC curve was 0.725 in all sets, 0.728 both in

training set and testing set. Also, in all sets, the AUC of ROC curve

was 0.777 at 1-year, 0.733 at 2-years, and 0.768 at 3-years. These

values showed a good predictability of the prognostic prediction

model in sarcoma.
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The function enrichment analysis was also conducted in both

high-risk group and low-risk group. In low-risk group, B cell

activation and some other adaptive immune response gene sets

were enriched in Go analysis; cytokine–cytokine receptor

interaction and toll-like receptor signaling pathway were

enriched in KEGG analysis, representatively, inflammatory

response and myogenesis were enriched in hallmarks of

cancer. In high-risk group, embryonic organ development and

embryonic morphogenesis gene sets were detected by Go

analysis, hedgehog signaling pathway and TGF beta signaling

pathway were detected in KEGG analysis as well as hallmarks of

cancer (Figures 2G–I).

CIBERSORT analysis and co-expression
analysis of Ewing sarcoma

We explored the relationship between DEeRNA expression

and cancer-infiltrating immune cells, and depicted a summary of

the cell compositions in Ewing sarcoma samples and normal

bone samples by CIBERSORT algorithm. The proportions of

8 immune cells in 85 Ewing sarcoma patients and 3 normal

samples were presented by the bar plot, encompassing B cells,

cancer-associated fibroblasts, CD4+ T cells, CD8+ T cells,

endothelial cells, macrophages, NK cells, and uncharacterized

cells (Figure 3A). Compared to normal bone tissues, infiltration

of endothelial cells (p < 0.01) and B cells (p < 0.01) was increased,

whereas infiltration of cancer-associated fibroblasts (p < 0.05),

NK cells (p < 0.05), and CD4+ T cells (p < 0.05) was decreased in

Ewing sarcoma samples, which suggested that these immune cells

had a significantly prognostic value for Ewing sarcoma

(Figure 3B). While, the heatmap showed the co-expression

patterns between CD4+ T cells and CD8+ T cells (R = 0.53);

CD4+ T cells and macrophages (R = 0.51); endothelial cells and

macrophages (R = 0.47); CD8+ T cells and macrophages (R =

0.72), indicating a strong correlation between these immune cells

in Ewing sarcoma (Figure 3C).

Validation of immune clustering in
sarcoma

To validate the prognostic value of immune proportions,

CIBERSORT was also implemented in 221 sarcoma samples in

TCGA database after removing the missing data. The 22 immune

fractions of sarcoma samples were displayed in Figure 4A,

classified by risk score. The immune subtypes of high-risk

group and low risk group sarcoma samples were displayed in

Figure 4B. Specifically, T cells CD8, T cells CD4 memory resting,

and macrophages M2 comprised a large proportion of immune

cells (Figure 4C). On the other hand, 29 immune gene sets were

quantified by ssGSEA, which was displayed in Figure 4D.

Compared to low-risk group, high-risk group had lower

immune function, significant in CCR, check-point, cytolytic

activity, DCs, HLA, inflammation promoting, mast cells,

neutrophils, NK cells, parainflammation, pDCs, T cells, TIL,

Treg, and IFN response. The Kaplan–Meier survival curves below

also typically displayed good correlation between immune

function and survival in sarcoma samples (Figure 4E).

FIGURE 4
Validation of immune clustering in sarcoma. (A) The
22 immune fractions of sarcoma samples identified by
CIBERSORT. (B) The classification of 221 sarcoma samples based
on the risk score and immune subtypes. (C) The 22 immune
fractions of sarcoma samples classified by risk score. (D) The
function score of 29 immune gene sets identified by ssGSEA. (E)
The Kaplan–Meier survival curves of immune gene sets,
representatively.
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Identification of DETFs, differential
hallmarks of cancer, and immune gene
sets

Representatively, the heatmap and volcano plot of 68 DETFs

in Ewing sarcoma samples and normal bone samples were shown

in Figures 5A,B. A total of 21 differential hallmarks of cancer

were identified from 50 hallmark pathways between Ewing

sarcoma samples and normal bone samples, which were

shown in the heatmap and volcano plot (Figures 5C,D).

