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Introduction. Predicting the aggressiveness of prostate cancer at biopsy is invaluable in making treatment decisions. In this paper
we review the differential expression of genes and microRNAs identified through microarray analysis as potentially useful markers
for prostate cancer prognosis and discuss some of the challenges associated with their development. Methods. A review of the
literature was conducted through Medline. Articles were identified through searches of the following terms: “prostate cancer
AND differential expression”, “prostate cancer prognosis”, and “prostate cancer AND microRNAs”. Results. Though numerous
differentially expressed genes and microRNAs were identified as possible prognostic markers, the significance of several of
these genes is either debated due to conflicting results or is not validated in other study populations. A few of the articles
constructed predictive nomograms using a panel of biomarkers which require further validation. Challenges to the development
of useful markers include different methodology, cancer heterogeneity, and sampling error. These can be overcome by categorizing
prognostic factors into particular gene pathways or by supplementing biopsy information with blood or urine-based biomarkers.
Conclusion. Though biomarkers based on differential expression offer the potential to improve decision making concerning
prostate cancer, further validation of their utility and accuracy at the biopsy level is needed.

1. Introduction

Prostate cancer is estimated to be diagnosed in 241,740 men
in the USA in 2012 [1]. For men in developed countries,
it represents the most common cancer diagnosed in men
and the second most common cause of cancer-specific
mortality [2]. In approximately 90% of those men who
are diagnosed, prostate cancer is in a localized, potentially
curable state [3]. Since PSA screening has been introduced,
the mortality rate of prostate cancer has decreased in part
due to improved treatment [4]. However, as evidenced by a
few large randomized trials of PSA screening, prostate cancer
is overtreated in many instances, subjecting patients to the
morbidity of treatment [5, 6].

In an attempt to reduce treatment morbidity in
patients who otherwise have indolent cancer, clinicians have

developed protocols for active surveillance by which low-
risk patients can be monitored for progression. However,
through limitations in prostate biopsy resulting in sam-
pling error, as many as 33% are reclassified, with the
majority of these occurring on the first repeat biopsy
[7]. By itself Gleason score offers the best predictive
clinical feature of prostate cancer recurrence, progression,
and death. Additionally, pretreatment nomograms such as
the Kattan, CAPRA (cancer of the prostate risk assess-
ment) score, and Stephenson nomograms have aided in
the prediction of prostate cancer aggressiveness [8–10].
With the advent of advanced molecular biology tech-
niques, additional information may be available to more
accurately select patients that would benefit most from
treatment. One of the areas in which molecular techniques
would be particularly helpful is in the characterization
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of biopsy specimens into indolent and aggressive prostate
cancers.

In this paper, we discuss the use of differential mRNA
and microRNA (miRNA) expression profiles obtained from
prostate cancer tissue to improve prostate cancer prognosti-
cation. We will also discuss limitations of these techniques
which include the reproducibility of the expression profiles
themselves, the heterogeneous nature of prostate cancer, and
the sampling error introduced by prostate biopsy.

2. Gene Expression Panels

There are several different genes that have been reported to
be associated with prostate cancer prognosis (Table 1). Often
these genes are identified in individual studies and may have
conflicting results or low sensitivities or specificities. In an
attempt to increase the predictive power of these genes, a
few studies have evaluated the expression of a small group
of genes.

2.1. Small Gene Panels. Using a 4-gene panel that included
PTEN, SMAD4, cyclin D1, and Spp 1, Ding et al. demon-
strated strengthened association with this panel, when added
to PSA [20]. The authors validated the results first in a
group of 79 patients treated at Memorial Sloan Kettering, in
which the C-index (a concordance index which measures the
ability to discriminate between outcomes, where 0.5 is no
discrimination and 1.0 is perfect discrimination) improved
from 0.77 to 0.80, when adding the gene panel to the Gleason
Score. In a second population derived from the Physician’s
Health Study (PHS), the 4-gene panel improved the C-
index when added to Gleason score from 0.716 to 0.816.
These 2 prior cohorts were tested using RNA expression
profiles. A third validation confirmed this improvement
using immunohistochemical staining of tissue microarrays of
prostate cancers from 405 men treated in the PHS.

