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Simple Summary: The corpus luteum plays a key role in pregnancy maintenance and estrous cycle
regulation by secreting progesterone. In this study, we investigate the expression and regulation
of lncRNA Hand2os1 in the ovaries. We found Hand2os1 was specifically detected in luteal cells
during the proestrus and estrus phases, and strongly expressed in the corpus luteum on day 4 and
day 18 of pregnancy. Moreover, Hand2os1 regulates the secretion of progesterone in the mouse corpus
luteum by affecting the key rate-limiting enzyme StAR, which suggests it may have an impact on the
maintenance of pregnancy.

Abstract: The corpus luteum plays a key role in pregnancy maintenance and estrous cycle regulation
by secreting progesterone. Hand2os1 is an lncRNA located upstream of Hand2, with which a bidi-
rectional promoter is shared and is involved in the regulation of cardiac development and embryo
implantation in mice. The aim of this study was to investigate the expression and regulation of
Hand2os1 in the ovaries. Here, we used RNAscope to detect differential expression of Hand2os1 in the
ovaries of cycling and pregnant mice. Hand2os1 was specifically detected in luteal cells during the
proestrus and estrus phases, showing its highest expression in the corpus luteum at estrus. Addition-
ally, Hand2os1 was strongly expressed in the corpus luteum on day 4 of pregnancy, but the positive
signal progressively disappeared after day 8, was detected again on day 18, and gradually decreased
after delivery. Hand2os1 significantly promoted the synthesis of progesterone and the expression of
StAR and Cyp11a1. The decreased progesterone levels caused by Hand2os1 interference were rescued
by the overexpression of StAR. Our findings suggest that Hand2os1 may regulate the secretion of
progesterone in the mouse corpus luteum by affecting the key rate-limiting enzyme StAR, which may
have an impact on the maintenance of pregnancy.

Keywords: lncRNA; Hand2os1; mouse; progesterone; corpus luteum

1. Introduction

The corpus luteum (CL) is a gland formed after ovulation with a temporary endocrine
function. The main role of the CL is to secrete progesterone to maintain pregnancy. The CL
can be divided into cyclical and pregnancy CLs. If pregnancy does not occur, the CL will
degenerate into a white body under the action of prostaglandin F2α (PGF2α) and prolactin
(PRL), and then the female animal will enter the next round of the estrus cycle [1–3].
Progesterone (P4), secreted by the CL, plays a crucial role in regulating the estrous cycle
and maintaining pregnancy. Luteal cells utilize steroidogenic acute regulatory protein
(StAR), P450 cholesterol side chain cleavage enzyme (P450scc; encoded by CYP11A1), and
3β-hydroxysteroid dehydrogenase (3β-HSD) to produce progesterone, and this process
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is regulated tightly. [4]. Ovulation occurs with a sudden increase in luteinizing hormone
(LH) levels, followed by luteinization of the granulosa cells (GC), where StAR expression
increases. P450scc then catalyzes the conversion of cholesterol to pregnenolone, which is
further metabolized to progesterone via 3β-HSD. [4–6].

It has been confirmed that lncRNAs can participate in many aspects of gene function
and regulation; they mainly interact with mRNAs, DNA, proteins, and miRNAs, and
regulate genes in multiple ways [7,8]. At present, the roles of lncRNAs in the field of
reproduction have been widely reported, including spermatogenesis, oocyte and embryo
development, follicular development and ovulation, and placenta formation [9–11]. Addi-
tionally, a study found that the lncRNA Neat1 was highly expressed in the CL, and that
severe damage to the CL was observed in nearly half of Neat1 knockout mice studied.
These data suggest that Neat1 may play a role in maintaining ovarian function [12]. More-
over, it was confirmed that StAR and progesterone production is disturbed in the H19KO
mouse model [13]. However, the expression and biological function of lncRNAs in the CL
remain unclear.

