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Parity-time symmetry in coherent 
asymmetric double quantum wells
Si-Cong Tian1, Ren-Gang Wan2, Li-Jie Wang1, Shi-Li Shu1, Huan-Yu Lu1,4, Xin Zhang1,4,  
Cun-Zhu Tong1, Min Xiao3 & Li-Jun Wang1

A coherently prepared asymmetric double semiconductor quantum well (QW) is proposed to realize 
parity-time (PT) symmetry. By appropriately tuning the laser fields and the pertinent QW parameters, 
PT-symmetric optical potentials are obtained by three different methods. Such a coherent QW 
system is reconfigurable and controllable, and it can generate new approaches of theoretically and 
experimentally studying PT-symmetric phenomena.

The non-Hermitian parity-time (PT)-symmetric Hamiltonians, which were firstly proposed by Bender and 
Boettcher in 1998, have attracted great attention1. Because of the isomorphism between quantum Schrödinger 
equations and paraxial-wave equations2, optical system becomes an ideal bed for experimentally studying PT sym-
metry. By balancing gain and loss, optical PT symmetry has been realized in different coupled structures, such 
as waveguides3,4, lattices5,6, micro-cavities7,8, and can be used in the fields of unidirectional propagating9,10, per-
fect absorbers11,12, photon lasers13,14, phonon lasers15 and sensors16. In addition, several interesting phenomena, 
such as optical solitons17, Bloch oscillations18 and topological insulators19 have also been investigated in optical 
PT-symmetric systems. However, most of the work, particularly in experiment, was based on solid-state materials. 
Once the structures are fabricated, the properties such as the threshold of the system are unable to be changed.

The susceptibility of host semiconductor quantum wells (QWs) can be controlled via electrical field20–22, car-
rier density23 and laser field24. The optical response of QWs is significantly enhanced when the frequency of light 
field is near resonance with the intersubband transition which has large dipole matrix element25. As a result, one 
can obtain a dramatic change in the complex dielectric constant20–25. Combined with electromagnetically induced 
transparency (EIT)26,27, both the refractive index and the absorptive coefficient of QWs can be effectively manip-
ulated via atomic coherence and quantum interference.

In this work, we propose to use a coherently prepared asymmetric double semiconductor QWs to obtain 
PT symmetry. Such QW systems have been proved to have the possibility to realize quantum coherence and 
interference28–30. We demonstrate that PT-symmetric optical potentials, such as coupled optical waveguides, 
one-dimensional (1D) and two-dimensional (2D) PT-symmetric optical lattices can be realized by different 
methods. Besides, it is possible to control the PT-symmetric properties by tuning the laser fields and the QW 
parameters. The realization of PT symmetry in coherent QW systems by laser fields have several advantages. 
Firstly, compared with solid-state materials with micro-structures or nano-structures, PT-symmetric properties 
in this system can be established by different methods, and can be effectively controlled by various parameters. 
Secondly, PT symmetry has been constructed theoretically31–34 and experimentally35 in different atomic systems. 
Compared with these atomic systems, semiconductor QW systems have designable and flexible of energy levels, 
and they are easy to be integrated and stable for practical application. Thirdly, in such systems large nonlinearity 
can be realized assisted by EIT36–38, which makes it possible to observe traveling effects of lights in non-Hermitian 
nonlinear optical systems39–41.

Models and Equations
We consider asymmetric double semiconductor QWs42, which consist of a 51-monolayer (145 Å)-thick wide well 
(WW) and 35-monolayer (100 Å)-thick narrow well (NW). Between them there is a thickness of a 9-monolayer 
(25-Å)-thick Al0.2Ga0.8As barrier, as shown in Fig. 1(a). There are ten pairs of QWs (each pair consists of one WW, 
one NW, and one thick barrier), which are isolated from each other by 200-Å-wide Al0.2Ga0.8As buffer layers. All 
these pairs are sandwiched between nominally undoped 3500-Å-thick Al0.2Ga0.8As layers.
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Such asymmetric double semiconductor QWs can be treated as a four-level N configuration28–30, as shown in 
Fig. 1(b). Here, levels |1〉 and |2〉 are localized hole states in a valence band, while levels |3〉 and |4〉 are delocalized 
bonding and antibonding states in a conduction band, arising from the tunneling effect between the WW and 
NW via the thin barrier, respectively. The probe field Ep with frequency ωp probes the transition ↔1 3 , while 
the coupling field Ec with frequency ωc and the pump field Ed with frequency ωd act on transitions ↔2 3  and 

