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Regions of transmodal cortex, in particular the default mode network
(DMN), have historically been argued to serve functions unrelated to
task performance, in part because of associations with naturally occur-
ring periods of off-task thought. In contrast, contemporary views of
the DMN suggest it plays an integrative role in cognition that emerges
from its location at the top of a cortical hierarchy and its relative
isolation from systems directly involved in perception and action. The
combination of these topographical features may allow the DMN to
support abstract representations derived from lower levels in the
hierarchy and so reflect the broader cognitive landscape. To investigate
these contrasting views of DMN function, we sampled experience as
participants performed tasks varying in their working-memory load
while inside an fMRI scanner. We used self-report data to establish
dimensions of thought that describe levels of detail, the relationship
to a task, themodality of thought, and its emotional qualities. We used
representational similarity analysis to examine correspondences be-
tween patterns of neural activity and each dimension of thought. Our
results were inconsistent with a task-negative view of DMN function.
Distinctions between on- and off-task thought were associated with
patterns of consistent neural activity in regions adjacent to unimodal
cortex, including motor and premotor cortex. Detail in ongoing
thought was associated with patterns of activity within the DMN
during periods of working-memory maintenance. These results dem-
onstrate a contribution of the DMN to ongoing cognition extending
beyond task-unrelated processing that can include detailed expe-
riences occurring under active task conditions.
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The functions of regions of transmodal cortex, such as those in
the default mode network (DMN), remain a puzzle (1). They

can deactivate during tasks (2, 3) and increase activity during pe-
riods of off-task thought (4–7)—leading initial accounts to em-
phasize task-negative functions for these regions (8, 9). An
alternative perspective emerges from work showing regions in the
DMN increase activity in tasks when cognition and behavior benefit
from memory, such as when decisions depend on information from
a prior trial (10, 11), when task-relevant stimuli are supported by
long-term memory (12), when participants retrieve a task context
from memory (13), or when participants have encoded the rule
upon which their actions can be based (14). In addition, in condi-
tions when activity in the DMN decreases, such as during more
demanding semantic memory or working-memory tasks, connec-
tivity between this network and task positive systems can increase,
indicating that regions that make up this network continue to make
an important contribution to cognition (15, 16). These recent
studies show the DMN can play a role in task processing and
provide support for alternative accounts that have explored the
functions of this network from a topographical perspective. These
studies show the cortex is organized along a macroscale gradient,
anchored at one end by regions serving primary sensorimotor
functions, and at the other by transmodal regions that make up the
DMN (17, 18). This view suggests neural systems can be understood

along a spectrum, from unimodal systems more directly involved in
acting in the here and now to transmodal association cortex, which
support neural operations less tethered to input (18). The DMN
falls at the most extreme transmodal end of this spectrum (17),
which may enable neural signals within it to integrate signals from
other brain regions, providing top-down predictions to lower levels
in the hierarchy (19, 20). This combination of recent empirical
work, and advances in our understanding of the DMN in the larger
cortical context, cast the functional role of this system in a different
light. These integrative accounts of DMN function suggest its to-
pographic location may enable it to encode relatively abstract
representations by integrating signals from regions lower in the
hierarchy. In this way, it is assumed to support neural contexts that
reflect more integrated patterns of cognition, including those taking
place during a task (17, 21, 22).
In light of this converging evidence for a role of the DMN in

tasks states, we reevaluated the role of this system in ongoing
thought. Our study used experience sampling to explore the
traditional perspective that the DMN is important in the off-task
state, as well as the alternative, that, given the DMN’s role in
memory-guided cognition, this system contributes to ongoing
thought during the active maintenance of task-relevant in-
formation in working memory. Prior studies exploring the neural
basis of patterns of ongoing cognition have combined experience
sampling with measures of neural activity, such as functional
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magnetic resonance imaging (fMRI). These often find DMN ac-
tivity increases when participants classify their thoughts as un-
related to the task being performed (4–7). However, recent
investigations have revealed ongoing thought has a more complex
structure than previously recognized (23–25). This structure can
be captured by dimensional approaches, such as multidimensional
experience sampling (MDES), which describes patterns in expe-
rience derived from multiple features of self-reported data (26).
This technique reveals dimensions that are broadly task negative,
such as off-task thoughts about the self in the future, as well as
components describing emotions, or abstract properties of expe-
rience, such as its level of detail (26–28). In addition, prior studies
combining fMRI with experience sampling often failed to ma-
nipulate the demands of the ongoing task, which may make it more
difficult to identify any role the DMN plays in ongoing thoughts
during active task states.
The current study combines self-reports in conjunction with fMRI,

