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Basic immunology research over several decades has led to an improved understanding of tumour recognition by components of
the immune system and mechanism of tumour evasion from immune detection. These findings have ultimately led to creating
antitumour immunotherapies in patients with different kind of cancer including prostate cancer. The increasing number of
reports confirms that immune-based therapies have clinical benefit in patients with prostate cancer with potentially less toxicity in
comparison with traditional systemic treatments including surgical resection, chemotherapy, or radiotherapy in various forms.
This review focuses on the possibility of modulation of the optimal immunotherapy based on vaccination strategy adopted to
individual patients in order to increase quality and quantity of their life.

1. Introduction

Today, there are a number of immune-based cancer treat-
ments in development for prostate cancer (PC). In papers
[1, 2], it has been shown that the rate of increase of the
prostate specific antigen (PSA) can be modified in terms of
vaccinations that stimulate the patients’ immune system. If it
is supposed that PSA level can be treated as marker for
disease load in PC, then one can build a model that describes
mathematically appropriately adjusted immunotherapy to
treat PC [2, 3]. Using such a model, one can shown that the
efficacy of immunotherapy can be improved by changing the
interdosing intervals rather than the dose itself [4, 5]. These
facts suggest that, in order to achieve the best prostate cancer
treatment, an optimal vaccination strategy matched to

individual patients should be found [6, 7]. In this article, we
try to develop a methodology that helps to find personalized
vaccinations schedule that is optimal for treated patient
based on mathematical model of PC immunotherapy de-
veloped by Kronik et al. in [8]. Our proposed vaccination
schedule is taking into account the personal dynamics of the
immune system and the rate of disease processes. Based on
these data, it may be possible to better understand the field of
therapeutic cancer vaccines.

The paper is organized as follows. At first, we briefly
present the mathematical model of prostate cancer immu-
notherapy which we use and then discuss possible pheno-
types that arise from this numerical model. Finally, we
analyse chosen vaccination strategy on the population of
statistically generated patients.
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2. Material and Methods

The model of PC immunotherapy is represented mathe-
matically by the system of seven ordinary differential
equations that describe this very sophisticated biological
process in simple form [8]. This simplification, however, is
made in such a way that does not destroy the nature of the
process and all important mechanisms are maintained.
These equations can be analysed mathematically (cf. e.g., [9])
giving very useful information about the original process
and allowing making prediction about the development of
the disease. The model describes dynamical dependencies
between the cellular vaccine (V) and prostate cancer cells (P)
by the use of immune system, that is, antigen-presenting
dermal dendritic cells (D,,), mature dendritic cells (D),
“exhausted” dendritic cells (Dy), antigen specific effector
cells (C), and regulatory/inhibitory cells (R). At the cellular
level, it can be presented as (1)-(7).
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Following [8] in Table 1 we present model parameters
together with their definitions and units. See, for example,
[8, 10, 11] for detailed information about model assumption,
parameters description and evaluation, and biological
mechanism presentation. Initial conditions of the model are
given by estimation of the three types of cell populations in
the starting point of the simulation for a patient with PC and
without immunity. Standard dose of the vaccine contains
2.4-107 cells. Therefore, with V' (0), we take 2.4 - 107 cells or
the multiple of this. The initial populations of the immune
system cells are taken to be equal to zero, so that
D,,(0) =0,D-(0) =0,Dz(0) =0,C(0) =0,R(0) =0. Ini-
tial population of tumour cells is proportional to the tumour
size and average tumour in the initial stage of PC contains
about 30 - 10° PC cells.

In order to determine which parameters contribute the
most to output variability, we applied global quantitative
sensibility analysis based on Sobol” (variance decomposi-
tion) approach [12, 13]. Sobol” global analysis is changing all
of the model parameters at the same time and allows
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discriminating between insensitive and sensitive model
parameters [13]. Moreover, this approach is proven to be one
of the most robust and effective tools to describe individual
and cooperative sensitivities. It gives indices that can be used
for estimating the influence of individual parameters or
groups of parameters on the model output. These sensibility
indices allow deciding if the model output is sensitive to a
chosen input parameter. If the output of the model is not
sensitive to an input parameter, then the effect of that pa-
rameter can be neglected and it can be fixed, hence reducing
the complexity of the model.

To make calculation, we have established time of the
simulation, variation of the input parameters A, and the
number of samples for the quasi-random Monte Carlo
simulation. One has noticed that calculations of the sensi-
tivity indices are independent of the time of the simulation
and the number of samples for the simulation; therefore, we
have performed calculations only for different variations of
the input parameters A. We have calculated the parameters
sensitivities of a PC immunotherapy model presented in
equations (1)-(7)) based on Sobol’ probability distribution
function. The results of calculations are presented in
Figure 1.