↔1 4  respectively. The Rabi frequency of the probe, coupling, and pump fields are Ωp = μ13Ep/2h, 
Ωc = μ23Ec/2h, and Ωd = μ14Ed/2h, respectively, where µij is the associated dipole transition matrix element, and 
the detuning of the probe, coupling, and pump fields are Δp = ωp − ω31, Δc = ωc − ω32, and Δd = ωd − ω42, respec-
tively, where ωij is the transition frequency between levels |i〉 and |j〉.

Under the condition of low QW carrier intensity, many-body effects are attributed to electron–electron inter-
actions can be neglected43. In the interaction picture and under the rotating wave approximation, the Hamiltonian 
of the QW system can be written as (h = 1)

= Δ − Δ − Δ − Δ

+ 
Ω + Ω + Ω + . ..

H ( ) 2 2 3 3 4 4

1 3 2 3 1 4 H c (1)

c p p d

p c d

Here, H.c. is the Hamiltonian complex conjugate.
The equation of motion for the density matrix of the system under the relaxation process is

Figure 1.  (a) Schematic of one pair of asymmetric double QWs with buffer layers. (b) Band diagram of the 
asymmetric double QWs, and z represent the wafer-growth direction.
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ρ ρ γ ρ= − −


i H[ , ] 1
2

{ , }, (2)

where γ is the dissipation matrix. Substituting Eq. (1) into Eq. (2), the density matrix for each element can be 
obtained:

ρ ρ ρ ρ ρ ρ= Ω − + Γ + Γ − Γ


i ( ) , (3a)c22 32 23 42 44 32 33 2 22

ρ ρ ρ ρ ρ ρ ρ= Ω − + Ω − − Γ + Γ


i i( ) ( ) , (3b)c p33 23 32 13 31 3 33 43 44

Figure 2.  Schematic diagram of QW system for realizing PT-symmetric optical waveguides. x and y represent 
the transverse and longitudinal directions of laser beams.

Figure 3.  (a) Real part χR and (b) imaginary part χI of the susceptibility as a function of coupling detuning Δc 
for different coupling Rabi frequency, Ωc = 0.4 meV (black solid line), Ωc = 0.3 meV (blue dashed line), and 
Ωc = 0.2 meV (red dotted line). (c) Real part χR and (d) imaginary part χI of the susceptibility as a function of 
coupling Rabi frequency Ωc for different coupling detuning, Δc = −2.278 meV (blue solid line) and Δc = −2.360 
meV (red dashed line). The other parameters are Γ = Γ = .2 58meV3

dph
4
dph , Γ3l = Γ4l = 2.07 meV, 

Γ31 = Γ32 = Γ41 = Γ42 = Γ = 2.325 meV, Ωp = 0.01Γ, Ωd = 2Γ, Δp = Δd = 0.
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ρ ρ ρ ρ= Ω − − Γ


i ( ) , (3c)d44 14 41 4 44

ρ ρ ρ ρ γ ρ= − Ω + Ω + Ω −� �i i i , (3d)c p d12 13 32 42 12 12

ρ ρ ρ ρ ρ γ ρ= − Ω + Ω + Ω − −� �i i i ( ) , (3e)c d p13 12 43 33 11 13 13

ρ ρ ρ ρ γ ρ= Ω + Ω − −� �i i ( ) , (3f)p d14 34 44 11 14 14

ρ ρ ρ ρ γ ρ= − Ω + Ω − −� �i i ( ) , (3g)p c23 21 33 22 23 23

ρ ρ ρ γ ρ= − Ω + Ω −� �i i , (3h)d c24 21 34 24 24

ρ ρ ρ ρ γ ρ= Ω − Ω + Ω −� �i i i , (3i)p d c34 14 31 24 34 34

Here ρ11 + ρ22 + ρ33 + ρ44 = 1 and ρ ρ= ⁎
ij ji . Γij is the natural decay rate between levels |i〉 and |j〉. We assume that 