Hand2os1 (Uph, also known as HAND2-AS1 in humans) is located upstream of Hand2
and shares a bidirectional promoter with it [14]. Hand2os1 can inhibit the proliferation of
cardiomyocytes by inhibiting the expression of Hand2, thereby reconciling the balance of
cardiomyocyte lineages [15]. Previous studies have shown that the lncRNA Hand2os1 is
involved in the regulation of decidualization of the mouse uteri and that it is regulated
by P4 [16]. To delineate the role of Hand2os1 in the CL, we collected ovaries at different
stages, constructed in vitro and in vivo models of CL formation and degeneration, and
used qRT-PCR and RNAscope to explore further biological functions. Taken together, our
findings elucidate the physiological functions of Hand2os1 in the production of P4 and
provide evidence for antisense lncRNAs in regulating luteal function.

2. Materials and Methods
2.1. Ethics Statement

The methods used in this study were performed in accordance with the guidelines of
the Committee for Ethics on Animal Care and Experiments at Northwest A&F University.
All experimental protocols involving animal subjects had received prior approval from
the Experimental Animal Manage Committee, and the approval license number was
2017ZX08008005.

2.2. Animals, Treatments, and Sample Collection

Adult mice (Kunming strain), 8–10 weeks old, were purchased from the Chengdu
Dashuo Experimental Animal Center (Chengdu, China). Animals were housed under a
12 L:12 D cycle and provided with food and water ad libitum.

Sexually mature mice were selected, and the vaginal smear method and hematoxylin
and eosin (HE) staining were used to further identify the estrus cycle phase. Mice with
different estrus cycle phases (n = 3 for each phase) were selected and sacrificed using the
dislocation method, and ovarian tissue from both sides was collected.

To establish a model of CL formation and degeneration, immature female mice were
divided into two groups at 21 days of age. The experimental group (n = 3) was intraperi-
toneally injected with PMSG (5 IU) and, 48 h later, with hCG (5 IU); the control group
(n = 3) was injected with saline [12]. Mice were sacrificed by cervical dislocation at 0, 24, 48,
72, and 96 h after the second injection, and the ovarian tissues from both sides of the body
were collected.

Sexually mature female mice were mated with fertile male mice of the same breed to
induce pregnancy. Pregnancy was confirmed on days 1 and 4 (day 1 = vaginal congestion
day) by recovering embryos from the fallopian tubes and uterus, respectively. Mice were
killed at 9 a.m. by cervical dislocation on pregnancy days 0 (D0), D1, D2, D4, D8, D11, D14,
and D18 as well as at postpartum days 1 (PD1), PD3, and PD5 (n = 3 each). Ovarian tissue
samples were collected from both sides of the body.
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2.3. Detecting Target RNA via RNAscope

Ovarian tissues were formalin-fixed, paraffin-embedded, and sliced into 5 µm-thick
sections. Target gene expression was detected using a Hand2os1-specific targeting probe
(Advanced Cell Diagnostics, Silicon Valley, CA, USA). Follow the instructions for the
RNAscope® 2.5 HD detection kit (Advanced Cell Diagnostics). Finally, the tissue sections
were counterstained with hematoxylin. Images were acquired using a fluorescence Ni-U
microscope (Nikon, Tokyo, Japan).

2.4. Isolation and Culture of Mouse Luteum Cells

Four-day pregnant mice were sacrificed by cervical dislocation at 9 a.m., and bilat-
eral ovarian tissues were collected under aseptic conditions. After washing with PBS
2–3 times, ophthalmic forceps were used to peel off the CL tissue inlaid in the ovary
under a stereoscope. The CL tissue was incubated with 0.1% collagenase II (Sigma,
St. Louis, MO, USA) for 40 min at 37 ◦C, and digestion was stopped with GibcoDulbecco’s
Modified Eagle Medium: F-12 (DMEM/F12) medium containing 10% serum. Digested
tissues were filtered through a 70 µm filter (Cell Strainer; Millipore, MA, USA) and pre-
cipitated cells were collected [17]. All the cultured cells were maintained in a humidified
incubator at 37 ◦C with 5% CO2. The luteal degeneration model was constructed using
mouse primary luteal cells cultured in medium containing PGF2α (1 µM) for 24 h [18].

