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A B S T R A C T

Background: Fundus Autofluorescence (FAF) is a valuable imaging technique used to assess metabolic alterations
in the retinal pigment epithelium (RPE) associated with various age-related and disease-related changes. The
practical uses of FAF are ever-growing. This study aimed to evaluate the effectiveness of a generative deep
learning (DL) model in translating color fundus (CF) images into synthetic FAF images and explore its potential for
enhancing screening of age-related macular degeneration (AMD).
Methods: A generative adversarial network (GAN) model was trained on pairs of CF and FAF images to generate
synthetic FAF images. The quality of synthesized FAF images was assessed objectively by common generation
metrics. Additionally, the clinical effectiveness of the generated FAF images in AMD classification was evaluated
by measuring the area under the curve (AUC), using the LabelMe dataset.
Results: A total of 8410 FAF images from 2586 patients were analyzed. The synthesized FAF images exhibited an
impressive objectively assessed quality, achieving a multi-scale structural similarity index (MS-SSIM) of 0.67.
When evaluated on the LabelMe dataset, the combination of generated FAF images and CF images resulted in a
noteworthy improvement in AMD classification accuracy, with the AUC increasing from 0.931 to 0.968.
Conclusions: This study presents the first attempt to use a generative deep learning model to create authentic and
high-quality FAF images from CF images. The incorporation of the translated FAF images on top of CF images
improved the accuracy of AMD classification. Overall, this study presents a promising approach to enhance large-
scale AMD screening.
1. Introduction

Age-related macular degeneration (AMD) is a condition characterized
by the gradual deterioration of central vision due to the damage occur-
ring in the macular region of the retina.1 It accounts for around 9% of
global blindness cases, particularly among individuals aged 60 and
above.2 AMD can be classified as early AMD for individuals with medium
drusen, intermediate AMD for those with large drusen or pigmentary
abnormalities, and late AMD for individuals with neovascular abnor-
malities or with geographic atrophy.3 Early detection plays a crucial role
in preventing the progression of AMD.4

Fundus autofluorescence (FAF) is an essential imaging technique used
to assess the function of the retinal pigment epithelium (RPE).5 It relies
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on the intrinsic fluorescence emitted by lipofuscin granules, which are
metabolic byproducts of RPE cells that can accumulate with age.
Abnormal FAF patterns, characterized by localized areas of hyper-
fluorescence and/or hypofluorescence, are occasionally observed and are
believed to be indicative of changes in retinal function. These patterns
offers significant advantages in detecting, evaluating, and treating both
atrophic AMD and wet AMD.6–8 Despite the important clinical applica-
tions of FAF in specific diseases, its overall utilization in ophthalmology
is relatively limited compared to color fundus (CF) photography. This is
primarily due to limited awareness among some doctors regarding the
potential of FAF and patients' hesitancy to undergo extensive testing, and
the shortage of FAF imaging device in screening scenario. Consequently,
synthesizing precise FAF images based on corresponding CF images
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provides a practical solution to overcome those challenges.
The development of deep learning models has opened up the possi-

bility of modality translation from CF images to FAF images. Image-to-
image translation is an innovative technique that converts images from
one style to another while preserving their essential features. Previous
studies have been dedicated to the task of translating CF images to fundus
fluorescein angiography (FFA) images using generative adversarial net-
works (GANs), and the results have demonstrated high-quality generated
images.9–11 In addition, a previous study utilized a geographic atrophy
region-aware conditional GAN for generating trustworthy FAF images
from en-face optical coherence tomography (OCT).12 However, there are
no prior arts addressing the translation of CF images to FAF images.

Our objective was to create and evaluate a generative deep learning
model capable of accurately translating color CF images into FAF images.
The model was trained on a large-scale clinical dataset, and we assessed
its effectiveness in improving AMD classification using the LabelMe
dataset. The synthesized FAF images generated by our model hold
promise as an alternative to traditional FAF in enhancing the efficiency of
screening for AMD and other retinal disorders.

2. Methods

2.1. Participants

This retrospective study included a collection of 7049 color fundus
(CF) images and 8410 fundus autofluorescence (FAF) images from 2586
patients who underwent regular clinical examinations at a tertiary hos-
pital between 2016 and 2019. The CF images were obtained using Top-
con TRC-50XF and Zeiss FF450 Plus cameras (Carl Zeiss, Inc., Jena,
Germany), featuring resolutions ranging from 1110 � 1467 to 2600 �
3200. The FAF images were captured using Zeiss FF450 Plus cameras and
Heidelberg Spectralis cameras (Heidelberg, Germany) with a resolution
of 768 � 768. All patient information was meticulously anonymized and
devoid of any identifying details.