the decay rates from levels |3〉 and |4〉 in the conduction band to levels |1〉 and |2〉 in the valence band are identi-
cal, there are, Γ31 = Γ32 and Γ41 = Γ42. There is also no decay in the valence band or conduction band, so we con-
clude that Γ21 = Γ43 = 0. Γ = ∑ Γ−

i j
i

ij
1  denotes the total decay rate of level |i〉. We define γ

12 = γ + Δ − Δi( )p c12 , 
γ
13 = γ + Δi p13 , γ

14 = γ + Δi d14 , γ
23 = γ + Δi c23 , γ

24 = γ + Δ + Δ − Δi( )c d p24 , and γ
34 = γ + Δ − Δi( )d p34 , 

where γij = (Γi + Γj)/2.

Figure 4.  Real part nR and imaginary part nI of the refractive index as a function of position x for different 
cases, (a) Δc = −2.350 meV (loss waveguide) and Δc = −2.300 meV (gain waveguide), representing the 
condition of below threshold, (b) Δc = −2.386 meV (loss waveguide) and Δc = −2.266 meV (gain waveguide), 
representing the condition of above threshold, (c) Δc = −2.325 meV (both waveguides), representing the 
condition of non-PT symmetry, respectively. (d–f) are filed mode of the probe laser beam according to (a–c). 
(g–i) are propagation properties of the probe laser beam according to (a–c). The other parameters are the same 
as in Fig. 3.
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In such QW systems, Γ = Γ + Γl3 3 3
dph and Γ = Γ + Γl4 4 4

dph, where Γ3l and Γ4l are the population decay rates of 
subbands |3〉 and |4〉 respectively, resulting from longitudinal-optical phonon emission events at low temperature, 
and Γ3

dph and Γ4
dph are the dephasing decay rates of quantum coherence due to electron–electron scattering, pho-

non scattering processes; and elastic interface roughness. Based on the previous studies, we assume that Γ3l can be 
equal to Γ4l, and Γ3

dph can be equal to Γ4
dph. Therefore, Γ31 = Γ32 = Γ41 = Γ42 = Γ can be presented. In addition, we 

assume there is no interference or dephasing between levels |3〉 and |4〉, which can be realized based on the appro-
priate reduction of the temperature44.

The susceptibility of the QW medium can be obtained through the expression χ = μ ε ρ⋅N E/ p13 0 31 = 
μ ε ρΩ ⋅N /2 h p13

2
0 31, where N is the electron density of the QWs, and ρ31 can be obtained by Eq. (3). χ = χR + iχI, 

where χR describes the dispersion properties of the probe field, while χI describes the absorption properties of the 
probe field with χI > 0 (χI < 0) indicating loss (gain).

The refractive index of the QW medium can be written as ε χ= +n c . Here ε = nc c
2 corresponding to the 

complex dielectric constant of the host QW medium, and nc is its refractive index when light is far detuned from 
the resonance. χ denotes the change in the susceptibility22,23, which results from the coherent contract via the 
coupling and pump fields near the resonance. Generally, χ = εc, then we have n ≈ ε χ ε+ /22c c  = χ+n n/2c c 
= χ χ+ +n n i n/2 /2c R c I c. We define the real and imaginary parts of the refractive index as nR and nI, with nc being 
the background index of the system. Thus, n = nc + nR + inI, where nR = χR/2n0 and nI = χI/2n0. To achieve PT 
symmetry, the condition of nR(r) = nR(−r) and nI(r) = −nI(−r) must be satisfied. And for simplicity, we use the 
unit μ εN n/4 h13

2
0 0 in the following calculations.

Results
PT-symmetric optical waveguides.  In order to realize PT-symmetric optical waveguides, we use a pair 
of coupling laser beams to form two coupled waveguides. Such pair of beams propagate in QWs along y direction. 
Then, a pump and a probe laser beams with wider laser dimension propagate in the same direction as those of 
the coupling beams. The schematic diagram is shown in Fig. 2. The pair of coupling laser beams have an identical 
Gaussian intensity profile so that the total spatial intensity distribution of them varying in x direction is

= +σ σ
− − − +

I x Ae Ae( ) , (4)c

x a x a( )
2

( )
2

2

2

2

2

where A and a are the constant and the half separation between the two waveguides respectively. σ2 2 ln2  can 
describe the full width at half maximum (FWHM) of the waveguides. By choosing two different detuning of the 
coupling fields, gain can be introduced to one waveguide and loss can be introduced to the other, even though 
other parameters are identical. In such consideration, the refractive index in each waveguide spatially varies only 
with the intensity of the coupling.