In another model, TGFβ and IL-7 were included in a
model predicting prostate cancer survival from 44 prostate
cancer specimens [15]. As a cytokine, the altered pathway
of TGFβ can stimulate angiogenesis and suppress immune
infiltration in cancerous cells [36]. Conversely, decreased
IL-7 activity reduces lymphocytic activity in lymphocytes
[37]. Thus, in a multivariate model (which included TGFβ,
IL-7, PSA, and Gleason Score) based on radical prostatec-
tomy specimens, both TGFβ and IL-7 were independently
predictive of prostate cancer survival, with hazard ratios of
10.4 and 0.1, respectively [15]. Furthermore, this 4-variable
model nearly tripled the predictive ability of cancer survival
when compared to PSA and Gleason score alone. However, it
remains to be seen whether this can be duplicated in biopsy
specimens.

Using differential expression detected by microarray
analysis in 102 laser capture microdissected specimens,
38 candidate genes were selected as being differentially
expressed in Gleason 4 and 5 patterns versus Gleason 3
[38]. These 38 genes were used to construct a model in
a case-control series of 157 high-risk patients experiencing
metastasis or death in 5 years of prostatectomy versus

controls that did not progress, matched for Gleason score,
stage, margin status, and PSA. Through univariate and
multivariate analysis a 4-variable model was constructed,
which included topoisomerase-2a, cadherin 10, TMPRSS2
fusion status with ETS family transcription factors, and
aneuploidy, yielding an AUC of 0.81 for the prediction of
progression following prostatectomy.

2.2. Larger Expression Profiles. In contrast to panels that
use only a small number of genes, microarray techniques
allow researchers to identify differences across a number of
genes leading to larger expression profiles which contain
more than 10 genes. In addition to predictive models using
a small number of differentially expressed genes to assess
prostate cancer prognosis, other studies have shown how
larger expression profiles can also be predictive. In a study
of 71 patients undergoing radical prostatectomy, Bibikova et
al. used formalin-fixed, paraffin-embedded prostate cancer
samples to analyze the expression profile of 512 genes [39].
A total of 11 genes were found to be positively correlated
and 5 genes negatively correlated with Gleason score. Using
this 16-gene panel (GEX), it was demonstrated that the GEX
was more predictive of prostate cancer relapse (AUC = 0.73)
versus Gleason score (AUC = 0.65). The GEX was most
predictive in patients with a Gleason score of 7.

In a similar analysis by Markert et al., the expression
profile of a large panel of genes was used to characterize
tumors as stemlike, intermediate, or differentiated. This
panel was combined with TMPRSS2-ERG fusion and PTEN
status to predict the lethality of a prostate cancer [40]. Of
particular importance, this expression panel was developed
in 281 prostate cancers from the Swedish Watchful Waiting
trial, which validates the use of the model to predict patient
prognosis prior to treatment. Stem-like prostate cancers,
which display a stem-cell-like prostate cancer profile along
with inactivation of PTEN and p53, had the worst prognosis.
ERG fusion cancers had an intermediate prognosis as did
an inflammatory signature, while the differentiated group
had the best prognosis. This clustering of expression profiles
correlated with Gleason score, recurrence, progression, and
lethality. One limitation of this model is that it was developed
in a cohort of patients with a higher rate of diagnosis via
TURP specimens. In order to validate this in a cohort of
men primarily diagnosed on biopsy (150 men undergoing
radical prostatectomy at Memorial Sloan Kettering Cancer
Center), Markert et al. confirmed association of this panel
of markers with Gleason score, recurrence, progression, and
lethality.

3. MicroRNA

Since their first description in relation to cancers in 2002
[41], the field of microRNA (miRNA) has rapidly expanded
as potential biomarkers and therapeutic targets. MicroRNAs
are small, functional RNA that can regulate the expression
of mRNA by affecting its translation or degradation. There
is thought to be 1,000 miRNAs in the human genome.
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Table 1: Differentially expressed genes reported to be prognostic for prostate cancer.