To assess the clinical application of the generated FAF images, we
utilized the LabelMe dataset (http://www.labelme.org, Guangzhou,
China) to evaluate their potential in enhancing age-related macular
degeneration (AMD) screening. Experienced ophthalmologists per-
formed a widely used AMD classification system (Beckman clinical
classification system), which ranges from 0 to 3, to assess the presence of
AMD in each image.3

The study adhered to the principles of the Declaration of Helsinki.
This retrospective study received ethical approval from the Institutional
Review Board (No.2021KYPJ164-3), and the need for individual consent
for the analysis was waived.
2.2. CF and FAF matching

We performed image matching between CF and FAF images obtained
during the same eye examination session. To achieve precise pixel-level
alignment, we utilized the Retina-based microvascular health assessment
system (RMHAS)13 to extract retinal vessels from CF images, and an
in-house multimodality vessel segmentation model for extracting vessels
from FAF images. Similar to our previous study,14 we registered the FAF
images and subsequently aligned them with their corresponding CF im-
ages. Key points were extracted from the vessel maps of both CF and FAF
images using the AKAZE key point detector.15 These key points were then
utilized for feature matching, and Random Sample Consensus (RAN-
SAC)16 was applied to generate homography matrices and eliminate
outliers. To ensure accurate registration, we imposed validity restrictions
by constraining the rotation scale within the range of 0.8–1.3 and
limiting the absolute value of the rotation radian to less than 2. We also
discarded image pairs with inadequate registration performance, which
was determined by a dice coefficient below 0.5, based on empirical ob-
servations from our dataset.
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2.3. FAF image synthesis

Our model was trained using CF images as input and real FAF images
as ground truth, with a split ratio of 8 : 1 : 1 for training, validation, and
evaluation at patient-level. During training, we resized the images to a
resolution of 512 � 512 and utilized pix2pixHD model,17 which is a
widely-used generative adversarial networks (GAN) model for image
translation. This model employed a minimax game approach, where the
generator G aimed to produce a convincing FAF image to deceive the
discriminator D, while the discriminator D endeavored to differentiate
between the generated image and the real one.17 To generate
high-resolution FAF images, we employed a multi-scale convolutional
neural network as the discriminator.17 This network partitioned the
images into patches and independently assessed the fidelity of each patch
independently. By considering the quality of individual patches, our
approach aimed to produce coherent and detailed FAF images at a high
resolution. Moreover, we introduced Gradient Variance Loss to improve
the generation performance of high-frequency elements, such as retinal
structure and lesions.18 During training, we utilized a batch size of 4 and
set the learning rate to 0.0002. To address the issue of overfitting, we
implemented data augmentation strategies during training, such as
randomly resized crops within a scale range of 0.5–2, applying random
horizontal or vertical flipping. To optimize the model's performance, we
conducted a total of 50 epochs for each training session. We implemented
the image translation model using PyTorch and conducted the training
process on an NVIDIA GeForce RTX 3090 GPU.

2.4. DL evaluation methodology

2.4.1. Objective evaluation
For the quantitative evaluation of the internal test set, we used

common objective metrics: structural similarity measures (SSIM),19

multi-scale structural similarity index (MSSSIM),20 Fr�echet inception
distance (FID),21 mean absolute error (MAE),22 and peak signal-to-noise
ratio (PSNR).23 SSIM is a metric used to measure the structural similarity
between two images. A value closer to 1 indicates a higher similarity
between the images.19 Unlike conventional SSIM, which focuses solely
on the local structure at a specific scale, MS-SSIM integrates multiple
scales through a sequence of image down-sampling and filtering opera-
tions. This enables MS-SSIM to encompass structural information across
various levels of granularity.20 FID is a metric used to assess the
dissimilarity between generated and real images. It calculates the
discrepancy in feature representations extracted from these images using
a pre-trained inception network, where lower FID values indicate better
similarity between the generated and real images.21 MAE and PSNR are
metrics used to assess image reconstruction quality. MAE calculates the
average difference between corresponding pixels in the generated and
real images, where lower values mean better reconstruction quality.22