To realize gain and absorption in two waveguides simultaneously, different detuning of the coupling fields 
need to be found. For sake of it, we calculate the real (dispersion) χR and imaginary (gain or absorption) χI 
parts of the susceptibility as a function of Δc, and show the results in Fig. 3(a,b), respectively. The intensity of the 

Figure 5.  Schematic diagram of QW system for realizing PT-symmetric optical lattices. Electron density of QW 
is modulated in x direction.
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coupling field in each waveguide is corresponding to Gaussian profile, so χI needs to get larger with increasing 
coupling intensity. For this reason, we only consider a negative value of the coupling detuning. It can be seen from 
the figures that for different value of Ωc, χR reaches to the maximum value, and χI is close to zero at Δc = −2.325Γ. 
At the vicinity of the zero point, gain is obtained on the left side, and absorption is abstained on the right side. 
This property called refractive index enhancement with vanishing absorption, has been demonstrated in the early 
papers45–49.

In order to realize gain and loss in two waveguides simultaneously by using two different coupling detuning 
and maintain other parameters identical, the relation between the susceptibility and the coupling intensity needs 
to be established. Therefore, we choose Δc = −2.360Γ and Δc = −2.278Γ in two waveguides, and draw χR and 
χI as a function of Ωc shown in Fig. 3(c,d). It can be seen that with selected coupling detuning, the curves of χR 
are identical, and the curves of χI are matched with slight difference, respectively. It should be noted that, in 

Figure 6.  (a) Real part χR and (b) imaginary part χI of the susceptibility as a function of probe detuning Δp 
for different pump Rabi frequency, Ωd = 0.8Γ (red dotted line), Ωd = Γ (blue dashed line), and Ωd = 1.2Γ (black 
solid line). The parameters are Ωc = Γ and Δc = Δd = 0. The other parameters are the same as in Fig. 3.

Figure 7.  Real part nR and imaginary part nI of the refractive index as a function of position x for unchanged 
absolute value and different signs of Δp and δΩd, respectively, (a) Δp = 2.592 meV and δΩd = 0.1Γ, (b) 
Δp = 2.592 meV and δΩd = −0.1Γ, (c) Δp = −2.592 meV and δΩd = 0.1Γ, (d) Δp = −2.592 meV and 
δΩd = −0.1Γ. The parameters are Ωd0 = Γ. The other parameters are the same as in Fig. 6.
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Fig. 3(d) we flipped the curve of the gain one by multiplying a minus sign to compare the two curves of gain and 
loss directly.

Based on the above analysis, firstly, we demonstrate the possibility of realizing spatial modulation of the 
refractive index. Making use of Eq. (4), and choosing the FWHM ( σ2 2 ln2 ) as 7 μm and the separation between 
the two waveguides as 20 μm, we plot the real nR and the imaginary nI parts of the refractive index as a function 
of x shown in Fig. 4(a–c). It can be seen from the figures that the real part of the refractive index nR is an even 
function of x, while that of imaginary part nI is an odd function of x. By changing the electron intensity of QW, 
The absolute values of nR and nI can be modified with equal scale simultaneously with the changes of the electron 
intensity of QW.

Figure 8.  (a) Real part nR and (b) imaginary part nI of the refractive index as functions of position x and 
probe detuning Δp. The parameters are δΩd = 0.1Γ. (c) Real part nR and (d) imaginary part nI of the refractive 
index as functions of position x and modulation intensity δΩd. The parameters are Δp = 2.592 meV. The other 
parameters are the same as in Fig. 7.