Target/function Role in prostate cancer Prognostic role

PTEN [11]
Regulator of PI3K pathway, cell cycle,
tumor suppressor, targets miR21

Decreased invasion, migration
Gleason score, stage, BCR,
metastasis

TMPRSS2-ERG [12, 13]
Trans membrane protease regulated by
androgen receptor, fuses with ETS
transcription factors

Increased tumor genesis, androgen
independence

Diagnosis, androgen
independence

Myc [14] Transcription factor Increased proliferation
Progression, survival, BCR
after radiation

TGF-β [15]
Stops cell proliferation, stimulates
differentiation

Increased cell growth, angiogenesis,
suppress immune cells

Cancer-specific survival

IL-1 [16] Activates NFKβ Increased tumor genesis Progression

IL-6 [17]
Paracrine and anticrime growth
stimulator

Increased proliferation Progression

IL-7 [15] Inhibits TGFβ production
Decreased results in immune
resistance

Cancer-specific survival

CCL-2 [18]
Chemokine stimulates inflammatory
cell chemo taxis

Increased cell growth, invasion,
metastasis

Tumor volume, Gleason
score

NPY [19]
Neurotransmitter, regulates cell
growth via Y1-R

Decreased cell growth, metastasis D’Amico risk group, BCR

SMAD4 [20] Modulates TGFβ family of genes Decreased differentiation, apoptosis BCR and metastasis

Ki-67 [21] Cell cycle regulation Decreased proliferation Gleason score, BCR

P53 [21] Cell cycle regulation Increased differentiation Gleason score, survival

P16 [22]
Regulation of several targets
(CDKN2a, TMS1)

Decreased proliferation Gleason score

P21 [23] Regulates cell growth Decreased proliferation BCR after surgery

BCL2 [24, 25]
Regulates apoptosis, affects caspases,
mitochondria

Increased cell survival
BCR after surgery and
radiation

BAX [26] Proapoptotic; BCL2 gene family Decreased cell survival BCR after radiation

VEGF [27, 28] Angiogenesis Increased invasion
Gleason Score, survival,
BCR

E-cadherin [29]
Intracellular adhesion in presence of
calcium

Decreased invasion, migration
Gleason score, progression,
survival

EZH2 [30, 31]
Targets a methyltransferase; regulates
tissue inhibitors of metalloproteinase

Decreased invasion, migration Gleason score

TRAIL [32] Stromal TRAIL stimulates apoptosis
Decreased stromal expression-cell
survival

Recurrence-free survival

PLA2G7 [33, 34]
Target of ERG, regulates actin
expression

Increased migration and invasion Gleason score, metastasis

Nukeβ [35]
Regulates transcription, inflammation.
Inversely expressed with CD10

Unregulated cell survival BCR after prostatectomy

Identification of miRNA targets is difficult, since typically
only a small portion of the miRNA (6–8 bases) matches
perfectly with the target mRNA regulatory region [42].

Due to their smaller size, miRNAs are very stable in
formalin-fixed tissues [43]. This stability allows them to
be more easily detected in prostate biopsies and serum
or other fluids. Supporting this stability, Xi et al. com-
pared the expression profiles of 40 archived colon cancer
specimens collected as fresh frozen samples versus those
that were collected using formalin-fixed paraffin-embedded
(FFPE) samples [44]. Using locked nucleic acid microarray
analysis, a strong correlation was observed (R2 = 0.89).
Furthermore, using quantitative real-time PCR, they noted

that the expression of miRNA remained stable over time,
despite using samples that were 10 years old. In addition
to being stable during fixation, the analysis of miRNAs
obtained from biopsies must be possible from the small
amounts of RNA obtained from biopsy samples. Mattie
et al. successfully differentiated miRNA expression in fixed
prostate biopsy specimens from a premalignant and normal
prostate specimen, using a linear amplification technique
that allowed detection of this differential expression from a
small amount of RNA [45]. Finally, Nonn et al. found com-
parable expression of miRNA and mRNA in fixed prostate
biopsies with matched fresh frozen radical prostatectomy
specimens [46].
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Table 2: Differentially expressed microRNAs reported to be prognostic for prostate cancer.