to reexamine the role of the DMN in ongoing cognition. We used
representational similarity analysis (RSA) (29) to examine relation-
ships between patterns of experience and neural activity. The choice
of RSA was motivated by the sensitivity of this type of technique to
covert psychological states (30, 31). RSA also has the advantage that
it examines similarities between neural patterns and representa-
tional models, rather than absolute levels of activity, removing con-
cerns about baseline activity levels within the DMN (32). In our case,
it allowed us to understand the extent to which the self-reported
dimensions describing ongoing thought are reflected in patterns of
neural activity. To probe the potential role of the DMN in active task
states, we used a task that manipulated whether information must
be maintained in working memory. Task-negative accounts
predict that neural patterns within the DMN should distinguish
whether attention has shifted from the task in hand. Integrative
accounts of the DMN, on the other hand, predict a role in cognition
that reflects relatively abstract representations, and, importantly
does not preclude a role in active task states.

Results
Our first analysis mapped the dimensional structure of the self-
reported data recorded using MDES. We collected data in a large
sample of participants (n = 199) who performed the task in a be-
havioral laboratory (lab) setting and a subset (n = 30) who also
performed the same task within the scanner. Experience-sampling
measures were taken twice in the fMRI scanner and three times in
the behavioral laboratory. We used a set of questions developed in
our prior work that have been validated by comparison with ob-
jective indices, including neural function, task performance, and
pupilometry (23, 26–28). For both the laboratory and scanner, we
collated reports on a trial-by-trial basis (Methods) and used principal
components analysis (PCA) to decompose these data in two sepa-
rate analyses. For both decompositions, scree plots indicated four
components (SI Appendix, Fig. S1). The dimensions produced from
the analysis of each dataset are presented as word clouds in Fig. 1A.
The independent decomposition of different samples revealed
broadly similar patterns of loading. One component (detail) de-
scribes thoughts that are detailed (highest loading “detailed”). A
second component (task unrelated) reflects whether attention was
directed to the task or toward other matters (low loadings on “task”
and high loadings on “self,” “person,” and “future”). Component 3
(modality) reflects a dissociation between thoughts that were “im-
ages” and those that were “words.” A fourth component (emotion)
reflected the emotional quality of ongoing experience, describing
variance from positive to negative. We compared the loadings from
the solutions from the data recorded inside and outside the scanner,
and found the highest similarity for the task-unrelated component,
and the lowest for the emotion component. The correlation be-
tween patterns of experience recorded across the scanner in each
task using the 30 individuals for whom we had both measures
revealed significant correlations between both detail and modality

(SI Appendix, Table S5). These analyses demonstrate the patterns of
thought identified using MDES were stable, whether recorded in-
side or outside of the scanner, and were reasonably consistent when
measured on multiple times in the same individual.
We recorded experience while participants performed blocks of

an easier 0-back, and a more demanding 1-back task, similar to
those used in our prior studies (Fig. 2A). In both conditions, par-
ticipants observed a sequence of trials containing pairs of shapes
(squares, circles, and triangles). During the response period, they
made visuospatial decisions regarding the location of shapes. In
the 0-back blocks, decisions were made using spatial information
presented on screen at the moment when a response was made. In
contrast, in the 1-back blocks decisions were made using spatial
information from the prior trial. During the 1-back task, decisions
depended on which side of the screen the shape was on during the
previous trial. In the 1-back blocks, therefore, participants were
required to maintain task-relevant information in working mem-
ory. A consequence of this manipulation is that when ongoing
cognition is sampled in the 1-back task, it captures periods when
task-relevant information is maintained in working memory, while
the same period in the 0-back task does not require working-
memory maintenance and is more conducive to thinking about
task-unrelated matters (10, 27, 28). At intermittent intervals, when
a target trial could have occurred, participants were instead asked
to provide answers to the experience-sampling questions (Meth-
ods, Fig. 2A, and SI Appendix, Table S2).
We calculated inverse efficiency to characterize task perfor-