Besides, the correlation of GSVA score of hallmark pathways

and Ewing sarcoma was investigated (Figure 5E). Immune cell

infiltration status was evaluated using ssGSEA to validate the

associations between the Ewing sarcoma samples and normal

bone samples with tumor immune characteristics. Specifically,

29 immune-related terms, or immune functions, were quantified

in the heatmap to unravel the abundance of diverse immune cell

types in Ewing sarcoma samples and normal bone samples

(Figure 5F).

The network construction and
Connectivity Map Analysis

After the co-expressed analysis, the heatmap showed the

expression of most significant DEeRNAs, DETFs, and DETGs in

Figure 6A. A total of six different dimension regulatory network

was constructed with 17 DEeRNAs, 29 DETFs, 9 DETGs,

5 immune cells by CIBERSORT, 24 immune gene sets by

ssGSEA, and 8 hallmarks of cancer by GSVA, which showed

the potential regulatory relationships across these factors

(Figure 6B). Four key DEeRNAs (CCR1, CD3D, PHLDA1,

and RASD1) showed significant co-expression relationships in

the six different dimension regulatory network. We supposed

that these DEeRNAs may play crucial roles in the tumorigenesis

of Ewing sarcoma. Furthermore, the interaction coefficients

among these components were illustrated by the heatmap by

Pearson correlation analysis (Figure 6C).

The heatmap depicted the enrichment score of each

compound analyzed by CMap in Ewing sarcoma, as well in

other 33 cancer types (Malta et al., 2018). Importantly, MS-275

and pyrvinium with the highest specificity and the lowest p value

were considered as the best compounds that might target Ewing

sarcoma (Figure 6D).

ATAC-seq and external validation

Figure 7 depicted the accessible chromatin sites at the key

DEeRNAs, including CCR1, CD3D, PHLDA1, and RASD1

(Figures 7A–D). Furthermore, we analyzed data from public

databases to assess the prognostic effects of key DEeRNAs and

potential regulatory mechanisms in Ewing sarcoma. Based on the

human protein atlas database, we examined the expression level

of CD3D, MAZ, and PHLDA1 by immunohistochemical (IHC)

staining assay and observed that there was medium expression of

CD3D, MAZ, and PHLDA1 in normal tissue. Representative

IHC images were presented in Supplementary Figure S3. Based

on Oncomine database, we identified that expression of CCR1,

CD3D, MAZ, PHLDA1, and RASD1 was higher in tumor than

that in normal tissue at the pan-cancer level (Supplementary

Figures S4A–E). Additionally, expression of CCR1, CD3D, MAZ,

PHLDA1, and RASD1 in various different tissues was

determined based on CCLE database (Supplementary Figures

S5A–E). Taken together, the expression of CCR1, CD3D,

PHLDA1, and RASD1 in multiple databases were summarized

in Supplementary Table S1. In cBioPortal database, the

correlation of mutation count and overall survival of key

DEeRNAs were shown in Supplementary Figures S6A–E.

Also, the survival analysis of PHLDA1 in GEPIA database was

displayed in Supplementary Figure S6G.

To explore the role of enhancer-specific histone in

modifications of eRNA transcription, ChIP-seq data of

H3K27ac were downloaded and analyzed. The UCSC Genome

Browser tracks showed enrichment of H3K27ac on multiple loci

in the DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1)

(Supplementary Figures S7–S10). Results of external validation

in eRic database showed the specific chromatin localization

and target genes of the four key DEeRNAs (CCR1, CD3D,

PHLDA1, and RASD1), as well as potential drugs that may

target these DEeRNAs in different cancers (Supplementary

Table S2). We further investigated the expression of key

DEeRNAs between tumor and normal samples among

different cancer types and identified that the expression

level of CCR1, CD3D, PHLDA1, and RASD1 was

significantly up-regulated in tumor tissue, as compared

with normal tissue. Additionally, prognostic effect of key

DEeRNAs was displayed between high expression group and

low expression group (Supplementary Figures S11–S14).