According to Figure 1, one can conclude that there are
only two sensitive parameters r and a, out of 15 input
parameters (see Table 1) which differ for various patients;
they are personalized. This corresponds to different clinical
outcomes for patients and allows classifying them in terms of
these parameters. Such approach leads to the personalized
model of PC where patients generally differ from each other
by four variables:

(i) Dose of the vaccine V (0)
(ii) Initial tumour size P (0)
(iii) Tumour growth rate r

(iv) Maximal PC cell killing efficacy a,

The simulations of the PC model were performed on a
Matlab Simulink environment (MathWorks, Natick, MA).
We solved the model equations by implementing them in
Simulink using graphical programming language, whereas
strategy of calculation and parameters setting were imple-
mented in the appropriate m-files. Meanwhile, to calculate
the sensitivity indices (first order, global), we used the
Matlab software tool GSAT (Global Sensitivity Analysis
Toolbox) [14].

3. Phenotypes: Numerical
Classification of Patients

Our methodology of research is based on the mathematical
model of prostate cancer described in Section 2. The model
allows calculating the number of PC cells at any time of the
PC evolution. Taking into account the number of PC cells,
one can easily calculate the volume of cancerous PSA-
producing cells and then the rate of change of PSA [15].
We start numerical analysis of PC evolution lasting over
a period of one month for the case of single vaccination. In
this case, one can distinguish numerically only three possible
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TaBLE 1: Parameters of the PC mathematical model. According to this model, only two parameters r and ap are personalized and depend on

the immunology system of the patients.

Definition Value Units
k; Rate of DC maturation following vaccine uptake 0.06 h!
; Number of vaccine cells required to induce 1 .
K maturation of one DC
v, Natural influx of mature DCs 0 cells
k,, Rate of DC migration from skin to lymph node 0.027 h™
" Fraction of antigen-presenting DCs entering the 0.03 _
! lymph node ’
ker Rate of exhaustion of mature DCs 0.027 h™!
Up Death rate of exhausted DCs 0.014 h™
ag Rate of inhibitory cell recruitment by exhausted DCs 3.107° h™
Ugr Death rate of inhibitory cells 0.03 h™
ac Rate of effector cell recruitment by mature DCs 0.38 h™
Ue Effector cell death rate 0.007 h™!
kg Rate of effector cell inactivation by inhibitory cells 6-1077 cell ' h!
r Tumour growth rate Personalized; range from 107 to 107 h™!
a, Maximal PCa cell killing efficacy Personalized; range from 0 to 2-107° cell'.h!
hp Effector cell efficacy damping coefficient 108 Cells
Changing of input parameters up to 10% Changing of input parameters up to 30% Changing of input parameters up to 50%
0.9 0.8 0.6
g B 0.8 g B 0.7 g 05
®E 07 ®E 06 % 2
3 g 05 2] %8
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£E 03 LE $Eo02
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PC model parameters
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FiGURre 1: The graphs show the values of the first order global sensitivity indices for different ranges of variation of the input parameters. As
we see, the greater the variability of the input parameters, the larger the indices for the input parameters except for r and a,, but, even for
50% of variability of the input parameters, the r and a,, indices are much more bigger than the rest of input parameters. (a) A=10%, (b)

A=30%, and (c) A=50%.

phenotypes of PC developing. In the first phenotype, a
statistical patient is clinically responding; he starts
responding immediately after vaccination and maintains
this state over some period of time. The example of such
patient with personalized parameters given in Table 2 (row
2) is presented in Figure 2(a).

In the second phenotype, a statistical patient is delayed
nonresponder. It means that the population of PC cell
counts initially increases and then after two or three days
decreases but finally rebounds. The example of such patient
with personalized parameters given in Table 2 (row 3) is
presented in Figure 2(b).

In the third phenotype, a patient is clinically non-
responding; the population of PC cell is increasing over the
considered period of evolution and is independent from
vaccination. The example of such patient with personalized
parameters given in Table 2 (row 4) is presented in
Figure 2(c).

Next, in order to show different types of PC evolution, let
us analyse numerically the chosen schedule of vaccinations.
This vaccination schedule consists of a series of vaccinations
lasting over half a year according to the timetable: one
vaccination in a week over four weeks, with the next four
weeks as a break for recovery, and repeating this scheme four
times (see quasi-vertical lines on Figures 3 and 4 which
represent the vaccinations). The results of such approach for
7 statistically chosen patients classified by a,, parameter, that
is,
ap = [0.310,0.322,0.333,0.345,0.357,0.368,0.380] - (107)
(for each a, we have P(0)=65- 10°, r=10"3, and
V(0) =2.4-107), are presented in Figure 3. The a, pa-
rameters are chosen in such way to show different evolution
scenarios of the PC for maximal value of tumour growth rate
rand to catch the moment when PC cells population starts to
grow in an uncontrolled way. In Figure 3, each quasi-vertical
line represents the vaccination, so that we have four cycles by
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TaBLE 2: Example of PC model parameters corresponding to responder patient—phenotype I (row 2), delayed nonresponder patient-
—phenotype II (row 3), and nonresponder patient—phenotype III (row 4).