mance (Methods) with a smaller score indicating better perfor-
mance. Consistent with expectations, participants performed
worse on the 1-back task: lab, t(198) = 3.1, P = 0.002, 1-backM =
11.5 (SE = 0.32), 0-back M = 10.10 (SE = 0.17); scanner, t(29) =
2.43, P = 0.025, 1-back M = 9.08 (SE = 0.1), 0-back M = 8.69
(SE = 0.2). Consistent with our prior work (10, 27, 28) ongoing
cognition was more focused on information about social and self-
relevant matters, and less about the task: lab, t(198) = 10.6, P <
0.001, 0-back M = 0.03 (SE = 0.04), 1-back M = −0.07 (SE =
0.05); scanner, t(29) = 5.89, P < 0.001, 0-back M = 0.27 (SE =
0.08), 1-back M = −0.20 (SE = 0.10). Inside the scanner, thoughts
in the 1-back task were more often rated as in the form of images,
t(198) = 4.66, P < 0.001, 0-back M = 0.06 (SE = 0.05), 1-back
M = −0.06 (SE = 0.05), and more detailed, t(29) = 2.24, P < 0.05,
1-back M = 0.10 (SE = 0.13), 0-back M = −0.01 (SE = 0.13).
We also conducted a univariate analysis comparing the neural

activity between the two tasks, focusing on the analysis window

Fig. 1. Establishing components of ongoing thought using MDES. Word
clouds describing the loadings on the four components of experience [detail
(D), task unrelated (T), modality (M), and emotion (E)] derived from the data
collected in this experiment. The font size describes the magnitude of the
loading and the color describes the direction. Warm colors reflect positive
loadings and cooler colors reflect negative loadings. On the Right, the Upper
heat map describes the similarity between the structure of the component
profiles across each session. The Lower heat map shows patterns of indi-
vidual variation in the components in the laboratory and in the scanner;
correlation values for these heat maps can be found in SI Appendix, Table S1.

Sormaz et al. PNAS | September 11, 2018 | vol. 115 | no. 37 | 9319

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721259115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721259115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721259115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721259115/-/DCSupplemental


indicated in Fig. 2. This allows a comparison of situations when
task-relevant information must be maintained in working mem-
ory (1-back) and situations when it need not (0-back). Higher
activity was observed in the 0-back task in regions of medial
prefrontal cortex, posterior cingulate cortex/retrosplenial cortex,
as well as regions of lateral/medial occipital cortex. Many of these
correspond to regions within the DMN. In contrast, regions of left
dorsolateral prefrontal cortex, inferior parietal sulcus, and posterior
middle temporal gyrus, as well as the presupplementary motor area
(bilaterally) were more active during the 1-back condition (SI Ap-
pendix, Fig. S3 and Table S1). Many of these are regions of the
frontoparietal network (FPN). Greater activity in FPN regions
during 1-back and higher DMN activity in 0-back were observed in a
prior study using a similar paradigm (10).
Our primary goal was to assess the similarity between patterns of

neural activity and patterns of ongoing thought recorded over the
6 s before the experience-sampling probe. Fig. 2B presents the
workflow for this analysis. Following ref. 17 the brain was divided
into 20 bins based on their percentile location along the principal
gradient. These regions of interest were identified in the analysis
performed in ref. 17. We conducted an RSA (29) in each region
comparing variation in each of the dimensions identified by the
PCA with neural activity (Methods). We assume neural activity over
the analysis period contains information relevant to the experiential
state as reported at the subsequent experience-sampling probe. In
this context, RSA can determine where neural response patterns
corresponds to the dimensions of ongoing thought determined us-
ing PCA. SI Appendix, Fig. S2 presents the distribution of values
used in these analyses in the form of violin plots. Our regions of
interest reflect percentiles along the principle gradient identified by
ref. 17, so if regions of the DMN are important for a particular type
of experience, then similarity between self-reports and neural re-
sponses should be higher close to the transmodal end of the gra-
dient. After calculating the representational similarity for each
region of the gradient for each dimension, we analyzed whether
there were associations on the principal gradient between neural
patterns and different dimensions of thought. We compared the
model fit (correlation coefficient) of each component in each region