Single-cell RNA-seq transcriptome
analysis

Unsupervised clustering clearly identified 12 cell clusters

(Figure 8A, left). By utilizing the expression of differentially

expressed marker genes, we attributed these clusters to

3 Ewing sarcoma cell lines (CHLA9, CHLA10, and TC71)

based on hierarchical similarities (Figure 8A). The heatmap

displayed the up- or down-regulated genes in the 12 clusters

(Figure 8B). The dot plots showed the proportion of cells

expressing tumor stemness-related gene markers (CD44 and

MKI67) and key DEeRNAs (PHLDA1 and RASD1) and their

scaled relative expression level in 12 cell clusters (Figure 8C).

Specifically, MKI67 (a known nuclear marker of proliferation)

was highly expressed in all cell clusters, indicating high cellular
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proliferative activities in these cancer cells. The cell number and

proportions of 3 main cell subtypes were quite diverse among the

12 cell clusters (Figure 8D). As demonstrated in the top DEGs,

specifically cancer stem lineage clusters expressed high levels of

stemness feature genes (MKI67, CD44, CD24, and PROM1) and

key DEeRNAs (PHLDA1 and RASD1) (Figure 9A). The cell cycle

FIGURE 5
Identification of DETFs, differentially expressed hallmarks of cancer, and immune gene sets co-expressed with DEeRNAs. (A) The heatmap of
68 DETFs in Ewing sarcoma samples and normal bone samples. (B) The volcano plot of DETFs. (C) The heatmap of 21 differentially expressed
hallmarks of cancer identified between Ewing sarcoma samples and normal bone samples. (D) The volcano plot of differentially expressed hallmarks
of cancer. (E) The correlation of GSVA score of hallmark pathways and Ewing sarcoma. (F) The heatmap of 29 immune-related terms evaluated
by ssGSEA between the Ewing sarcoma samples and normal bone samples.
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FIGURE 6
The network construction and Connectivity Map Analysis. (A) The heatmap of DEeRNAs, DETFs, and DETGs. (B) The six different dimension
regulatory network, encompassing 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells by CIBERSORT, 24 immune gene sets by ssGSEA, and
8 hallmarks of cancer by GSVA. (C) The cor-expression heatmap of these components above. (D) The CMap analysis of Ewing sarcoma as well as
other 33 cancer types.
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FIGURE 7
ATAC-seq analysis of key DEeRNAs. (A) The accessible chromatin sites of CCR1 analyzed by ATAC-seq. (B) The accessible chromatin sites of
CD3D analyzed by ATAC-seq. (C) The accessible chromatin sites of PHLDA1 analyzed by ATAC-seq. (D)The accessible chromatin sites of
RASD1 analyzed by ATAC-seq.
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distribution of 12 cell clusters was shown in the UMAP plot

(Figure 9B). Cells within cluster 5 were mainly in G2 phase while

cells in cluster 3 were mainly in S phase. The ligand-receptor plot

displayed ligand-receptor pairs among those clusters (Figure 9C).

All these results showed that PHLDA1 and RASD1 (key

DEeRNAs) were extensively expressed in cancer stem cells of

Ewing sarcoma, which were potential targets for tumor

treatment.

FIGURE 8
Single-cell transcriptomic analysis of Ewing sarcoma cell lines. (A) The distribution of 12 clusters in 3 Ewing sarcoma cell lines (CHLA9, CHLA10,
and TC71). (B) Gene co-expression of top 5 genes in clusters. (C) Significantly up- or down-regulated genes in clusters. (D) Cell number and cell
proportion of 12 clusters in 3 cell lines.
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FIGURE 9
The key biomarkers extensively expressed in Ewing sarcoma stem cell. (A) The distribution of marker genes, and MKI67, PHLDA1 and
RASD1 were extensively high expressed in all clusters. (B) The cell cycle distribution and the cell cycle score in 12 clusters. (C) The ligand-receptor
pairs among 12 clusters.
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Discussion

Ewing sarcoma is the second common bone cancer, with

strikingly low 5-year overall survival after metastasis (Gaspar

et al., 2015). Ewing sarcoma is characteristic with a recurrent

chromosomal translocation and the EWS-FLI fusion may

provide a new way in the targeted therapy of Ewing sarcoma

(Cidre-Aranaz and Alonso, 2015). eRNAs are generated during

the transcription of active enhancer (Zhang et al., 2019). In

human cancers, eRNAs are specific to tumor types (Lee et al.,

2020). Various eRNAs have been demonstrated to be

differentially expressed in prostate cancer (Zhao et al., 2016).

