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In this mini review the status, advantages, and disadvantages of large animal modeling of
breast cancer (BC) will be discussed. While most older studies of large animal BC models
utilized canine and feline subjects, more recently there has been interest in development of
porcine BC models, with some early promising results for modeling human disease.
Widely used rodent models of BC were briefly reviewed to give context to the work on the
large animal BC models. Availability of large animal BC models could provide additional
tools for BC research, including availability of human-sized subjects and BC models with
greater biologic relevance.
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BACKGROUND: BREAST CANCER BURDEN

The annual incidence of breast cancer (BC) in women (all ages and races) in the U.S. increased from
0.102% in 1980 to a peak of 0.142% in 1999, and then decreased slightly, plateauing at ~0.131% from
2011-2017 (1). As of 2017, a woman’s lifetime risk of developing BC in the U.S. is 12.9% (1). In 2021,
the estimated number of new BC cases in the U.S. will be 281,550 (15.3% of all new cancer cases),
with 43,600 estimated deaths (~20 per 100,000 in the general population, or 7% of all cancer deaths,
or ~2% of all mortality in the U.S.) (1, 2).

All-stages 5-year survival for BC has improved from 75% in 1975 to 90% in 2016 (1), secondary
to earlier diagnosis and more efficacious therapy (3). However, up to 50% of hormone dependent
(estrogen/progesterone receptor positive or ER/PR+) BC patients acquire resistance under
treatment, and 20% do not even respond to first-line hormone therapies (4). In addition,
dormant ER/PR+ tumor cells can become reactivated and can cause disease relapse (5). Almost
50% of ER/PR+ BC tumors are also positive for Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2),
commonly referred to as HER2/NEU (human epidermal growth factor receptor 2) (6). While
trastuzumab (a monoclonal antibody therapy targeting HER2) is standard treatment for HER2+ BC,
almost all patients with metastatic HER2 + BC eventually develop treatment resistance (7, 8).

Survival with triple-negative BC (TNBC; minimal/nil expression of the estrogen receptor,
progesterone receptor, and HER2), which accounts for 10-20% of all BC (9, 10), is 10, 20, and 30%
lower at stages 2, 3, and 4, respectively, compared to non-TNBC (11). So, there remain a need for
improvedmanagement of both receptor-positive BC and TNBC. The availability of validated, tractable
large animalmodels that faithfully represent both (1) hormone andgrowth factor dependent humanBC
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and (2) TNBC should allow development and testing of
technologies and treatments that would not be possible in murine
models, with resultant data that would be predictive of human
tumor response.
LARGE ANIMAL MODELS OF BC

Justification for and Advantages of a
Large Animal Model of BC
Breast cancer, and TNBC in particular, can be modeled with many
of the murine and other small animal models. However, none of
thesemodels can overcome the limitation of inadequate subject size
of small animals. Development of some diagnostic and
interventional technologies require a human-sized model to
understand how clinically relevant tumor size and tissue
thickness affect the performance of the experimental technology,
such as with three-dimensional scanning or with a tissue-ablation
device. In addition, pharmacokinetic parameters (including
absorption, distribution, metabolism, and excretion) can be vastly
different between a 20 gmouse and a 70 kg patient (12). Testing the
effect of an infused chemical entity (e.g., a novel anti-tumor agent)
in a murine tumor model may result in an inaccurate conclusion
secondary to these pharmacokinetic differences (Figure 1).

With regard to drug distribution, tumor burden in a 20 gram
mouse with a 1-cm tumor is ~400-fold greater (mass:mass) than in
a 70 kg subject with a 2-cm tumor, as diagramed in Figure 1. If the
tumor acts as a sink for a candidate anti-tumor drug, then the
tumor’s ability to decrease the drug’s plasma concentration would
be much greater in the mouse. A consequence of this tumor sink
effect (13) would be a gross underestimation of the drug’s toxicity
from murine data. Alternatively, if the drug penetrates poorly into
dense tumor stroma (14), then testing in a ~1 cm murine tumor
may overestimate the drug’s anti-tumor efficacy, as opposed to
testing in a large (≥4 cm) tumor. These drug distribution issues in
a murine model could be minimized with a large animal model
(e.g., a 70 kg pig) with clinically relevant tumor size. So, a primary
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justification for a large animal BC model would be its ability to
replicate human tumor dimension and human PK parameters.
Other advantages of large animal BC models (and large animal
cancer models in general) have been listed in Table 1.
CURRENT STATUS: LARGE ANIMAL
MODELS

Overview
Most of the older work on large animalmodeling of BChas focused
on feline and canine subjects (Table 2). Of note, non-human
primates (NHPs) have not been commonly utilized in BC or
other cancer research. Recently, developmental work on porcine
BCmodels has emerging,withpromisingdata frombothorthotopic
implantation strategies and genetic editing. The current status of
large animal BC models has been summarized in Table 2.