to zero, using a sequence of one-tailed t tests. This determines if the
observed association was significantly greater than zero. Before our
analysis, we down-sampled the data to bins graded at every 10% to
minimize the number of comparisons in our analysis. To control our
false positive rate, we performed a Bonferroni correction, control-
ling for each of four dimensions, two tasks, and 10 bins. This yielded
an alpha value of P < 0.00125 (one tailed).
Our analysis sought to determine whether regions along the

principal gradient show associations between the patterns of
neural response and aspects of experience (Figs. 3–5). During
the 1-back task, the degree of task focus, and the level in detail
for experiences were associated with neural patterns at specific
positions along the principal gradient. The extent to which at-
tention was disengaged from the task was associated with pat-
terns in regions close to the unimodal end of the gradient,
corresponding to regions of motor, premotor, and parietal cor-
tex. This indicates regions outside the DMN provide information
on whether patterns of thought are focused on a task or on other
mental content (e.g., social or autobiographical information). In
contrast, the detail in experience was predictable at an intermediate
location along the gradient (percentiles 50–60, indicated in purple
in Fig. 5), which included cortex within temporal parietal junction,
posterior insula, and motor and visual cortex. Importantly, detailed
thought was associated with activity in the most transmodal regions,
corresponding to core DMN (posterior cingulate, lateral temporal
cortex, angular gyrus, and medial prefrontal cortex, indicated in the
palest colors in Fig. 5). These results indicate that neural patterns

Fig. 3. The results of a RSA examining the association between neural ac-
tivity and four dimensions of experience. The word clouds describe the
loadings of items for each principal component, each describing a dimension
of experience. The inflated brains show average RSA model correlation
values, averaged across participants, for each bin of the principal gradient.

Fig. 2. Workflow for a representational similarity analysis examining links
between patterns of neural response along the principle gradient and mo-
mentary changes in experience. (A) The task paradigm used to measure
ongoing thought in the laboratory and the associated patterns of neural
activity. Ongoing experience was measured in a task which alternated be-
tween an easy 0-back task and a more demanding 1-back task. For the
purpose of analysis, we examined neural signals in the 6 s before the
experience-sampling probe or the target. (B) Examining representational
similarity at each point on the principle gradient. We used regions of interest
that correspond to percentile steps along principal gradient from the de-
composition performed by Margulies et al. (17). We used each mask as a
region of interest analysis for a RSA comparing the common variance be-
tween neural patterns with the patterns of self-reported experience on a
trial-by-trial basis. The word clouds represent the loadings of the different
items for each of the patterns of experience.
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within regions of DMN are associated with the level of detail during
working maintenance, suggesting a role in cognition extending be-
yond the off-task state. In the easier 0-back task, we found no as-
sociations with whether experience was directed to the task,
whether it was detailed, or with the emotional tone of the
experience. However, there was an association between the
modality of experience and patterns of neural activity in
the easier 0-back task in bin 7, including ventromedial prefrontal
cortex, lateral prefrontal cortex, superior and middle temporal
sulci, and regions in lateral parietal cortex (indicated in orange
in Fig. 5).

Discussion
Our study reexamined the assumption that neural activity within
the DMN reflects the difference between the presence of an on-
task or an off-task state. We compared a task-negative view of
the DMN with an alternative that it supports representations of

task-relevant information in working memory. Although we
could predict whether attention was directed toward or away
from the task based on patterns of neural activity, the regions in
which this was possible were located relatively close to unimodal
sensorimotor cortex—including motor, premotor, and dorsal
parietal regions. These brain areas serve functions allied to
perception and action. It is possible, therefore, that this associ-
ation represents a role for motor preparation in the on-task state
during the 1-back task, an interpretation supported by prior
studies linking the off-task state to poor motor control (33). We
found that during periods of active working-memory mainte-
nance, activity within the DMN was associated with the level of
detail in ongoing thought. Together, these observations are
problematic for task-negative accounts: regions outside of the
DMN are diagnostic of whether attention is directed away from the
task, and neural activity within this network was associated with
detailed experiences during an active task state. Based on our re-
sults, patterns of activity within the DMN are neither necessary nor
sufficient to determine if attention is directed away from the task.
While our study provides little support for task-negative ac-