Figure 9.  (a) Real part nR and (b) imaginary part nI of the refractive index as functions of position x and 
position y. The parameters are Δp = 2.592 meV and δΩd = 0.1Γ. The other parameters are the same as in Fig. 7.
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By controlling the ratio of the real and imaginary parts of the refractive index, we can adjust the condition of 
the system below or above the PT-symmetric threshold. It can be seen from Fig. 3(a,b) that χR changes less than 
χI at the vicinity of zero point (Δc = −2.325Γ). Therefore, we can alter the coupling detuning in the waveguides to 
control the ratio. For instance, with different values of the coupling detuning, the ratio of the real and imaginary 
parts is 12 and 80, and the system can be operated below (Fig. 4(a)) or above (Fig. 4(b)) the PT-symmetric thresh-
old respectively. In addition, when the coupling detuning used in both waveguides is −2.325Γ, the system even 
becomes a non-symmetric one with much larger ratio (Fig. 4(c)).

Secondly, we present the field modes in the waveguides in Fig. 4(d–f) corresponding to Fig. 4(a–c), respec-
tively. When the condition of the system is below the threshold (Fig. 4(a)), the PT symmetry condition is satisfied, 
the eigenvalues should be real, and the field modes should be symmetric. However, because of the imperfect PT 
symmetry condition, the eigenvalues have a very small imaginary part, and the two field modes are slightly asym-
metric, as shown in Fig. 4(d). For the case of above the threshold (Fig. 4(b)), that is, the PT symmetry is broken, 
the eigenvalues become complex, where the imaginary part of the refractive index represents the gain or loss for 
each filed mode. Figure 4(e) illustrates that, the light modes become strongly asymmetric. For the non-symmetric 
one (Fig. 4(c)), the light modes are perfectly symmetric, which is shown in Fig. 4(f).

Thirdly, we show in Fig. 4(g–i) the propagation characteristics of the probe beam according to the condition of 
Fig. 4(a–c) respectively. When the condition of the system is below threshold, the probe beam oscillates periodi-
cally between the two waveguides, as show in Fig. 4(g). When the case is above the threshold, it can be seen from 
Fig. 4(h) that an exponentially growing mode occurs, which signifies the onset of PT symmetry breaking. For the 
passive waveguides, the probe beam also oscillates periodically (Fig. 4(i)), which is similar to the case of below 
threshold. However, the oscillation period in Fig. 4(i) is shorter than that of in Fig. 4(g).

In a practical system, it is very difficult to realize perfect PT-symmetric condition. So, we evaluate the degrees 
of asymmetry of the system by analyzing the asymmetry function of Δ(x) = n(x) − n*(−x), and find that the 
degree of asymmetry is very small. Therefore, it is manageable and has little impact on practical experiments.

PT-symmetric optical lattices—Type I.  In this part, we first consider an 1D optical lattices of period Λx 
along x direction, and in each lattices the electron density of QWs is spatially modulated. The electron density in 
the ith trap can exhibit a Gaussian distribution = σ− −N x y Ne( , )i

x x( ) /i x
2 2

, where N is the electron density of a 
homogeneous QW sample, xi is the ith trap center, and σx is the half width. The modulation of electron density of 
QWs can be achieved by using high order surface grating50,51. We further consider a pump laser field with period-
ically modulated intensity δ πΩ = Ω + Ω − Λx xsin[2 ( )/ ]d d d i x0 , which can be easily achieved in experiment by 
using an imperfect standing-wave (SW) field with unequal forward and backward components. We show the 
schematic diagram of QW system in Fig. 5. The probe field and coupling filed propagate along z direction, and the 
SW pump fields propagate along x direction.

First, we calculate the real χR and imaginary χI parts of the susceptibility as a function of Δp for varying value 
of Ωd by solving Eq. (3) without modulation of pump intensity or the electron density, and the corresponding 
results are shown in Fig. 6. It can be seen from red dotted line in Fig. 6(b) that when Ωd = 0.8Γ, a typical EIT 
with positive value (loss) is realized. With increasing value of Ωd, at both sides of the EIT windows, χI becomes 
positive (gain), which is knew as coherent Raman gain without population inversion [blue dashed line and black 

Figure 10.  Schematic diagram of QW system for realizing PT-symmetric optical lattices.
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solid line in Fig. 6(b)]. Meanwhile, χR changes form positive dispersion to negative dispersion in the vicinity of 
EIT window, as shown in Fig. 6(a). The figures indicate that it is possible to realize PT symmetry by choosing 
suitable modulations.