Feline BC Models
Feline mammary carcinomas (FMCs) are the third most
common type of cancer in cats (35). In utero implantation of
allogeneic mammary cancer cell lines into fetal cats (Felis catus)
produced tumor at the injection site, followed by widespread
metastasis after 6-10 weeks (16, 17). A nude mouse model of
FMC demonstrated metastatic potential (bone, kidney, brain,
lung, and liver; i.e., common sites of metastasis in human breast
cancer) after injection to the primary site (36). Cancer stem cell-
like populations in FMCs can form mammospheres (organoids)
and are tumorigenic, radioresistant, and chemoresistant (18, 19).
Mammospheres can be used a model to study feline breast
cancer. Morphological, histological, and molecular to
similarities between FMCs and human breast cancer have been
described and discussed (15, 20, 21).

Canine BC Models
Similar to cats, canine mammary tumors (CMTs) occur
spontaneously and are the second most common cancer in
FIGURE 1 | Tumor Sink. In this example, murine tumor:body mass ratio is 400x the porcine ratio, even though murine tumor mass is only ~12% that of the porcine
tumor. If a targeted drug preferentially concentrates in the tumor (i.e., tumor sink), then a given drug dose in the mouse may have a relatively high concentration in
the tumor with respect to the plasma. The effect of tumor sink on plasma concentration at the same dose in the pig would be negligible because of the large body
size. Thus, the same dose in the pig would produce a higher plasma concentration, possibly producing greater systemic toxicity than in the mouse.
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dogs (37). Development of CMTs is hormone dependent and
showed dysregulated expression of BRCA1, BRCA2 and TP53
(25–27), analogous to human BC. Transcriptional analysis of
CMTs demonstrated pathways that are active in human cancer,
including those involved with cell cycle regulation, apoptotic
signaling, immune functions, endoplasmic reticulum stress,
angiogenesis, and cell migration (38). Approximately 25% of
the genetic alterations in metastatic CMTs were associated with
human mammary cancer (39). In addition, canine spontaneous
mammary DCIS and invasive cancer shows similar histologic
and molecular characteristics with DCIS and invasive cancer in
humans (40). Spontaneous CMTs also can metastasize to lymph
nodes and lung (22). HER2 overexpression in CMTs is
controversial (41). Benign tumors and mesenchymal tumors
are more prevalent in CMTs; the latter are rare with human
breast cancer (42, 43).

Canine inflammatory BC cells were able to generate tumors in
nude mice both ectopically and orthotopically (23). No
morphological differences in the tumors were noted when
human inflammatory BC cells were injected instead of canine
cancer cells (23). There are several other canine BC cell lines that
were characterized and used in development for BC in nude mice
(44–47). A newly developed canine TNBC cell line, B-CMT, also
showed BC in nude mice after 14 days of orthotopic inoculation
(48). Canine normal mammary tissue and BC tissue were used to
develop organoids, which showed multi lineage potential and
existence of different population of self-renewing stem cells (24).
These canine normal and BC organoids will serve as valuable
models for future research with multiple species.

Non-Human Primate BC Models
Mammary gland tissue from common marmoset and rhesus
macaques have been used in mammosphere culture, and can be
used as an ex vivo model to study breast cancer (28, 29).
However, due to the low incidence of spontaneous tumors,
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long incubation periods, and high costs, non-human primates
have not been commonly used in breast cancer research.

Porcine BC Models
Swine have been used for decades as research subjects in diverse
areas including transplantation, physiology, trauma, toxicology
(49, 50), and recently cancer (30, 51–54). The porcine genome
has been sequenced (55), and annotation is ongoing (56). Gene
editing of pigs and creation of transgenic swine is now fairly
common (52, 53, 57–60); some transgenics [such as the Oncopig
(51)] are commercially available. With respect to breeding, the
porcine gestation period (114 d) is relatively short (goat/sheep/
cow = 150/152/283 d). In regard to pharmacokinetics, the pig has
the most similarity to humans among studied mammals with
respect to the cytochrome P450 enzymes (61, 62). Similar
pharmacokinetic behavior between humans and pigs has been
reported for a number of compounds (63), and pig is recognized
as a model for enabling determinations of in vivo kinetics and
drug metabolism in general (63, 64).