PSNR measures the quality of the reconstructed image by evaluating the
ratio of the peak signal power to the noise power, where higher values
correspond to superior image quality.23

2.4.2. AMD classification
We performed a comparative study to evaluate the effectiveness of

generated FAF images in the classification of AMD on the LabelMe
dataset. It's worth noting that LabelMe does not inherently contain
ground truth data for FAF images. In this context, we utilized the model
developed on our internal dataset to generate synthetic FAF images
within the LabelMe dataset. The AMD severity scale was classified using
the Swin-transformer24 model under consistent experimental conditions.
Swin-transformer is able to capture vital long-range dependencies, which
is essential for intricate fundus image analysis. Its layered attention
mechanism enables multi-scale feature extraction, enhancing sensitivity
to diverse pathological features. We considered CF images alone and CF
images combined with the generated FAF images for classification, with
AMD severity classes ranging from 0 to 3 (0 ¼ no AMD, 1 ¼ early or

http://www.labelme.org
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intermediate AMD, 2 ¼ late dry AMD, 3 ¼ wet AMD).3 The LabelMe
dataset was utilized for the experiment and was divided into three sets:
training (60%), validation (20%), and testing (20%). The images were
resized to a resolution of 512 � 512 and underwent data augmentation
during training, including random horizontal flips and rotations between
�30� to þ30�. We employed the Adam optimizer with a small learning
rate of 1e-5 and a modest batch size of 4. The training process consisted
of 30 epochs, and for evaluation, we selected the models that achieved
the highest area under the curve (AUC) value on the validation set.

Our DL algorithm was implemented using PyTorch, and training of
the models was performed on an NVIDIA GeForce RTX 3090 GPU.

3. Results

After excluding 2895 CF images and 1620 FAF images for reasons
such as being off-centered from the macula, unsuccessful CF-FAF pair-
wise matching, or poor image quality, a total of 6790 pairs of CF-FAF
images obtained from 1850 participants were used for model develop-
ment. The participants had a median age of 47.99 years (interquartile
range: 16.52), and 1024 (55.4%) of them were male. The study flow
chart is depicted in Fig. 1.
3.1. Generation of FAF images

Samples of the real and generated images from both the internal and
external test sets are shown in Fig. 2. In the internal and external test sets,
a portion of the generated FAF images exhibited poor quality attributed
to the following factors: synthetic FAF images from blurry CF images
might fail to accurately depict lesions. The algorithm may overlook le-
sions, such as subtle drusen, that were not visibly evident on the CF
images. Furthermore, hyperautofluorescent lesions presented a greater
challenge in accurate representation on translated FAF images compared
to hypoautofluorescent lesions, as illustrated in Supplementary Fig. 1.
While this study primarily focused on AMD, Supplementary Fig. 2 pro-
vides generation samples for other retinal diseases, such as papilledema,
central serous chorioretinopathy, diabetic retinopathy, retinopathy post-
laser treatment and branch retinal vein occlusion to further exemplifying
the model's generation performance. Additionally, we have provided
examples of hyperautofluorescent and hypoautofluorescent lesions in
Supplementary Fig. 3.
Fig. 1. Flow chart of the study. CF ¼ color fundus, FAF ¼ fundus autofluorescence, A
n ¼ number of images.
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3.2. Objective evaluation

Pairwise comparison between original and generated FAF was con-
ducted on the internal test set, the SSIM, MS-SSIM, FID, MAE, and PSNR
were 0.51, 0.67, 53.73, 127.16, 19.22. The synthesized image quality is
considered better when the PSNR, SSIM, and MS-SSIM values are higher,
and the FID and MAE values are lower. The results above are demon-
strated in Table 1.

3.3. AMD classification evaluation

The incorporation of generated FAF images resulted in a significant
improvement in the quantitative outcomes of AMD classification on the
LabelMe dataset, as clearly illustrated in Table 2 and Fig. 3. The inclusion
of generated FAF images alongside CF images notably enhanced the ac-
curacy of AMD classification, particularly in the 0 and 1 categories.
Detailed characteristics of the LabelMe dataset are illustrated in Table 3.

4. Discussion

To the best of our knowledge, this study represents the first attempt to
develop and evaluate a generative deep learning model for synthesizing
realistic FAF images from CF images. The integration of the generated
FAF images with CF images led to a significant enhancement in the ac-
curacy of AMD classification. Furthermore, our study introduced a
compelling alternative for FAF and presented a promising approach to
improve AMD screening on a larger scale.