Then, with modulation of the pump intensity and electron density, we calculate the real (nR) and imaginary 
parts (nI) of the refractive index as a function of x and show the results in Fig. 7. Figure 7(a) shows the condition 
of Δp = 2.592 meV and δΩd = 0.1Γ. The value of Δp is chosen according to blue dashed line in Fig. 6(b), where χI 
has zero value around Δp = 2.592 meV, and thus it exhibits gain or absorption if Δp is slightly tuned away from 

Figure 11.  Real part nR and imaginary part nI of the refractive index as a function of position x for unchanged 
absolute value and different signs of Δp, δΩc and δΩd, respectively, (a) Δp = 2.525 meV, δΩc = 0.3Γ and 
δΩd = 0.1Γ, (b) Δp = 2.525 meV, δΩc = 0.3Γ and δΩd = −0.1Γ, (c) Δp = 2.525 meV, δΩc = −0.3Γ and 
δΩd = 0.1Γ, (d) Δp = 2.525 meV, δΩc = −0.3Γ and δΩd = −0.1Γ, (e) Δp = −2.525 meV, δΩc = 0.3Γ and 
δΩd = 0.1Γ, (f) Δp = −2.525 meV, δΩc = 0.3Γ and δΩd = −0.1Γ, (g) Δp = −2.525 meV, δΩc = −0.3Γ and 
δΩd = 0.1Γ, (h) Δp = −2.525 meV, δΩc = −0.3Γ and δΩd = −0.1Γ. The parameters are Ωc0 = 3Γ and Ωd0 = Γ. 
The other parameters are the same as in Fig. 6.
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this point. It can be seen that nR is an even function of the lattice position x, while nI is an odd function of lattice 
position x with balance gain and loss. Such results clearly indicate that PT symmetry is built in QW system by 
modulating the pump field and the electron density.

In Figs 7(b) and 6(d), we further show the cases for the same absolute value of Δp and δΩd as that of in 
Fig. 7(a), but with different sign of them. The results show that the PT-symmetric properties are maintained in all 
cases. However, the relation between nR and nI are different. It is found that positive (negative) value of Δp results 
in the positive (negative) value of nR and have no effect on the profile of nI. On the other hand, the sign of δΩd 
determines the position of gain and loss in each period, for instance, with positive (negative) value of δΩd, nI is 
gain (loss) in one half period −0.5 ≤ x/Λx ≤ 0. The understanding of impacts of the parameters on spatial features 
of the refractive index is important because of its potential application, such as asymmetric light diffraction52,53.

We next check what will happen if the absolute value of Δp and δΩd is changed. To do so, we plot 2D nR and nI 
as functions of x and Δp in Fig. 8(a,b), and as functions of x and δΩd in Fig. 8(c,d), respectively. The figures clearly 
show that nR and nI are modulated along x direction for varying Δp or δΩd. In addition, the profile of nI is much 
more sensitive to the parameters than that of nR. When Δp or δΩd is detuned from the value used in Fig. 7(a), 
through nR is maintained an even property, nI losses odd property, where the loss in one half period is not equal to 

Figure 12.  (a) Real part nR and (b) imaginary part nI of the refractive index as functions of position x and probe 
detuning Δp. The parameters are δΩc = 0.3Γ and δΩd = 0.1Γ. (c) Real part nR and (d) imaginary part nI of the 
refractive index as functions of position x and modulation intensity δΩd. The parameters are Δp = 2.525 meV 
and δΩc = 0.3Γ. (e) Real part nR and (f) imaginary part nI of the refractive index as functions of position x and 
modulation intensity δΩc. The parameters are Δp = 2.525 meV and δΩd = 0.1Γ. The other parameters are the 
same as in Fig. 11.
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the gain in the other half. Therefore, PT symmetry is destroyed in QW system because of the nonlinear response 
of nI to Δp or δΩd.