In breast cancer cells, estrogen-induced transcription of eRNAs

was identified to be significantly upregulated (Crudele et al.,

2020). Conversely, a recent study showed that expression of

eRNAs was significantly decreased in throat cancer (Zhang et al.,

2019). Collectively, activation of oncogenes or oncogenic

pathways was associated with aberrant generation of eRNAs

in human cancers, and eRNAs may play a broad role in the

pathophysiology of Ewing sarcoma.

To the best of our knowledge, this is the first study to show

DEeRNAs which are potentially engaged in the cellular transition

from the normal cells into malignant cells and their potential

regulatory relationships in Ewing sarcoma. Herein, an integrated

bioinformatics analysis was performed to determine differential

eRNA and target gene expression between Ewing sarcoma and

normal samples. Differentially infiltrating immune cells were

detected by CIBERSORT between Ewing sarcoma samples and

normal bone samples. To verify the prognostic power of

DEeRNAs and immune proportions, we used sarcoma

samples from TCGA database into cross-validation and

independent prognosis analysis, as well as Kaplan–Meier

survival analysis. In addition, we constructed a DEeRNA co-

expressed regulatory network of Ewing sarcoma, encompassing

17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells by

CIBERSORT, 24 immune gene sets by ssGSEA, and

8 hallmarks of cancer by GSVA. Importantly, four DEeRNAs

(CCR1, CD3D, PHLDA1, and RASD1) were considered to have

significant co-expression relationships in the six different

dimension regulatory networks. Moreover, Connectivity Map

Analysis was applied to pursue small molecules targeting Ewing

sarcoma. ATAC-seq data were utilized to provide information on

chromatin accessibility of key DEeRNAs. In the end, external

validation based on multidimensional online databases and

scRNA-seq analysis were used to verify our key findings,

which showed that the screened DEeRNAs play a critical role

in the tumorigenesis of Ewing sarcoma and could be utilized as

important reference markers for future research.

The signal axes of four key eRNAs (CCR1, CD3D, PHLDA1,

and RASD1) were as follows: BATF-CCR1-complemen; BATF-

CD3D-allograft rejection; FOSL2-RASD1-tnfa signaling via

NFKB; and FOSL2-PHLDA1-FOXC1-tnfa signaling via NFKB.

Importantly, signal axis FOSL2-PHLDA1-FOXC1-TNFA

signaling via NFkB was extracted for the subsequent analyses

by theoretical basis and literature review, which will be explained

in detail in the following sections as potential mechanism related

to the tumorigenesis of Ewing sarcoma. The correlation

coefficient between FOSL2 and PHLDA1 was 0.89 (p < 0.001);

between PHLDA1 and FOXC1 was 0.87 (p < 0.001); between

PHLDA1 and TNFA signaling via NFkB was 0.70605164 (p <
0.001). In the interaction and correlation network, PHLDA1 was

also related to cancer-associated fibroblasts (R = 0.67; p < 0.001)

and CCR (R = 0.53; p < 0.001).

In Ewing sarcoma, EWS-FLI fusions encode oncogenic

proteins functioning as a transcription factor regulating

abnormal transcription (Sanchez et al., 2008). Well, a number

of studies have described target genes mediated by EWS/ETS

proteins. In particular, PHLDA1 has been reported to be few

target genes that are directly repressed by the binding of EWS/

FLI1 through meta-analysis and experiments in vitro (Boro et al.,

2012). PHLDA1 (pleckstrin homology-like domain family,

member 1) gene is one of the members of the PHLDA gene

family (Frank et al., 1999), which has been reported to suppress

tumorigenesis (Chen et al., 2018). To be specific, PHLDA1 may

repress tumorigenesis by inducing apoptosis and inhibiting cell

growth (Neef et al., 2002; Chen et al., 2018). In melanoma (Neef

et al., 2002), breast cancer (Nagai et al., 2007), oral cancer

(Coutinho-Camillo et al., 2013), and stomach cancers (Zhao

et al., 2015), the reduced expression of PHLDA1 has already

been described. Moreover, PHLDA1 is not only a tumor

suppressor, but also a new targeted therapy to re-sensitize

drug-resistant cancer cells (Fearon et al., 2018).