counts of the contribution of the DMN to ongoing thought,
several features of our data are consistent with views of this
system as integrating information from regions lower in the
cortical hierarchy to form a representation of the ongoing neu-
rocognitive context (14, 17, 19, 22). Our analysis divided the
brain into a spectrum of regions of interest spanning those in
unimodal regions of cortex (i.e., visual and motor cortex) to re-
gions with more transmodal functions, the most extreme of
which are those in the DMN. In both regions adjacent to
unimodal cortex, and those furthest along this spectrum, neural
activity encoded patterns of detailed thought during periods of
working-memory maintenance. These data are consistent with a
view of DMN function that enables detailed cognitive representa-
tions through interactions with regions lower in a cortical hierarchy.
Importantly, a role for regions in the DMN in detailed experiences
during working memory is consistent with graph theoretical anal-
yses, showing a role for this system in working-memory pro-
cesses (16), and from studies that show that elements of this
network are implicated in specificity (34) or detail (35) during
memory retrieval. It is also consistent with links between indi-
vidual variation in detailed thought to the functional connec-
tivity of hippocampus with posterior cingulate cortex (26).

Fig. 4. Ribbon plots showing model fits plotted at each percentile of the
principal gradient. The inner range of the confidence interval presents the
95% CI; the outer confidence interval describes the 99.5% CI. The regions
indicated by the red asterisk describe regions that show a brain-experience
association after applying the Bonferroni correction.

Fig. 5. Distribution of significant model fits for each experience displayed in the context of the principle gradient. The inflated brains on the Left display the
continuous distribution of the gradient values across the cortical surface down-sampled into the percentile bins used in our analyses. The Right displays the
specific percentiles on the gradient in which associations with each component for one task were identified. The bar graphs show the average correlation
between each component in each task condition in each region of the gradient. The error bars show the 99.5% confidence intervals. The asterisks indicate
situations where the model fit was significantly greater than zero, following Bonferroni correction.
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Our study also found patterns of neural activity in regions
intermediate between unimodal and transmodal regions that
distinguish the modality in which ongoing thought unfolds in the
0-back task. Whether experience was based on verbal or visual
codes was associated with neural patterns at around the 70th
percentile of the principal gradient, marked in orange in Fig. 5. It
is possible that we were able to classify the modality of ongoing
thought in the easier 0-back task because under these conditions,
experience is relatively unconstrained by input. In contrast, in the
1-back condition, participants must encode and maintain visual
information, reducing trial by trial variation in the modality of
ongoing thought, and limiting the ability to identify associations
between experience and neural activity. Notably, within the
temporal lobe the regions of high classification accuracy corre-
sponded to the sulci that surround the middle temporal gyrus,
and, in parietal cortex, to regions that form the boundary around
the angular gyrus. Regions around the 70th percentile of the
gradient encompass some of the regions identified by our prior
task-based study as being sensitive to the modality in which a
stimulus was presented (auditory vs. visual), but not its meaning
(36). A common relationship between task-relevant differences
in modality and dissociations between verbal and visual codes of
ongoing thought provides confidence in our current data. It also
provides converging evidence for contemporary accounts of se-
mantic processing (37–39). These assume regions in the tem-
poral lobe support the progressive integration of neural signal
from peripheral regions on the lateral surface into a central
core that represents information in a more amodal manner. In
this regard, we note that in our current data, regions of cortex
where neural patterns were associated with differences in the
modality of ongoing experience were high, associations with the
level of detail were low (Fig. 4). This partial dissociation sup-
ports the view that within the temporal lobe, modality-specific
information is represented in more peripheral regions than are
more abstract descriptions of experience (such as its level of
detail), which are represented in the transmodal core.
In closing, it is worth considering why prior results linked ac-

tivity in the DMN to off-task thought (4–7). One possibility is
that this pattern emerged because these studies tend to use
simple tasks that often do not vary task demands within an in-
dividual. The absence of such a task manipulation can make
identification of patterns of experience linked to more active task
states challenging (although see ref. 7). In addition, they often
measure experience using only a small number of questions, and
this neglects the heterogeneous nature of ongoing experience
(40). Off-task thought differs from periods of external task focus
in both the process it entails and the content it involves. For
example, our data suggest off-task thoughts include episodic and
social information, because they load on terms like “person” and
“future.” Prior studies have shown that off-task thoughts depend
more upon memory and less upon sensory processing (41) and
they can also have close ties to affect (42, 43). Simplistic binary
classifications of experience into on/off-task states, or any other
dichotomous system, will necessarily confound overlapping aspects
of experience. Our dimensional approach, in contrast, allows mul-
tiple distinct aspects of experience to be identified and shows neural
activity in the DMN is not synonymous with the off-task state.