The translation of CF to FAF images offers several benefits. FAF has
expanded its clinical utility, proving valuable in diagnosing and man-
aging a diverse range of chorioretinal conditions, encompassing AMD,
retinal drug toxicities, central serous chorioretinopathy, and inherited
retinal degenerations, such as Stargardt disease and retinitis pigmentosa
(RP).25 By adeptly mapping the metabolic activity of the retina and
effectively highlighting areas with lipofuscin accumulation, FAF en-
hances its diagnostic efficacy and clinical relevance. The qualitative and
quantitative analysis of FAF has shown its value in detecting clinically
significant AMD-associated lesions, such as reticular pseudodrusen,
regressed drusen, and smaller geographic atrophy regions, offering
essential diagnostic and prognostic insights for medical deci-
sion-making.6,26–28 However, many patients are hesitant to undergo
extensive auxiliary examinations, and primary care hospitals may lack
MD ¼ age-related macular degeneration, GAN ¼ generative adversarial network,



Fig. 2. Samples of real and generated fundus autofluorescence (FAF) images.1st row, early age-related macular degeneration (AMD), 2nd row, wet AMD, 3rd row, wet
AMD, 4th row, long-standing wet AMD. 1–3 rows: internal test set, color fundus (CF) were registered with FAF, rotation was applied during this process. 4th row:
external test set.

Table 1
Objective evaluation between original and generated fundus autofluorescence
(FAF) images.

MAE PSNR SSIM MS-SSIM FID

Generated FAF 127.16 19.22 0.51 0.67 53.73

MAE ¼ mean absolute error, PSNR ¼ peak signal-to-noise ratio, SSIM ¼ struc-
tural similarity measures, MS-SSIM ¼ multi-scale structural similarity index, FID
¼ Fr�echet inception distance.

Table 2
Age-related macular degeneration (AMD) classification with color fundus (CF),
CF þ generated fundus autofluorescence (FAF) images.

F1-
score

Sensitivity Precision Specificity Accuracy AUC

Only CF 0.839 0.837 0.851 0.932 0.837 0.931
CF þ
FAF

0.885 0.885 0.885 0.940 0.885 0.967

LabelMe dataset: 13887 images (train:validation:test ¼ 6 : 2 : 2). The classifi-
cation metrics results in this table are generated using the test set of the LabelMe
dataset. AMD classification (0 ¼ no AMD, 1 ¼ early or intermediate AMD, 2 ¼
late dry AMD, 3 ¼ wet AMD). AUC ¼ the area under the curve.
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the necessary diagnostic equipment. This technology can help reduce
costs for patients and decrease the likelihood of misdiagnosis by
healthcare professionals under limited conditions. Therefore, CF-FAF
conversion holds promise as a clinically valuable technique.

Our study employed the widely-used GAN model, specifically the
pix2pixHD17 model, for the translation of FAF images from CF images.
195
Unlike traditional GAN methods, pix2pixHD stands out due to its coarse
to fine-grained generator, which enables the preservation of



Fig. 3. The additive value of generated fundus autofluorescence (FAF) atop of color fundus image (CF) for age-related macular degeneration (AMD) classification (0 ¼
no AMD, 1 ¼ early or intermediate AMD, 2 ¼ late dry AMD, 3 ¼ wet AMD). 1st row represents the receiver operating characteristic (ROC) curves for two models. 2nd
row represents confusion matrixes. The color blue indicates correct predictions, while the color green indicates a reduced error rate with the addition of the
generated FAF.

Table 3
LabelMe dataset characteristics.

no AMD early or
intermediate
AMD

late dry
AMD

wet AMD Total

Train 3600
(43.21%)

2673 (32.08%) 182
(2.19%)

1876
(22.52%)

8331

Validation 1200
(43.15%)

891 (32.04%) 61
(2.19%)

629
(22.62%)

2781

Test 1200
(43.24%)

892 (32.14%) 61
(2.20%)

622
(22.42%)

2775

Total 6000
(43.20%)

4456 (32.09%) 304
(2.19%)

3127
(22.52%)