Target Role in prostate cancer Prognostic role

MiR-15/16 [47–49]
BCL2, CCDN1, WNT3A, also
fibroblast growth factor-2 in tumor
stroma

Downregulated cell survival,
proliferation, invasion

Indirect: 13q del
progression

MiR-21 [50–52]
Inhibits PTEN, PDCD4, TPM1,
MARCKS

Down regulated invasion and
migration

BCR

MiR-23 [53] Repressed by MYC Down regulated mitochondrial activity

miR-25 [54] Cluster with miR-106b, inhibits PTEN Overexpression tumorigenesis

miR-31 [55] Inhibits radixin Down regulated invasion Gleason

miR-32 [54]
Homologue of miR-25, inhibits Bim,
pro-apoptotic gene

Overexpression cell survival EPE

miR-34 [56, 57] Target of p53
Down regulated P53 mediated
apoptosis disrupted. May affect cancer
stem cells

miR-96 [55] Inhibits hZIP1 Overexpression decrease zinc uptake Gleason

miR-100 [47, 58]
THAP2 regulates cell cycle, SMARCA5
DNA replication, BAZ2A inhibits
DNA replication

Decreased progression
Increased BCR

miR-125b [55] Inhibits BAK1 Inhibits apoptosis Stage

miR-135b [59] Inhibits mismatch repair gene MSH2 Overexpression genomic instability BCR

miR-145 [60–62] Inhibits c-MYC Upregulated or downregulated Gleason

miR-194 [59]
Inhibits de novo methyltransferase
DNMT3a

Overexpression hypomethylation,
genomic instability

BCR

miR-196a [54] HoxB8 Overexpression cell survival EPE

miR-205 [55] Inhibits Laminin 5β3, SIP1, ZEP Downregulation invasion Gleason, stage

miR-221/222 [55]
Inhibit p27, p57, PTEN; stimulated by
NF-κB

Overexpression cell survival and
proliferation

Stage

Several miRNAs have been implicated in the initiation,
progression, and metastasis of prostate cancer (Table 2).
Over 150 miRNAs have been reported to be upregulated or
down-regulated in prostate cancer [43]. The results of some
of these studies require validation as they produce conflicting
results as to whether a particular miRNA is upregulated or
down-regulated, which may depend on the sample collection
or study design. However, some have been reported in several
studies and offer the potential to serve as prognostic markers,
particularly those involved in progression and metastasis.

3.1. Potential Markers Involved in Progression. MiR-21 has
been found to be overexpressed in several cancers including
prostate cancer [63]. In a study of apoptosis and invasiveness
of prostate cancer cell lines, miR-21 was overexpressed
in DU-145 and PC3 (2 less androgen-dependent and
more aggressive cell lines) but not in LNCaP cell lines
(a more androgen-dependent less aggressive cell line). in
activation of miR-21 in the aggressive cell lines made
them more susceptible to apoptosis and decreased cell
motility and invasion [50]. In these cell lines, it was
shown that miR-21 downregulated PDCD4, TPM1, and
MARCKS, which are involved in membrane-actin inter-
actions. Furthermore, miR-21 expression was associated
with poor clinical outcomes in 169 radical prostatectomy

samples [51]. Its expression was associated with stage,
Gleason score, biochemical recurrence, and lymph node
metastasis. In a multivariate model that included PSA, age,
Gleason score, surgical margin, lymph node metastasis,
and pathological stage, miR-21 was significantly associated
with biochemical relapse-free survival (33.9% versus 44.5%).
However, the inclusion of miR-21 in a predictive model with
these var-iables produced only a modest improvement in
AUC (0.701 to 0.714). MiR-21 may also be a suppressor of
PTEN whose inhibition may lead to migration or invasion
[52].