Phenotype Initial number of PC cells P(0) Tumour growth rate r Maximal PCa cell killing efficiency a, Dose of vaccination V' (0)

I 60 - 10° 0.1-107° 2-107° 2.4-107
11 60 - 10° 0.99-107* 1.9-10°° 2.4-107
11 60 - 10° 1-107 0.1-107° 2.4-107
Population of prostate Population of prostate Population of prostate
%10 cancer cells %1010 cancer cells %10 cancer cells
6.05 6.2 13
6 12
6.15
5.95 11
5.9 6.1 10
P P P
5.85 6.05 9
5.8 8
6
5.75 7
5.7 5.95 6
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

t (h)
()

t (h)

(®)

t (h)
(c)

FIGURE 2: The graphs show examples of PC cells evolution for the three distinguished phenotypes. One can notice that, in the first case (a),
patients are responding to immunotherapy, and in the second (b), they are poorly responding, while in the third (c), they are not responding
at all. Here, P (t) denotes the population of PC cells over the time. (a) Phenotype I, (b) phenotype II, and (c) phenotype III.

four vaccinations each. One quasi-vertical line represents the
population of vaccination cells rescaled by 10* (i.e., vacci-
nation cells =value form the graph divided by 10*). Seven
coloured lines represent PC evolution for different patients,
whereas changing of colour in each line is caused by vac-
cination. From the other side, we can choose patients (la-
belled by r parameter) with the same maximal PC cell killing
efficiency a, parameter and different tumour growth rate r,
according to the list »=[0.01,0.175,0.34,0.505,0.67,
0.835,1] - (1073) (for each r, we have P(0)=65-10°
a, =025 1076, and V(0) = 2.4-107). Then one can also
observe the situation when population of PC cells grows in
an uncontrolled way (see Figure 4).

This simple approach shows that, in order to make full
analysis of PC evolution, we should vary a , and r parameters
together with the initial tumour size P(0) and the dose of
vaccination V' (0). Such complex analysis for virtual patients
generated as points uniformly distributed in the whole space
of accessible parameters is given in Section 4.

4. Analysis of Chosen Vaccination Strategies

In this analysis, we restrict ourselves to the three sizes of
tumour: Py, =30-10% Py, = 45-10% Py, = 60 - 107 [cells].
A group of 10100 patients has been generated for each size of
tumour based on the scope of variation of r and a,,. Every
patient in that group has unique parameters of tumour
growth rate (r[h7']) in the range from 107° [h7™!] to
102 [h™'] and maximal PCa cell killing efficacy (a, [cell !
h™']) ranging from 0 to 2-10~®[cell " -h™'].

The treatment plan consisted of administering the dose
of vaccine at weekly intervals for four weeks. The standard
dose of the vaccine is 2.4 - 107 [cells] (1.0 d), and, in addition,
half of standard dose (0.5d) and one and a half of the
standard dose (1.5d) are given to the groups. After simu-
lating the treatment, it can be concluded that, in many cases,
the plan used quickly dealt with cancer in a large number of
cases.

For tumour size of 30-10° and for dosing of 0.5d,
vaccination has not completely cured the tumour for 1574
patients; additionally, for this group, vaccination did not
help at all 472 patients, meaning that P> P,. Dependency
a,(r) for given tumour size and dosing is presented in
Figure 5(a). For dosing of 1.0d, vaccination has not fully
cured 1136 patients, 3500f whom it did not help at all. Data
for this group are presented in Figure 5(b). For dosing of
1.5 d, vaccination has not completely cured 986 patients, and
from this group vaccination did not help at all 308 patients.
Dependency a,, (r) for given tumour size and 1.5d dosing is
presented in Figure 5(c).