FOS-like antigen 2 (FOSL2) is a member of activator protein-

1 (AP-1) transcription factor family (Tulchinsky, 2000), which is

involved in cell proliferation, transformation, and death

(Shaulian and Karin, 2002). FOSL2 plays a key role in bone

development (Bozec et al., 2013). FOSL2 is expressed in stromal

cells of human chondroblastic and osteoblastic osteosarcomas,

and the deficiency of FOSL2 induces a differentiation defect in

osteoblasts both in vivo and in vitro experiments (Bozec et al.,

2010). In addition, FOSL2 has been reported to exert a specific

function of mediating TGF-β pathway in extracellular matrix

(ECM) remodeling (Busnadiego et al., 2013) and in non-small

cell lung cancer (Wang J et al., 2014). In adult T-cell leukemia,

aberrantly expressed FOSL2 has been demonstrated to induce

CCR4 expression MDM2 (Nakayama et al., 2008).

The Forkhead box C1 (FOXC1) is a member of the Forkhead

box (FOX) family, a group of transcription factors and the Fox

family are involved in cellular proliferation, differentiation, and

death (Lehmann et al., 2003). As a consequence, the deregulation

of FOX proteins is able to promote tumorigenesis and cancer

progression (M yatt and Lam, 2007). Recently, FOXC1 is

demonstrated to be a critical transcriptional regulator for the

development and maintenance of hematopoietic stem and

progenitor cells (HSPCs) in bone marrow (Omatsu and

Nagasawa, 2015). FOXC1 is preferentially expressed to
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maintain haematopoietic stem and progenitor cells in the

adipoosteogenic progenitor CAR cells of developing adult

bone marrow (Omatsu et al., 2014). FOXC1 is also able to

inhibit CAR cell differentiation into adipocytes, by

upregulating CXCL12 and stem cell factor (SCF) (Omatsu

et al., 2014). On the other hand, FOXC1 is responsible for

governing quiescence by the nuclear factor of activated T-cells

1 (NFATC1) and BMP signaling in stem cells (Wang et al., 2016).

Similarly, in basal-like breast cancer (BLBC), FOXC1 may

increase cancer stem cell (CSC) properties by cellular

mechanisms (Han et al., 2015).

Tumor necrosis factor alpha (TNF-α) is a cytokine produced
by activated macrophages, T lymphocytes, and natural killer

(NK) cells, and exerts a wide function in cellular apoptosis and

survival, as well as inflammation and immunity. Also, TNF-α is

now used in isolated limb perfusion for treatment of soft tissue

sarcoma (STS) and other large tumors (Eggermont et al., 2003).

Through the activation of nuclear transcription factors, such as

NFkB (nuclear factor kappa B) and AP-1, TNF-α is able to

modulate the expression of a majority of different genes (Schutze

et al., 1992). However, NFkB plays a critical role in preventing cell

death induced by TNF-α (Beg and Baltimore, 1996). Aberrant

NF-kB expression has been described in many human cancers

and tips apoptosis–proliferation balance toward malignant

growth (Lin and Karin, 2003).

CC chemokine receptors include CCR 1-10 and CC

chemokines are ligands to CCR1-10. The movement of

immune cells is driven by CC chemokine receptors and CC

chemokines (Hughes and Nibbs, 2018). In cancer, the expression

of CC chemokine receptors promotes metastasis and may

provide new targets for cancer immunotherapy (Mollica Poeta

et al., 2019). CCR7 mediates lymphocyte migration, and CCR9 is

involved in rare metastases to the small intestine in melanoma

(Zlotnik et al., 2011). In Ewing sarcoma, the expression of CCR5-

ligand, CCL5, is positively related to the number of infiltrating

CD8+ T-lymphocyte and patients with high numbers of

infiltrating T-lymphocytes have an overall survival advantage

(Berghuis et al., 2011).