MiR-145 has been shown to be down-regulated in several
tumor types and was associated with tumor size, grade,
and prognosis [64–66]. Chen et al. identified the protein
BNIP3, a repressor of the apoptosis inducing factor gene, as
a target of miR-145 [67]. Using 134 FFPE prostate biopsy
specimens, they noted positive expression of miR-145 in 14%
of prostate cancers with progression versus 46% in cancers
without progression, while the converse was true for its
target BNIP3 (76.6% versus 57.1%). MiR-145 was signifi-
cantly associated with disease-specific and progression-free
survival on Kaplan-Meier analysis. A multivariate analysis
incorporating Gleason score, PSA, and tumor stage showed
that miR-145 was an independent favorable prognostic factor
for progression-free survival (HR = 0.404, CI95% = 0.174–
0.941).
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The cluster miR-15/miR-16 has been shown to be down-
regulated in prostate cancer in several studies [47–49]. Bonci
et al. demonstrate downregulation of miR-15a/miR-16 in
85% of 15 prostate cancer biopsies and 20 prostate cancer
cultures [48]. Increased expression of Bcl2, Ccdn1, WNT3A
was noted in CaP cell lines with decreased miR-15a/mi-16.
These targets are involved in cell survival, proliferation, and
invasion. This microRNA cluster is a particularly attractive
prognostic indicator as it is located on the chromosomal
region of 13q14. While deletions of this chromosomal region
are more commonly seen in metastatic CaP, a proportion of
early cancers demonstrate this deletion, and the frequency of
this deletion correlates with cancer progression from early to
advanced to metastatic stage [68, 69]. Finally, miR15 and 16
may interact with stromal cells that support the tumor, in
which their downregulation allows increased expression of
fibroblast growth factor-2 and its receptor [49].

miR-34a is induced by p53 and can also perform many
of the functions of p53 in its absence [70]. However, the
absence of miR-34a impairs the activity of p53 [56]. Liu et
al. demonstrated that reexpression of miR-34a can directly
inhibit the growth and survival of cancer stem cells in
prostate cancers, cells that are thought to be involved in
progression and metastasis [57]. miR-34a and 34c may
also be involved in androgen receptor-dependent, p53-
mediated apoptosis and its dysregulation may be another
mechanism by which cancer cells can escape androgen
repression [56]. We have shown that loss of miR-34a
expression in prostate cancer specimens is associated with
increased expression of androgen receptor. In our study,
BR-DIM (BioResponse, 3,3′-Diindolylmethane) treatment
for prostate cancer resulted in the demethylation of the
promoter of miR-34a, which inactivates androgen receptor
[71].

3.2. Differential miRNA Expression in Clinical Samples. In a
genomewide expression analysis of miRNAs in 60 prostate
cancers compared with 16 noncancerous sections of these
prostatectomy specimens, 15 miRNAs demonstrated differ-
ential expression in tumors with extraprostatic extension
versus those without [54]. In contrast to other researchers,
Varambally et al. miR-101 was the most consistently overex-
pressed in tumors with extraprostatic extension [72]. Prior
research suggests that it targets EZH2, a master regulator,
that silences the expression of several genes [73]. More
interestingly, miR-32 was also overexpressed, and it was
shown to inhibit Bim, a molecule which stimulates apoptosis
[54].

In a similar study, Schaefer et al. study the mi-RNA
expression profiles of samples from 76 radical prostatec-
tomies and correlated differential expression with clinical
outcome [55]. Using 24 tumors matched to 24 noncancerous
samples, 15 of 470 miRNA probes studied by microarray
analysis showed differential expression, which was then
validated by qRT-PCR in the 76 specimens. MiR-96 cor-
related positively with Gleason score, whereas miR-31 and
205 demonstrated a significant negative correlation with
Gleason score. The miRNAs 125b, 205, and 222 negatively

correlated with tumor stage. Finally, miR96 was a predictor
of recurrence-free survival, in a regression model including
Gleason score and tumor stage (HR = 3.38).