2.5. Isolation, Culture, and Luteinization of Mouse Granulosa Cells

Mice in the estrus phase that had been detected by HE staining were killed by cervical
dislocation, and bilateral ovarian tissues were collected under aseptic conditions. In
DMEM/F-12 medium, a needle was used to pierce the follicle on the ovary to release
granulosa cells. The collected solution was filtered through a 70-µm filter (Cell Strainer;
Millipore, MA, USA). The cells were then seeded in DMEM/F12 culture medium with
100 U/mL penicillin, 100 µg/mL streptomycin, and 10% charcoal-treated fetal bovine
serum (FBS; Life Technologies, Carlsbad, CA, USA) at a concentration of 2 × 105 cells/well
in 35-mm dishes. The granulosa cells were treated with 100 ng/mL luteinizing hormone
(LH) to induce luteinization and harvested after 0, 12, and 24 h [19].

2.6. Transfection of Hand2os1 siRNA and Overexpression Vector

Mouse luteal cells (LCs) were transfected either with a Hand2os1 siRNA or negative
control, designed, and synthesized by Gene Pharma Co., Ltd. (Shanghai, China), using
TurboFect Transfection Reagent (Thermo Scientific, Shanghai, China), according to the man-
ufacturer’s instructions. Overexpression experiments were performed using the previously
constructed vector pcDNA3.1-Hand2os1 [16].

2.7. Cell Proliferation Assay

LCs were plated in 96-well plates at a density of 1 × 104 cells/well and treated with
Hand2os1 siRNA and overexpression vector after 24 h of culture. Then, the instructions
of the Cell Counting Kit-8 (Beyotime, Shanghai, China) were followed to conduct the
experiment, using a microplate reader 680 (Bio-Rad Laboratories Inc., Hercules, CA, USA)
to detect the absorbance. All experiments were performed in triplicate.

2.8. P4 Level Detection by ELISA

According to the experimental requirements, the culture supernatants of LCs and
GCs were collected, pretreated by centrifugation at 3000× g at 4 ◦C for 20 min, and
then transferred to a clean centrifuge tube. Conditioned media were collected for the
analysis of P4 content using a P4 ELISA kit according to the manufacturer’s instructions
(Mlbio, Shanghai, China). Absorbance at 450 nm was measured using a microplate reader
680 (Bio-Rad).
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2.9. Cell Apoptosis Assay

LCs were plated into 6-well plates and incubated for 24 h. Apoptosis was assessed
using an Annexin V-FITC/PI Apoptosis Detection Kit (Keygen Biotech, Nanjing, China).
The samples were subjected to flow cytometry using a FACSAria III Cell Sorter (BD Bio-
sciences, San Jose, CA, USA). All data were analyzed using FlowJo X 10.0.7 software
(Palo Alto, CA, USA).

2.10. qRT-PCR Analysis

Total RNA was extracted using TRIzol reagent (Invitrogen, Shanghai, China). RT
was performed using the 5× All-In-One RT Master Mix with the AccuRT Genomic DNA
Removal Kit (Applied Biological Materials, Inc.; Vancouver, BC, Canada). qRT-PCR
was performed using the Eva Green qPCR Master Mix Kit (Vazyme Biotech Co., Ltd.,
Nanjing, China) on a CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories Inc.).
All reactions were conducted in biological triplicates. The primers and temperatures used
are listed in Table 1.

Table 1. Primer sequence for RT-qPCR.