Methods
Participants.A total of 207 participants (females = 132, age = 20.2, SD = 2.35 y).
Eight participants were excluded from the final analysis for failing to complete
all sessions. A total of 34 participants participated in the scanning session (16 fe-
males). Four participants were excluded from the final analysis (2 fell asleep, 1
withdrew from the second session, and 1 showed movement >1 mm in more than
50%of runs). The studywas carried out in accordancewithin the guidelines of, and
with ethical approval from the York Neuroimaging Centre and the University of
York’s Psychology Department. All participants gave informed consent.

MDES. Experiential content was measured using MDES with a battery of 13
questions (SI Appendix, Table S2). In the scanner, probes occurred six times
per run. Participants had 5 s to respond to each question and in total the
probe question points were of a fixed 65-s duration. In each run, there were
an average of 3 thought probes in the 0-back condition and 3 in the 1-back
condition. In total, we administered a total of 48 probes in the scanner for
each person. In each session (4 fMRI runs × 6 thought probes), an average of
24 (SD = 3.30) MDES probes occurred; in the 0-back condition, an average of
12 (SD = 2.36); and in the 1-back condition, an average of 12 (SD = 2.24). In
the laboratory, MDES probes occurred on a quasirandom basis to minimize
the likelihood of anticipating the probes. There was a 20% chance of a
MDES probe instead of a target with a minimum of 1 probe per condition.

MRI Acquisition. Structural and functional data were acquired using a 3T GE
HDx Excite MRI scanner with an eight-channel phased array head coil (GE)
tuned to 127.4 MHz, at the York Neuroimaging Centre. Structural MRI ac-
quisition was based on a T1-weighted 3D fast spoiled gradient echo sequence
[repetition time (TR) = 7.8 s, echo time (TE) = minimum full, flip angle = 20°,
matrix size = 256 × 256, 176 slices, voxel size = 1.13 × 1.13 × 1 mm]. Func-
tional data were recorded using single-shot 2D gradient echo planar imag-
ing (TR = 3 s, TE = minimum full, flip angle = 90°, matrix size = 64 × 64, 60
slices, voxel size = 3 × 3 × 3 mm3, 180 volumes). A FLAIR scan with the same
orientation as the functional scans was collected to improve coregistration
between scans.

Data Analysis.
Task performance of 0-back and 1-back. In both fMRI and lab tasks, we recorded
mean accuracy and reaction time (RT) for participants in the 0-back and 1-
back experimental conditions (SI Appendix, Table S6). We calculated an in-
verse efficiency score (RT in milliseconds/accuracy in percent correct) for each
participant in which small scores indicate better efficiency/performance (44).
PCA of MDES data. In both experiments, we created a single n-by-n matrix in
which each rowwas aMDES probe and each column was a question. We used
PCA with varimax rotation in SPSS version 24 to reduce the dimensionality of
these data. Scree plots showed that extracting four principal components was
appropriate in both cases (SI Appendix, Fig. S3). The resulting data were used
as regressors of interest at the trial level in the imaging analysis. We also
correlated PCA loadings across task environment (laboratory or scanner) to
test their consistency (Fig. 1). Components were named based on the highest
loading if the component was anchored at one end (i.e., detail). If they were
anchored by two opposing scores (words or images), we named them based
on the distinction these loadings imply (i.e., modality).