In a third study that analyzed miRNA expression pro-
filing with prostate cancer outcome, 114 miRNA probes
were used via microarray analysis to identify differentially
expressed miRNAs in cancerous versus noncancerous tissue
sections in 40 radical prostatectomy specimens [59]. Among
the 114 miRNAs tested, 5 were downregulated in cancerous
tissues relative to normal tissues (miR-23b, 100, 145, 221, and
222). 11 patients with early biochemical recurrence had 40%
increase in the expression of miR-135b and miR-194, relative
to 11 patients without early recurrence. MiR-135b may target
the mismatch repair gene MsH2 [74], while miR-194 inhibits
the de novo methyltransferase DNMT3a and methyl-binding
protein involved in DNA hypermethylation (the disruption
of which leads to genomic destabilization) [75].

4. Current Challenges to the Development
of Prognostic Markers

4.1. Reproducibility of Prostate Biomarker Findings. Much
of the difficulty in identifying prognostic markers for
patients with prostate cancer stems from the conflicting
findings between studies from different centers. This point
is illustrated in a review article about miRNA expression
profiles in prostate cancer in which the largest 5 series
of miRNA expression profiling were compared [76]. In a
table listing 45 miRNAs discussed in these series, 16 show
discrepancies as to whether they are upregulated or down-
regulated. Additionally, none of the genes are discussed as
being significant through all 5 of these series.

Directly investigating the reproducibility of gene expres-
sion profiles in different populations, Michiels et al. tested
the stability of expression profiles of data from 7 publicly
available expression profile studies in multiple random
validation sets to predict a binary outcome [77]. Using
the 50 genes most highly associated with outcome in each
training set developed through microarray analysis, they
found considerable misclassification across validation sets,
with a minimum rate ranging from 31 to 49%. Moreover,
many of the confidence intervals for these misclassification
rates overlapped 50%, suggesting that in all but 2 of the
studies the expression profiles were no better than chance
alone in predicting outcomes. They also noted that the
misclassification rate decreased with increased size of the
training set.

In order to gain more certainty with gene expression
profiles obtained from microarray analysis, other methods
of correlation need to be considered. Traditional methods
of assessing reproducibility of gene expression profiles count
the number of genes that are consistent between different
datasets and express them as a percentage of the total
genes expressed, termed proportion of overlapping genes,
POG [78]. A recently developed metric to compare two
separate gene expression panels assesses the proportion of
functionally related genes that are shared between each group
rather than shared expression of particular genes. This is
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termed proportion of overlapping genes related (POGR, or
nPOGR, when it is normalized between the two groups).
Though two separate datasets may have very low POG scores,
their nPOGR scores can be very high. In prostate cancer,
for example the consistence scores improved dramatically
when changing the analysis from POG to nPOGR for the
top 10 genes (0.30 to 0.89), 50 genes (0.14 to 0.69), and
top 100 genes (0.15 to 0.66). This method of microarray
interpretation takes into account the functional expression
of a particular cancer, which is more clinically relevant than
the actual genes themselves.

Furthering this concept, Soh et al. developed a different
metric for analyzing microarray analysis which takes into
account the interactions between genes that may appear
functionally separate [79]. This technique, termed Snet (sub
network) of genes, analyzes gene expression as it relates to
networks of genes that are known to interact with each
other. This takes into account that certain genes are affected
by other genes with a certain function, a concept which is
even more biologically realistic. However, one problem with
utilizing these techniques is that potential errors about the
assessment of gene expression profile reproducibility may
arise when the assumptions about a particular gene or gene
interaction is incorrect.

4.2. Overcoming Prostate Cancer Heterogeneity. Another
problem with predicting outcomes of prostate cancer based
on expression profiles is that many prostate cancers vary
in terms of the tumor grade within the same patient. In
an analysis of 115 consecutive prostate cancers, Arora et al.
noted 100 (85%) of prostatectomy specimens had more than
1 focus of tumor [80]. In only 9% of cases did all the tumor
foci identified reflect the overall Gleason grade. It follows,
then, that one would expect heterogeneity of gene expression
between each tumor foci in a single radical prostatectomy
specimen. This would be particularly problematic if one
assumes that multifocal prostate cancer arises from a field
effect scenario, in which the separate tumors are from a
polyclonal origin. However, using high-resolution genome-
wide copy-number analysis, Boyd et al. suggest that even
multifocal prostate cancer can have a monoclonal origin
[81]. In 18 microdissected prostatectomy specimens, 13 cases
were identified as having more than 1 tumor foci and thus
were informative. In these cases, identical genomic copy-
number changes defined by the same breakpoints were
shared by all tumor foci within each individual prostate
cancer case. This suggests that the multifocal prostate cancers
originated from a single tumorigenic event with the resulting
offspring migrating as tumor stem cells throughout the
prostate tissue. Thus, at the level of these progenitor cells,
there may be a high degree of consistency between tumor
foci. The resulting Gleason score heterogeneity then arises
from changes that occur after this migration event. If one
were able to identify expression profiles common to these
progenitors, these profiles would be more consistent across
individual tumor profiles. However, if the later changes are
more prognostically significant, the progenitor expression
profiles may be irrelevant.