Gene Name/Transcript ID Gene Name/Transcript ID Product Size
(bp)

Hand2 F-GAGAACCCCTACTTCCACGG
R-GACAGGGCCATACTGTAGTCG 71

GAPDH F-TCACTGCCACCCAGAAGA
R-GACGGACACATTGGGGGTAG 185

Handos1 F-GACAGAGTTGGAGATGGGCT
R-GCAAGCACTTTCTCCCACTC 249

StAR F-TAAACTCACTTGGCTGCTCAGTATTG
R-GGTGGTTGGCGAACTCTATCTG 101

Cyp11a1 F-AGGTCCTTCAATGAGATCCCTT
R-TCCCTGTAAATGGGGCCATAC 137

Cyp19a1 F-TGTGTTGACCCTCATGAGACA
R-CTTGACGGATCGTTCATACTTTC 190

2.11. Data Analysis and Statistics

Each experiment was repeated at least 3 times in each group. GraphPad Prism 6
software (GraphPad Software, San Diego, CA, USA)was used for statistical analysis of data,
and one-way ANOVA or independent samples t-test was used for significant difference
analysis. p < 0.05 means significant difference.

3. Results
3.1. Differential Expression of Hand2os1 during the CL Development

To evaluate the physiological functions of Hand2os1 in the CL, RNAscope was first
performed to analyze the spatial distribution of this lncRNA in the ovary during the es-
trus cycle and pregnancy (Figure 1). In all the ovaries studied, Hand2os1 was specifically
expressed in LCs; no positive staining for Hand2os1 was observed in any other cell type.
During the estrous cycle, highly positive staining for Hand2os1 was detected in the cyto-
plasm of LCs during the estrus phase compared to that found during the proestrus phase
(Figure 1A). In contrast, no positive staining for Hand2os1 was observed in the CL during
the diestrus and metestrus phases. During pregnancy, no positive signal for Hand2os1 was
detected in the CL on D1, but Hand2os1 expression was strongly detected in the cytoplasm
of CL cells on D4 and then disappeared from D8 to D14 (Figure 1B). Notably, a strong
Hand2os1 signal peaked again in the nucleus of the LCs during the delivery period (D18).
Then, the expression of Hand2os1 gradually decreased from PD1 to PD3. These results
indicated that Hand2os1 might be involved in CL formation and regression. Surprisingly, no
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positive signal for Hand2os1 was detected in the hCG-induced CL formation and regression
model (Figure 2).
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Figure 1. RNAscope of Hand2os1 expression in the ovary on days 1–18 of pregnancy (D1–D18) and
days 1–5 of postpartum (PD1–PD5). Positive expression results in a brown color. (A) Hand2os1
expression and localization in ovaries during the estrus cycle. (B) Hand2os1 expression in ovaries
during pregnancy. CL, corpus luteum; F, follicle. Scale bar = 50 µm.

3.2. Effects of Hand2os1 on LC Proliferation and Apoptosis

The proliferation of LCs isolated from the CL on D4 of pregnancy was not affected
by silencing or overexpression of Hand2os1 for 24 h (Figure 3A,B). To further analyze the
effect of Hand2os1 during LC degeneration, a model of luteal regression was established by
the addition of PGF2α (1 µM). Flow cytometry results showed that overexpression of the
Hand2os1 gene did not change PGF2α-induced LCs apoptosis (Figure 3C).
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Figure 3. Effects of Hand2os1 on proliferation and apoptosis in mouse LCs collected on day 4 of
pregnancy. (A) The efficiency of Hand2os1 silencing and overexpression were determined using
qRT-PCR 24 h after transfection with si-Hand2os1 and pcDNA3.1-Hand2os1, respectively. GAPDH
was used as the reference gene for normalization. (B) The proliferation of LCs was determined by
CCK-8 assays after silencing or overexpression of Hand2os1 for 24 h. (C) The apoptosis of LCs was
analyzed by FCM after transfection with the Hand2os1 overexpression vector, followed by treatment
with 1 µM PGF2α for 24 h. The data represent the mean ± SEM from three independent experiments.
** p < 0.01 compared with si-NC group, and different number of asterisks on bars indicate significant
differences (p < 0.05).