For the tumour size of 45-10° and dosing of 0.5d,
vaccination has not completely cured the tumour for 2294
patients, of whom 681 were not helped at all by vaccination.
Correlation a, (r) for given tumour size and dosing is pre-
sented in Figure 6(a). For 1.0d dosing, vaccination did not
cure tumour for 1659 patients, and from this group vacci-
nation did not help at all 499 patients. Data are presented in
Figure 6(b). Dosage of 1.5d did not cure the tumour com-
pletely for 1430 patients, of whom 681 were not helped at all
by vaccination. Data are presented in Figure 6(c).
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FIGURE 4: The possible scenarios of PC evolution for different tumour growth rate r. Each line represents virtual patient labelled by r
parameter. Quasi-vertical lines show the moments of vaccinations, while their heights correspond to the population of vaccinations cells

rescaled by 10%.

For the tumour size of 60-10° and dosing of 0.5d
(Figure 7(a)), vaccination did not cure the tumour com-
pletely for 3014 patients, and from this group vaccination did
not help at all 890 patients. Dosage of 1.0 d (Figure 7(b)) did
not cure the tumour completely for 2170 patients, of whom
649 were not helped at all by vaccination. For dosing of 1.5d
(Figure 7(c)), vaccination did not cure the tumour com-
pletely for 1869 patients, of whom 565 were not helped at all.

With the assumed treatment model, the success of the
treatment is visible already for very small a, values. For a
maximum tumour growth rate of r = 107>, the 30 - 10° tumour
disappears at a,, = 3.4 - 1077 [cell " -h™"] for dosing of 0.5d and
a,=24-1077 [cell " -h™'] for dosing of 1.0d, and, for dosing of
1.5d, tumour disappears at a, = 2 - 107 [cell™"-h7"].

The tumour of size 45-10° disappears at
a,=52- 1077 [cell-h™!] and dosing of 0.5 d. For dosing of
1.0d, tumour disappears at a, = 3.6 - 107 [cell-h™'] and
for dosing of 1.5d tumour disappears at a,=3-10"
[cell-h71].

The largest tumour of size of 60 -10° is cured at a, =
6.8 1077 [cell'-h™'] and dosing of 0.5 d. For dosing of 1.0d
largest tumour disappearsata, = 4.8 - 107 [cell ™" -h™'] and
for dosing of 15d tumour disappears at
a,=4- 1077 [cell™'-h™!]. It can be noted that a multitude of
vaccine doses affect the curability but not much. It can also
be noted that very small changes in a, cause very large
changes in the number of cancer cells P. This trend can be
observed in Figures 5-7.

P
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F1Gcure 5: Contour plot of a » (r) dependency for tumour size of 30 - 10° and three different doses of vaccine. (a) 0.5 dose, (b) 1.0 dose, and (c) 1.5 dose.
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Ficure 6: Contour plot ofap (r) dependency for tumour size of 45 - 10° and three different doses of vaccine. (a) 0.5 dose, (b) 1.0 dose, and (c)
1.5 dose.
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Ficure 7: Contour plot of a » (r) dependency for tumour size of 60 - 10° and three different doses of vaccine. (a) 0.5 dose, (b) 1.0 dose, and (c) 1.5 dose.

5. Conclusion

Modern therapies, commonly used against cancer, still do not
cure patients with advanced cancers. However, in contrast to
chemotherapy or radiotherapy, personalized therapy extends
the time free from symptoms of the disease, increases the
quality of life of patients, which often allows them to return to
work and full physical capacity, usually has minor side effects,
and, most importantly, lengthens the patients’ life time.
Today, there are a number of immune-based treatments in
development for different kind of cancer [16]. Immuno-
therapy for PC has spread and become resistant to other
treatments and is a rapidly emerging approach to treatment. It
relies on the ability of the immune system to identify and
destroy tumour cells and to elicit a long-lasting memory of
this interaction. Under ordinary circumstances, however, the
ability of tumour cells to trigger an effective immune response
is limited [17]. Understanding the dynamic relationship be-
tween cancer cells and the immune system increases the
potential for developing new therapies that help improve the
outcomes for patients with prostate cancer.

The purpose of this study was to determine if it is possible
to make and administer safely a “personalized” vaccine to
treat patients that have been diagnosed with prostate cancer
and are not candidates for curative therapy. We have taken
into consideration three hypothetical models of patients. The
simulations carried out consisted in comparing the severity of
the patient’s disease and its response to the standard vacci-
nation schedule with its modifications. We have shown that in

the considered model from the numerical point of view there
are only three possible phenotypes concerning PC evolution.
Moreover, taking into account the results of the treatment of
statistical patients, the proposed strategy of therapy is a
promising one. It can be noted that, for unhealed groups of
patients, over half of the cases show tumour responsiveness.
Lack of responsiveness can only be noticed at low a,, values.
Conducted analysis showed that immune responses against
cancer are highly heterogeneous, not only between the level of
cancer advancement but also within different patients with
the same type of cancer, indicating that personalized im-
munotherapy should be employed, based on the immune
status of the individual patient.
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