Early post-natal stemcell activity in themammary development
may be reactivated during initiation of human BC (34). RNA
sequencing and immune histochemistry analysis showed that in
neonatal pigs (4-39 days of age) mammary gland gene expression
patterns were similar to that in human BC (34). Investigators have
transformed porcine mammary epithelial cells in vitro with SV40
large T antigen insertion (31) or BRCA1 knockdown (65), with
evidence of tumorigenicity in immunodeficient mice (31). In
addition, a BRCA1 haploinsufficient Yucatan minipig was
generated with somatic cell nuclear transfer (66), but postnatal
survival of clonedpigletswas≤18 days for reasons thatwere unclear
(BRCA1+/–mice are phenotypically normal) (67).

As a proof of principle, our group has transformed porcine
mammary epithelial cells with KRASG12D and TP53R167H, and
produced tumors in xenografted nude mice (32). Our follow-up
work in this area currently is focused on using BC relevant genes
TABLE 2 | Current status of large animal models for BC.

Name Spontaneous
BC

Tumor Cell injection BC Organoid Morphological, histological, and
molecular similarities with human

Genetic model

Feline Yes (15). BC with metastasis (in nude mice and
in feline) (16, 17).

Tumorigenic, Radioresistant,
Chemoresistant (18, 19).

Similar in all (15, 20, 21). Spontaneous model
(15).

Canine Yes, with
metastasis (22).

BC in nude mice (23). Normal and tumor organoids (24). Similar mutations, pathways,
histology (25–27).

Spontaneous model
(22).

NHP Not commonly used as a model. Ex vivo model (28, 29). Not commonly used a model.
Porcine Not known. or

rare (30).
BC in nude mice (31, 32). Normal and transformed organoids

(31, 33).
Similar histology, molecular profiles
(34).

Preliminary, under
development.
February 2022 | Volum
TABLE 1 | Advantages of large animal cancer models.

1 Large animals can be human-sized, with analogous physiology
2 Genotype-phenotype relationships in large animals tend replicate those in humans better than mice do
3 Large animal tumors can have human-relevant mass, stroma, and vasculature
4 Large animal pharmacokinetics can be similar to humans
5 Large animals can undergo serial phlebotomy and multiple survival surgeries
6 Cellular and molecular tools normally reserved for mice are increasingly available for some large animals (e.g., pigs)
7 Medical devices designed for humans (e.g., endoscopes, surgical instruments, CT scanners) can be used on large animals; conversely, devices developed in large

animals can be readily transitioned to humans
e 12 | Article 788038
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in porcine mammary epithelial cells (68–70), to be utilized in an
orthotopic porcine model of TNBC. In addition, our group is
endeavoring to create a transgenic, inducible, restricted model of
mammary ductal neoplasia. To be clear, however, no porcine
model of BC currently exists. The KRAS/TP53 Oncopig (51) is
not a BC model, but rather a “generic” porcine tumor model,
potentially allowing transformation of all cell types. Of note,
KRAS mutation is relatively uncommon (1-2%) in BC (68–70).
Given the recent progress in porcine modeling of pancreatic
cancer by multiple groups (32, 51, 54, 71–76), it is likely that the
best candidate for a large animal BC model will be the pig.

Disadvantages of Using Large Animal
Cancer Models
In order to illustrate the potential disadvantages of using a large
animal model of breast cancer, a comparison of porcine with
murine models is described below. This does reveal a number of
disadvantages with the porcine models, including:

1. Costs. Transgenic pigs are more expensive. Transgenic mice
for BC research generally are 200-300 USD per subject
(Jackson Laboratory), while transgenic pigs (e.g., the
Oncopig) can be in the range of 1-2K USD. Per diem cost
for pigs are generally ~10x the murine per diem at most
institutions. Drug costs are higher in pigs because they
require 100-1,000x the amount of drug used by mice. Labor
costs are higher with pigs because of physical handling
required each time a procedure is done.

2. Husbandry. More than 100-fold mice than pigs can be housed
in the same space, which can limit experimental planning at
most institutions. A Sinclair mini-pig can still reach up to 50 kg
at 1.5 year, so the research facility has to accommodate animals
of this size. The murine gestation period (20 d) is <20% of
porcine gestation period, so crossbreeding ismuch quicker with
mice. A relatively simple maneuver of placing a 20 g mouse
under general anesthesia becomes more complicated when
dealing with a 30-50 kg pig.