3.3. The Effect of Hand2os1 on the Formation of the CL

Follicular granulosa cells differentiate into LCs in response to LH stimulation. In this
study, primary granulosa cells were cultured and luteinized by a 100 ng/mL LH treatment.
As shown in Figure 4, the genes encoding the key steroidogenic enzymes StAR and Cyp11a1
were significantly upregulated with increasing LH treatment time (p < 0.05); however,
the expression level of Hand2os1 mRNA was not significantly altered by LH treatment.
Furthermore, StAR and Cyp11a1 mRNA levels were unaffected by Hand2os1 overexpression
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in LH-treated luteinized granulosa cells (Figure 5). ELISA results further confirmed that
Hand2os1 overexpression had no effect on progesterone secretion during granulosa cell
luteinization (Figure 5).
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in LH-induced luteinized granulosa cells. The mRNA levels of (A) StAR and (B) Cyp11a1 were
detected by qRT-PCR in 1 IU/mL LH-treated granulosa cells after transfection with pcDNA3.1-
Hand2os1 for 0, 12, and 24 h. (C) Meanwhile, the concentration of progesterone in the culture
supernatants were determined by ELISA. GAPDH was used as the reference gene for normalization.
The data represent the mean ± SEM from three independent experiments.

3.4. Effect of Hand2os1 on Progesterone Synthesis in LCs

To further explore the role of Hand2os1 in progesterone synthesis, we either silenced
or overexpressed the Hand2os1 gene in cultured primary LCs isolated from the CL of
D4 of pregnancy samples. The results showed that silencing of Hand2os1 significantly
suppressed progesterone production in cultured primary LCs compared to that in control
cells (Figure 6A, p < 0.05). Conversely, Hand2os1 overexpression markedly promoted
progesterone production in cultured primary LCs (Figure 6A, p < 0.05). In addition, the
mRNA levels of the steroidogenic enzymes StAR and Cyp11a1 were significantly decreased
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or increased after the silencing or overexpression, respectively, of the Hand2os1 gene in
cultured primary LCs (Figure 6B,C, p < 0.05).
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Figure 6. Effects of Hand2os1 on progesterone production in LCs. LCs were isolated from the CL
on D4 of pregnancy following transfection with si-Hand2os1 or pcDNA3.1-Hand2os1 for 24 h. Then,
(A) the concentration of progesterone in the culture supernatants was determined by ELISA, and
the expression levels of the steroidogenic enzyme (B) StAR and (C) Cyp11a1 genes were analyzed
by qRT-PCR. GAPDH was used as the reference gene for normalization. The data represent the
mean ± SEM from three independent experiments. * p < 0.05, ** p < 0.01 compared with si-NC group,
and different number of asterisks on bars indicate statistically significant differences (p < 0.05).

To verify the mechanism underlying Hand2os1 regulation of progesterone synthesis
through steroidogenic enzymes, we constructed a StAR overexpression vector and used
it to transfect primary LCs from Hand2os1-silenced mice. As shown in Figure 7A,B, StAR
overexpression did not change Hand2os1 expression in mouse primary LCs, but significantly
upregulated the mRNA expression of StAR inhibited by Hand2os1. Importantly, overex-
pression of StAR significantly increased the progesterone production that was inhibited by
si-Hand2os1 in mouse primary LCs (Figure 7C, p < 0.05).
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Figure 7. Effects of StAR overexpression on the progesterone production inhibited by si-Hand2os1
in LCs. qRT−PCR analyses of (A) StAR and (B) Hand2os1 mRNA levels 24 h after transfection with
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were determined by ELISA. GAPDH was used as the reference gene for normalization. The data
represent the mean ± SEM from three independent experiments. ** p < 0.01 compared with si−NC
group, and different number of asterisks on bars indicate statistically significant differences (p < 0.05).
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4. Discussion