13887

AMD ¼ age-related macular degeneration.
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high-resolution elements, such as retinal structures and lesions, with
remarkable accuracy. Both the local and global parts of the generator are
structured with a convolutional front end, a series of residual blocks, and
a transposed convolutional back end. Moreover, the model incorporated
a multi-scale convolutional neural network17 as the discriminator to
distinguish the FAF images generated by the generator from real images.
Besides, we introduced Gradient Variance Loss to improve the generation
performance of high-frequency elements, including retinal structure and
lesions.18 Furthermore, data augmentation strategies were implemented
during training to address overfitting issues. These methods collectively
contributed to achieving remarkable performance in generating
high-resolution and authentic FAF images.
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To ensure the algorithm's applicability across clinical images, we
conducted evaluations on internal datasets. The synthesized images un-
derwent quantitative evaluation and demonstrated favorable image
quality compared to real FAF images, as evidenced by metrics such as the
MS-SSIM score of 0.67, the SSIM score of 0.51, and the PSNR score of
19.22, which served as indicators of the quality of the generated FAF
images. As this study represents the first attempt to synthesize FAF im-
ages from CF images, we compared the corresponding scores with those
assessing the synthetic fundus fluorescence angiography images trans-
lated from CF images using a pix2pix model in a previous study, where
SSIM and PSNR achieved 0.78 and 18.68, respectively.29 Compared to
the previous study, our PSNR score was higher, ensuring the high quality
of generated FAF images. Although the SSIM score was not as satisfac-
tory, our study introduced the MS-SSIM to comprehensively assess the
similarity of images, and the result indicated that the generated FAF
images were reliable when compared to real ones. In terms of classifying
AMD on the LabelMe dataset, we observed improved results by incor-
porating the generated FAF images. Our approach achieved high accu-
racy in AMD classification, particularly when adding the synthesized FAF
images. Furthermore, our algorithm was evaluated for enhancing AMD
diagnosis, highlighting the potential of synthesized FAF images as an
additional tool for AMD screening. Moreover, the algorithm demon-
strated compelling performance in translating FAF images for a range of
retinal diseases beyond AMD. Evaluation on both internal and external
datasets revealed promising generation samples, including central serous
chorioretinopathy, diabetic retinopathy, and branch retinal vein occlu-
sion, as depicted in Supplementary Fig. 2. Additionally, FAF has
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expanded its clinical utilization, becoming an indispensable tool for
assessing macular dystrophies and a variety of inherited retinal disorders,
such as RP, Stargardt disease, and Bestrophinopathies.30 Further research
is necessary to improve the algorithm's performance across the afore-
mentioned diseases.

There are some limitations to consider. Firstly, the utilization of FAF
images with a limited field of view of 55� may have resulted in the
omission of certain peripheral manifestations of retinal diseases. Future
research should focus on generating wide-field CF-based FAF images to
enhance the comprehensiveness of this approach. Secondly, the impact of
blurry CF images on the generation of FAF images should be considered.
Blurry CF images may lead to blurry generated FAF images and poten-
tially incorrect associations with AMD lesions. To mitigate this issue,
patients with sub-optimal CF image quality should be excluded from the
training data, and real-FAF examinations are recommended for accurate
assessment. Thirdly, it is important to note that small lesions, such as
subtle drusen, may not be prominent on CF images and could be missed
by the algorithm. Finally, accurately representing hyperautofluorescent
lesions on translated FAF images proved to be more challenging
compared to hypoautofluorescent lesions. This limitation could poten-
tially hinder the timely reflection of AMD progression, as the presence of
hyperautofluorescent lesions at the margin of geographic atrophy sug-
gests the involvement of larger lesions.25,31 Future studies are warranted
for improving the generation of small lesions and hyperautofluorescent
lesions on the translated FAF images and the generated FAF should be
used in combination with CF.

5. Conclusions

Our generative deep learning model demonstrates a feasible method
of translating CF images into realistic FAF images for the first time. The
ability to generate synthetic FAF images that closely resemble real ones
holds promise for various applications, such as enhancing large-scale
AMD screening and assisting in medical decision-making processes.
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Abbreviations

FAF Fundus autofluorescence
RPE Retinal pigment epithelium
DL Deep learning
CF Color fundus
AMD Age-related macular degeneration
GAN Generative adversarial network
AUC Area under the curve
MS-SSIM Multi-scale structural similarity index
RMHAS Retina-based microvascular health assessment system
RANSAC Random sample consensus
SSIM Structural similarity measures
FID Fr�echet inception distance
MAE Mean absolute error
PSNR Peak signal-to-noise ratio

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do
i.org/10.1016/j.aopr.2023.11.001.
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