3. Tools & Reagents. The availability of antibodies, reagents,
and other species-specific research tools is much greater in
mice compared to pigs, though the availability for pigs has
improved in the past decade.

4. Subject Age. In general, investigators only have access to
young (<1 year) pigs; however, modeling epithelial tumors
with young pigs may not be optimal.

5. Research Community. The number of investigators who
utilize swine in cancer research is still relatively small, so
other investigators may be reluctant to consider porcine
experimentation.

6. Social Issues. Public reaction to swine use in research could
be more negative compared to the reaction against rodent
use. This possibility may demand more investigator effort
devoted to public education.

7. Ethical Issues. On the surface, ethical issues with large
animal research tend to be more complex than with small
animal research. Among large animals, NHPs and dogs
appear to be more protected by ethical standards compared
to pigs in the research environment, but criteria have been
Frontiers in Oncology | www.frontiersin.org 4
difficult to quantify. In general, having strong institutional
oversight of any animal research, with careful, intentional,
and transparent regard for animal welfare, has been the most
valuable consideration in the ethical performance of research
with animal subjects.
OTHER ANIMAL MODELS OF BC

Overview
Rodent models of BC are available in a wide variety of genotypes
and phenotypes, and have been an essential tool in preclinical BC
research for decades. In order to provide historical context and
relevance to the development of large animal BC models, the
status of rodent BC modeling is briefly reviewed below.

Murine BC Models
Commonly utilized murine BC models include chemically
induced, cell-line derived xenograft (CDX), patient derived
xenograft (PDX), humanized CDX and PDX and genetically
engineered murine (GEM) models (77–80).

Polycyclic aromatic hydrocarbons such as 7,12-Dimethylbenz
(a)-anthracene (DMBA) and methylcholanthrene (MC)
compounds have been used in mice to induce BC (81–85).
DMBA has been studied in knockout, hemizygous and SENCAR
(SENsitivity to CARcinogenesis) mice, producing breast tumors
after 3-34 weeks (81–84). MC has produced tumors after 7 months
(85).Cell-linederivedxenograft (CDX)murinemodels arebasedoff
the transplantation of human cell lines into immunocompromised
animals (86, 87). However, a major limitation associated with these
models is the lackof a functional host immune system,whichmeans
that CDX tumors do not undergo any appreciative immunoediting
(88, 89). They also have reduced intra-tumoral heterogeneitywhich
does not optimally represent a human breast tumor (86). In
addition, CDX tumors are frequently derived from highly
aggressive malignant tumors or pleural effusions and thus are less
useful in studying the early stages of disease (86).

PDX BC models, which involve the transplantation of
fragmented primary human tumor into immune deficient mice,
have been shown to conserve ER, PR, and HER2 expression,
particularly when grafted directly into mammary ducts (90, 91),
and have shown similar metastatic progression compared to human
tumors (92, 93). However, the prolonged length of time it takes to
generate tumors does not always match clinical or research needs
(86, 87, 94). Another concern with PDX BCmodeling is that by the
third in vivo passage murine stroma replaces human stroma, which
may result in changes in paracrine regulation as well as in physical
properties (95, 96). The humanized mouse model (in which an
immunocompromised mouse is engrafted with components of the
human immune system) has been utilized in preclinical studies
on immunotherapies and BC, particularly TNBC and HER2+
cancers (97). Humanized BC models have shown clinically
relevant reduction of tumor growth in response to therapy (98,
99). However, major concerns of these models include (1) a lack
GM-CSF, which is important for the differentiation and maturation
of the myeloid lineage; and (2) xenograft-versus-host disease, in
which mature human T cells attack their murine host secondary to
February 2022 | Volume 12 | Article 788038
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HLA mismatching between the hNSG and PDX components
(99, 100).

There are several types ofGEMmodels, including conventional,
knockout, and conditional.ConventionalGEMmodels are typically
driven by mammary-specific promoters that direct expression of
specific oncogenes (transgenes) which may not be specific to
mammary epithelial cells (101–104). Expression of C-MYC, V-
HRAS, WNT, PyMT, and HER2/NEU/ERBB2 through these
promotes resulted in mammary tumorigenesis and metastatic
lesions (105–111). Homozygous knockout of TP53 GEM mice
developed lymphomas and died at around 4-6 months of age
(112, 113). To overcome problem with non-specificity to certain
cell lineage and prevent early embryonic death, conditional GEM
models have been developed (86).WAP-Cre andMMTV-Cremice
have been able to generate hereditary breast cancer models
specifically by modeling the heterozygous mutations observed in
theBRCA1/BRCA2genes (114–116).GEMmodels that containeda
conditional mutant BRCA1 allele and a disruption in TP53 have
accelerated mammary tumor development (116). TP53 in
combination with other genes has been extensively studied using
conditional GEMmodels (117).