fMRI Analysis. Functional and structural data were preprocessed and analyzed
using FMRIB’s Software Library (FSL version 4.1, fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FEAT/) (45). Individual FLAIR and T1-weighted structural brain images were
extracted using brain extraction tool (BET). Structural images were regis-
tered to the MNI-152 template using FMRIB’s linear image registration tool
(FLIRT). The functional data were preprocessed and analyzed using the FMRI
expert analysis tool (FEAT). Individual subject analysis involved: motion
correction using MCFLIRT; slice-timing correction using Fourier space time-
series phase shifting; spatial smoothing using a Gaussian kernel of full
width at half minimum (FWHM) 6 mm; grand-mean intensity normalization
of the entire 4D dataset by a single multiplicative factor; highpass temporal
filtering (Gaussian-weighted least-squares straight line fitting, with sigma =
100 s). Although not always standard in RSA analysis, we chose to smooth our
data for this analysis to increase the signal-to-noise ratio for each neural re-
sponse pattern. This was motivated by the trial-by-trial nature of our com-
parisons which necessarily meant that the data were noisy. Consistent with
prior studies (e.g., ref. 46) we found lower RSA fit correlations with the
nonsmoothed data. We report the results of the nonsmoothed analysis in SI
Appendix, Fig. S4.

First level analyses modeled six explanatory variables (EVs). EV 1 and 2
modeled time periods in which participants completed the 0-back task or 1-
back condition. EV 3–6 modeled the four extracted principal components by
assigning the beta weight of each extracted principal component to each
thought at the trial level. PCA loadings were modeled in a 6-s time window
(the minimum time period between thought probes or targets, labeled as
the analysis window in Fig. 2). Individual participant data were entered
into a higher-level fixed-effect analysis to measure and average neural
response to the six EV’s across all eight functional runs. Following this, for
the univariate task comparison analysis a fixed-effects analysis was per-
formed (FLAME, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). We defined task-
specific neural responses by contrasting z-stat maps for 0-B > 1-B and
1-B > 0-B conditions. These maps were then registered to a high-resolution
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T1-anatomical image and then onto the standard Montreal Neurological In-
stitute (MNI) brain (MNI 152 average template). For these contrasts, following
ref. 47, we first applied a cluster-forming threshold of Z > 3.1 to our analyses.
This corresponds to a P value of >0.01. The resulting spatial maps were whole
brain corrected at P < 0.05 FWE.

RSA. We used a version of RSA (29) to compare patterns of dissimilarity
between neural and experiential data in each scanning session. To create
neural representational dissimilarity matrices (RDMs), the fMRI data were
modeled in the sameway as described in the previous section except individual
thought probe trials were not weighted by principal component weights.
Regions of interest for RSA. We used the same masks as in ref. 17. Regions of
interest masks were created by projecting the cortical surface principal
gradient map to the 2-mm volumetric MNI152 standard space (available at
https://neurovault.org/images/24346/). The volumetric map was then binned
into five-percentile increments and binarized. These are available here:
https://neurovault.org/collections/3192/.
Neural RDMs. Neural RDMs were created separately for the 0-back and 1-back
tasks by first correlating the neural response patterns between each pairwise
combination of thought probes (using pyMVPA version 2), we then converted
these into distance measures (1 − r value) as recommended by Kriegeskorte
et al. (29). Each participant had two neural RDMs per session (one each for 0-
back tasks and 1-back tasks). These RDMs were created based on neural
patterns in each individual’s native echo planar imaging (EPI) brain space for
each of the 20-gradient bins defined by ref. 17.

Principal component RDMs. Principal component RDMs were created in a similar
fashion to the neural RDMs except that they were composed of the repre-
sentational distances between principal component loadings for each pair-
wise combination of thought probes. This was done separately for each
principal component [detail, task unrelated thought (TUT), modality, and
emotion] in the 0- and 1-back conditions. The use of varimax rotation in the
MDES decomposition allowed us to construct four separate models in each
task that were not collinear.
RSA model comparison. We removed the diagonal components of each RDM
and used one-half of the correlation matrix (the duplicated values). We used
Spearman rank correlations (29) between each principal component RDM
model (detail, TUT, modality, and emotion) in each condition (0-back, 1-back)
and each neural RDM in each condition (0- and 1-back thought probes). RDMs
were calculated for each participant and averaged across session, leaving eight
correlation values for each participant: one for each principal component RDM
compared with the neural RDM in that condition. The r values were Fisher
transformed to ensure they fit assumption of normality for significance testing.
Mean RSA model fit scores for each of the 20 bins were z scored and super-
imposed onto the inflated surface of a standard MNI152 brain in Fig. 4.
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