Signal axis, FOSL2-PHLDA1-FOXC1-TNFA signaling via

NFkB, is first reported to be associated with tumorigenesis and

progression of Ewing sarcoma. All that being said, the limitations

of bioinformatics study are easy to see and unavoidable. First, the

sample size of Ewing sarcoma and normal bone samples in our

study was limited. Although our results were validated by sarcoma

samples, scRNA-seq analysis and multidimensional online

databases, larger sample size and more comprehensive data are

needed to get more reliable and more accurate results. Second, the

direct regulating mechanism of FOSL2-PHLDA1-FOXC1-TNFA

signaling viaNFkB in Ewing sarcoma is unclear. Laboratory-based

experiment and clinical study are tremendously needed to explore

the direct-action mechanism of the signal axis in Ewing sarcoma.

Our hypothesis may just provide a new way for the treatment of

Ewing sarcoma.

Conclusion

In summary, we presume PHLDA1 is a key regulator in the

tumorigenesis and progression of Ewing sarcoma. PHLDA1 is

directly repressed by the binding of EWS/FLI1 protein and low

expression of FOSL2, resulting in the deregulation of FOX proteins

and CC chemokine receptors. T-lymphocytes expressing less CC

chemokine receptors may not migrate to the tumor site. Inhibition

of infiltrating T-lymphocytes and TNFA signaling may promote

tumorigenesis and progression of Ewing sarcoma.
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SUPPLEMENTARY FIGURE S1
The schematic diagram of analytic processing.

SUPPLEMENTARY FIGURE S2
Cross-validation and model diagnosis of sarcoma. (A) Coefficient
curves of variables in the prognostic prediction model. (B) The
correlation between λ and partial likehood deviance. At the variable
number of 13, the partial likehood deviance was lowest. (C) The
heatmap of 13 DEeRNAs in all sets, training set, and testing set. (D) The
scatter dot plot of all sets, training set, and testing set. (E) The

distribution curve of risk score in all sets, training set, and testing set. (F)
The area under the curve (AUC) of ROC curve was 0.725 in all sets,
0.728 both in training set and testing set.

SUPPLEMENTARY FIGURE S3
Human protein atlas database. Themedium expression of CD3D (A), MAZ
(B), and PHLDA1 (C) in normal tissue by immunohistochemical staining
assay.

SUPPLEMENTARY FIGURE S4
Oncomine database. The expression of CCR1 (A), CD3D (B), MAZ (C),
PHLDA1 (D), and RASD1 (E) in tumor and normal tissues at the pan-
cancer level.

SUPPLEMENTARY FIGURE S5
CCLE database. The expression of CCR1 (A), CD3D (B), MAZ (C),
PHLDA1 (D), and RASD1 (E) in various different tissues.

SUPPLEMENTARY FIGURE S6
cBioPortal database and GEPIA database. The correlation of mutation
count of CCR1 (A), CD3D (B), RASD1 (C), PHLDA1 (D), and MAZ (E) and
overall survival. (F) The summary of patients’ clinical information
and genetic alteration of DEeRNAs. (G) The survival analysis of
PHLDA1.

SUPPLEMENTARY FIGURE S7
The ChIP-seq data of CCR1 analyzed by UCSC Genome Browser.

SUPPLEMENTARY FIGURE S8
The ChIP-seq data of CD3D analyzed by UCSC Genome Browser.

SUPPLEMENTARY FIGURE S9
The ChIP-seq data of PHLDA1 analyzed by UCSC Genome Browser.

SUPPLEMENTARY FIGURE S10
The ChIP-seq data of RASD1 analyzed by UCSC Genome Browser.

SUPPLEMENTARY FIGURE S11
The expression and prognostic effect of CCR1 between tumor and
normal samples among different cancer types on eRic database.

SUPPLEMENTARY FIGURE S12
The expression and prognostic effect of CD3D between tumor and
normal samples among different cancer types on eRic database.

SUPPLEMENTARY FIGURE S13
The expression and prognostic effect of PHLDA1 between tumor
and normal samples among different cancer types on eRic
database.

SUPPLEMENTARY FIGURE S14
The expression and prognostic effect of RASD1 between tumor and
normal samples among different cancer types on eRic database.
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