Rat BC Models
Rats have been considered a suitable animal model to study
breast cancer due to their similarity with human mammary
cancer in terms of histology, immunocytochemical markers
and biological behavior of tumors (118). The histologic
characteristics of normal mammary luminal epithelium and
myoepithelium is similar between rats and human (119). Long
term studies have shown that some rats can develop breast
tumors spontaneously (118). Use of a chemical carcinogen in
rats can result in a shorter latency period to tumor development
(119–123). Recently, 17b-estradiol (E2) was used to induce breast
tumors in August Copenhagen Irish-rats by modulating estrogen
mediated mechanisms in breast cancer development (121).

In xenograft-Matrigel implantation experiments, younger rats
have experienced greater tumor growth compared to older rats
(124, 125). A bone metastasis immunodeficient rat model has
been developed in which human breast cancer cells (MDA-MB-
231) were intra-arterially injected into a hindlimb artery (126).
Genetically engineered rat models of breast cancer have been
developed in which HER2 and TGF-a were overexpressed
through the mouse mammary tumor virus (MMTV) promoter
(127). This model stochastically produced a variety of benign,
hyperplastic, and malignant lesions, including ductal carcinoma
in situ and carcinoma within a year.

In a rat model with three copies of human HRAS proto-
oncogene, induction of carcinogenesis with nitrosomethylurea
resulted in large mammary tumors within 8 weeks (128).
Mammary carcinogenesis in rats was induced through injection
of high-titer, Neu-containing, replication-defective retrovirus
which produced hormonally responsive in situ carcinomas
within 15-days post infusion, and regressed spontaneously after
20-days post infusion (129). Injection of human adenovirus type 9
(Ad9) also is known to induce estrogen-dependent mammary
tumors in rats within 7-12 months (130). Overall, however, use of
rats in BC research has lagged far behind the broad use of mice.
Frontiers in Oncology | www.frontiersin.org 5
Hamster BC Models
Similar to rats, nitrosomethylurea can inducemammary carcinoma
in Syrian hamsters (Mesocricetus auratus), producing high-grade
poorly differentiated mammary adenocarcinomas (131).
Subcutaneous allogenic implantation of cell lines established from
these primary tumors generated secondary tumors. Hamster
models can be useful in studies on oncolytic adenoviruses, a self-
replicating cancer cell-killing virus. Oncolytic adenoviruses can
replicate in immunocompetent hamsters, making the hamster
model of cancer a suitable non-immunocompromised model to
study therapeutic potential of these viruses (132).

Tree Shrew BC Models
The tree shrew (Tupaia belangeri chinensis) can develop
spontaneous mammary tumors, which are similar to human
papillary tumors in terms of morphology and pathology (133,
134). Chemical induction with DMBA plus medroxyprogesterone
acetate (MPA) also produced breast cancer in tree shrews (135).
Injection of a lentiviral vector with PyMT (polyomavirus middle T
antigen, an oncogene that activates c-Src), into the mammary duct
of tree shrews resulted in tumor development in all subjects by 7
weeks post-injection (136).

CONCLUSIONS AND FUTURE DIRECTIONS

The current landscape of animal modeling for breast cancer is
dominated by murine models, which have developed into
powerful and multi-faceted tools for the BC researcher. It
would be difficult to improve on the utility that murine BC
models have provided. However, there remain certain areas of
research, such as device development and drug testing, which
could benefit from the availability of a large animal model of BC.
These BC models are still in their infancy, essentially at the point
murine models were in the 1980’s. While there have been a
number of principle-proving studies involving BC and large
animals, a validated and tractable large animal model of BC is
not yet available, necessitating that additional work needs to be
done in this area if the advantages of large animal BC modeling
are to be realized. While large animal BC models likely will never
be able to match the proven utility and ease-of-use of murine
models, the availability of validated large animal BC models
could provide additional tools to the BC researcher that would
address specific BC questions or BC-relevant technology
development, such as those requiring a human sized subject
for generation of relevant data.
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