Another way in which heterogeneity may be encountered
with gene expression profiling is the complexity of the
tissue within the prostate. Gene expression profiles based on
samples obtained by crude dissection may be contaminated
by neighboring normal prostate epithelial cells, prostate
stroma, and infiltrating lymphocytes. In order to reduce
this contamination, recent studies have used a technique
of laser-captured microdissection of prostate cancer foci,
which allows one to separate the malignant epithelial cells
from the surrounding tissue [46]. This technique also allows
researchers to examine separately the stroma adjacent to
these malignant cells, which may elucidate the role of tumor-
stromal interaction in prostate cancer progression. The
limitation of this technique is that small amounts of RNA are
extracted by this method. This needs to be amplified prior
to analysis, which may introduce error into the expression
profile [82]. Compared with mRNA, miRNAs require less
tissue for analysis making it better suited for this technique,
though both forms of RNA have been successfully obtained
by this method [46].

4.3. Misclassification of Prostate Biopsies. In order for prog-
nostic markers to guide therapeutic decisions, they must
be reliably detected on biopsy specimens. However, it is
known that prostate biopsies can often misclassify tumors
when compared to the corresponding radical prostatectomy
specimen. In a very large, recent study of Gleason upgrading,
7,643 radical prostatectomy specimens were reviewed [7].
Gleason upgrading at radical prostatectomy from Gleason 6
to a higher score occurred 36.4% of the time. Of these, 11.2%
were due to a tertiary pattern, which means that there was
still a 25% rate of upgrading in the primary or secondary
Gleason score.

Similar to the discrepancy incurred by using prostate
biopsies to predict radical prostatectomy Gleason score,
which is likely based on sampling error, one would expect
misclassification of gene expression profiles obtained from
biopsy cores. Nonn et al. compared expression profiles
obtained from frozen tissue radical prostatectomy speci-
mens with that obtained from paraffin-embedded prostate
biopsies, using both mRNA and miRNA profiles [46].
Comparison of the mRNA expression profiles revealed that
10 of 34 (29%) differentially expressed mRNAs detected in
the radical prostatectomy specimens were also detected in
the prostate biopsies. Comparison of the miRNA expression
profiles demonstrate improved consistency 73% of the
miRNAs detected at prostatectomy were also detected in the
biopsy specimens with an 8% false-positive rate.

Another manner by which this sampling error can be
overcome is by utilizing circulating or excreted expression
profiles to supplement those obtained by tissue expression
profiles. For instance, a panel of 5 circulating miRNAs
was found to be predictive of detecting prostate cancer on
prostate biopsy [83]. Another example is the use of urinary
PCA3 to predict prostate cancer prognosis. Urinary PCA3
was associated with tumor volume, positive margins, tumor
stage, and Gleason score [84].
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5. Conclusion

The overtreatment of indolent prostate cancers as well as the
potential misclassification of patients on active surveillance
both warrant the development of biomarkers that can
improve the prediction of prostate cancer outcome at the
time of prostate biopsy. Several studies have demonstrated
the utility of differential expression of mRNA and miRNA in
predicting clinical outcome. These studies require validation
as the findings are often inconsistent between different
series. Additional limitations arise from prostate cancer
heterogeneity and biopsy sampling error. Further research
on these valuable prognostic tools is needed to validate their
reproducibility and accuracy.
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