After ovulation, somatic cells gradually differentiate into LCs. Then, the CL develops
into an operational endocrine gland involved in the growth and development of steroid
cells [20]. The main function of the CL is to secrete progesterone, which is required to
preserve pregnancy in most mammalian species. As important regulatory factors, lncRNAs
are involved in the early embryonic development process and in maintaining reproduc-
tive ability, including oocyte maturation, zygotic genome activation, and mitochondrial
function [21–24]. However, there are few reports on the effect of lncRNA on the mainte-
nance of the CL in the ovaries during early pregnancy. Our previous study showed that the
lncRNA Hand2os1 is involved in mouse embryo implantation [16]. In this study, we found
that Hand2os1 was highly expressed in the luteal cells of mice during embryo implanta-
tion and delivery. This is consistent with the results of a previous study, in which some
lncRNAs were found to play a role in embryo implantation and labor through immune
responses [25]. These results suggest that Hand2os1 may be involved in embryo attachment
and delivery mechanisms. In addition, highly positive staining for Hand2os1 was detected
in the CL during the estrous phase. However, through hormone-induced CL formation
and degeneration, no positive staining of Hand2os1 was found in immature mouse ovaries,
indicating that Hand2os1 exists only in sexually mature ovaries.

After pregnancy occurs, the CL secretes hormones such as P4 to participate in the
regulation of implantation and early maintenance of pregnancy [26]. If pregnancy fails or
if the fetus is delivered, the CL regresses normally to start a new reproductive cycle [27].
Therefore, the maintenance and regression of the CL are crucial for pregnancy and the
continuity of the sexual cycle in females. The formation and degeneration of the CL involve
the proliferation and apoptosis of LCs. PGF2α can reduce the concentration of P4 in the
serum and CL. PGF2α may also participate in the induction of CL cell membrane damage
and CL cell apoptosis, leading to the degradation of the CL structure, which involves a
variety of cytokines and immune functions [28]. Previous studies have shown that lncRNA
SRA stimulates mouse granulosa cell growth, changes the cell cycle distribution with
an increase in cyclins D1, E, and B, and inhibits cell apoptosis by upregulating Bcl2 and
downregulating Bax [29,30]. However, our results showed that neither overexpression nor
silencing of Hand2os1 affected the proliferation and apoptosis of LCs. This suggests that
Hand2os1 has no significant effect on CL formation and degeneration.

P4 is a key reproductive hormone in the establishment and maintenance of early
pregnancy, and its synthesis is regulated by many factors [4]. Some lncRNAs, such as
SRA, H19, and Neat1, also play a role in the production of steroid hormones and the
expression of key enzymes [12,31,32]. The main function of the CL is to maintain pregnancy
by secreting P4. In this study, we found that Hand2os1 affects the level of P4 secreted by
LCs during early pregnancy. This result suggests that Hand2os1 may be involved in the
secretion of P4 in LCs. StAR and Cyp11a1 are key enzymes in progesterone synthesis [4].
We inhibited Hand2os1 with a specific siRNA and reduced the expression of the key steroid
genes StAR and Cyp11a1. In contrast, Hand2os1 overexpression enhanced the expression
of StAR and Cyp11a1. In addition, overexpression of StAR rescued the decrease in StAR
and P4 caused by Hand2os1 interference, further showing the effect of Hand2os1 on P4
synthesis and suggesting that it may affect the secretion of P4 through the StAR pathway.
Interestingly, Hand2os1 does not participate in the regulation of key steroid genes (i.e., StAR
and Cyp11a1) during granulosa cell luteinization, implying that its role in different stages
of the reproductive process may be quite different. Hand2os1 is mainly involved in the
regulation of progesterone secretion in CL during estrus and pregnancy.

5. Conclusions

This study characterized the expression of Hand2os1 in different luteal phases. Our
results show that Hand2os1 can participate in the function of progesterone secretion in
mouse CL by affecting the expression of the key rate-limiting enzyme StAR. Accordingly,
this study provides a valuable resource for identifying functional lncRNAs associated with
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the CL and pregnancy. However, the specific molecular mechanism by which Hand2os1 is
involved in the regulation of luteal function requires further study.
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