Last, our goal is to realize 2D modulation of refractive index as functions of x and y, and this can be achieved 
by 2D modulation of the electron density and pump field, which are

= σ σ− − − −N x y Ne( , ) , (5a)i
x x y y( ) / ( ) /i x i y

2 2 2 2

δ π π ΛΩ = Ω + . Ω − Λ + −{ }x x y y0 5 sin[2 ( )/ ] sin[2 ( )/ ] , (5b)d d d i x i y0

We plot in Fig. 9(a,b) the top view of nR and nI as functions of x and y using the same parameters in Fig. 7(a), 
respectively. The results clearly show that nR is an even functions of x and y, while nI is an odd functions of x and 
y, therefore, 2D PT-symmetric optical lattices is realized in QW systems.

PT-symmetric optical lattices—Type II.  In this part, we show that PT symmetry can also be achieved by 
modulating both pump and coupling fields. The schematic diagram of the system is shown in Fig. 10, where the 
probe field propagates along z direction, and the SW coupling and SW pump fields propagate along x direction. 
Therefore, we have modulated coupling and pump fields, Ωc  = δ πΩ + Ω − Λx xcos[2 ( )/ ]c c i x0 , Ωd  = 

δ πΩ + Ω − Λx xsin[2 ( )/ ]d d i x0 .
First, we plot the real and imaginary parts of the refractive index (nR and nI) as a function of x in Fig. 11 for dif-

ferent cases. Figure 11(a) shows the condition of Δp = 2.592 meV and the modulation intensities δΩc = 0.3Γ and 
δΩd = 0.1Γ. It can be seen from figure that the PT symmetry is appears, where nR is an even function of x, and nI is 
an odd function of x. The relations of nR and nI can also be modified by changing the sign of the detuning Δp and 
the modulation intensities δΩc and δΩd, and the changing of their sign will not destroy the PT symmetry. There 
are eight kinds of combinations of these three parameters, corresponding to eight kinds of spatial refractive index, 
and we plot the other seven kinds in Fig. 11(b–h). It can be found that Δp, δΩc or δΩd have different impacts on 
the features of nR and nI. More specifically, Δp determines nR being positive or negative, and δΩc determines the 
monotonicity of nR, and δΩd determines the positions of the gain and loss in one period.

We also check the impact of absolute value of Δp, δΩc or δΩd on the properties of PT-symmetric system. 
Therefore, we plot 2D nR and nI as functions of x and Δp in Fig. 12(a,b), as functions of x and δΩd in Fig. 12(c,d), 
and as functions of x and δΩc in Fig. 12(e,f), respectively. The figures clearly show that nR and nI are modulated 
along x direction for varying Δp, δΩc or δΩd. However, when these parameters are detuned form the value used in 
Fig. 11(a), the system will loss the PT-symmetric properties.

Last, we show that it is possible to realize 2D PT-symmetric optical lattices by applying 2D modulation of the 
pump and coupling laser fields, which are

δ π πΩ = Ω + . Ω − Λ + − Λ{ }x x y y0 5 cos[2 ( )/ ] cos[2 ( )/ ] , (6a)c c c i x i y0

δ π πΩ = Ω + . Ω − Λ + − Λ{ }x x y y0 5 sin[2 ( )/ ] sin[2 ( )/ ] , (6b)d d d i x i y0

Using the same parameters in Fig. 11(a), we calculate nR and nI as functions of x and y, and show the tope view 
of nR and nI as functions of x and yin Fig. 13(a,b), respectively. The results indicate that 2D PT-symmetric optical 
lattices can be achieved, with nR being an even functions of x and y, and nI being an odd functions of x and y, 
respectively.

Figure 13.  (a) Real part nR and (b) imaginary part nI of the refractive index as functions of position x and 
position y. The parameters are Δp = 2.525 meV, δΩc = 0.3Γ and δΩd = 0.1Γ. The other parameters are the same 
as in Fig. 11.
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Conclusion
In conclusion, we have demonstrated that coherent asymmetric double semiconductor QWs can be an ideal 
candidate for studying PT symmetry. We have showed that PT-symmetric optical waveguides can be realized by 
using two coupling fields with different detuning, 1D and 2D PT-symmetric optical lattices can be realized by 
spatial modulation of pump laser fields and the electron density of QWs, or by spatial modulation of pump and 
coupling fields. In addition, the PT-symmetric properties realized in QW systems, such as the relation between 
the real and the imaginary parts of the complex refractive indices, can be controlled by changing the laser fields 
and the parameters of QWs.
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