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ABSTRACT Most plant viruses require vector insects for transmission. Viral stability
in the hemolymph of vector insects is a prerequisite for successful transmission of
persistent plant viruses. However, knowledge of whether the proteolytic activation
of prophenoloxidase (PPO) affects the stability of persistent plant viruses remains
elusive. Here, we explored the interplay between rice stripe virus (RSV) and the PPO
cascade of the vector small brown planthopper. Phenoloxidase (PO) activity was
suppressed by RSV by approximately 60%. When the PPO cascade was activated, we
found distinct melanization around RSV particles and serious damage to viral stabil-
ity in the hemolymph. Viral suppression of PO activity was derived from obstruction
of proteolytic cleavage of PPOs by binding of the viral nonstructural protein NS3.
These results indicate that RSV attenuates the PPO response to ensure viral stability
in the hemolymph of vector insects. Our research provides enlightening cues for
controlling the transmission of vector-borne viruses.

IMPORTANCE Large ratios of vector-borne plant viruses circulate in the hemolymph
of their vector insects before entering the salivary glands to be transmitted to
plants. The stability of virions in the hemolymph is vital in this process. Activation of
the proteolytic prophenoloxidase (PPO) to produce active phenoloxidase (PO) is one
of the major innate immune pathways in insect hemolymph. How a plant virus
copes with the PPO immune reaction in its vector insect remains unclear. Here, we
report that the PPO affects the stability of rice stripe virus (RSV), a notorious rice vi-
rus, in the hemolymph of a vector insect, the small brown planthopper. RSV sup-
presses PPO activation using viral nonstructural protein. Once the level of PO activity
is elevated, RSV is melanized and eliminated from the hemolymph. Our work gives
valuable clues for developing novel strategies for controlling the transmission of
vector-borne plant viruses.

KEYWORDS plant virus, rice stripe virus, NS3, vector insect, small brown
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Similarly to arboviruses infecting humans or animals, transmission of many plant
viruses is largely fulfilled by vector insects. In 65 genera of vector-borne plant

viruses, 54% of the viruses are of the persistent type, in which viruses enter the body
of vectors and disseminate to various tissues (1). Many notorious plant viruses are
persistent viruses, such as rice stripe virus, rice dwarf virus, and tomato yellow leaf curl
virus. Persistently propagative plant viruses replicate within cells and circulate in the
hemolymph of vector insects after successfully overcoming multiple tissue or mem-
brane barriers (2). The stability of virions in the hemolymph is vital for the systemic
dissemination of persistent viruses before entry into the salivary glands, from which
they are transmitted to plants (3). Differing from the well-known cytoplasmic antiviral
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immune pathways that include small interfering RNAs, Imd, Toll, JAK-STAT, and au-
tophagy (4, 5), one of major innate immune systems in insect hemolymph is the
proteolytic activation of prophenoloxidase (PPO) (6, 7). Most studies on the PPO
activation pathway reveal its function against the infection of pathogenic bacteria and
fungi in invertebrates (8, 9). The relationship between virus fate and the PPO activation
pathway in vector insects has not been sufficiently investigated.

In fact, the PPO activation pathway consists of a cascade of clip-domain serine
proteases, which are activated after recognition of pathogens and which convert the
zymogen PPO to active phenoloxidase (PO). PO catalyzes the conversion of monophe-
nols to quinones, which form melanins restricting the activity of or killing pathogens
(10). This pathway is negatively regulated by serpins, which maintain the PPO cascade
in an inactive state when there is no immune challenge (11). Pathogenic bacteria and
fungi usually induce the activation of PPO cascade, and some of them, such as
Enterobacter cloacae or Micrococcus luteus, are frequently used as activators of this
cascade in studies (12, 13).

Rice (Oryza sativa) is a requisite food for more than half of the world’s population.
Rice stripe virus (RSV), a single-stranded RNA (ssRNA) virus of the genus Tenuivirus,
causes one of the most destructive rice diseases and has resulted in severe yield losses
in over 80% of the rice fields in eastern Asian countries (14, 15). RSV is specifically
transmitted by the small brown planthopper Laodelphax striatellus in a persistent-
propagative mode (16). The genome of RSV contains four RNA segments and encodes
an RNA-dependent RNA polymerase (RdRp), a capsid protein (CP), and five nonstruc-
tural proteins (NS2, NSvc2, NS3, SP, and NSvc4) (17). Our previous study showed that
several genes in the PPO activation pathway were differentially expressed in the
salivary glands or gut of viruliferous insects (18), suggesting that the PPO activation
pathway might be involved in the RSV transmission process.

In this study, we attempted to explore the mechanisms of molecular interactions
between RSV and the PPO activation pathway of the small brown planthopper through
investigating gene expression and PO activity variation. Interference with gene expres-
sion and bacterial stimulation were applied to further confirm the negative regulation
of PO activity by RSV. Interactions between viral proteins and PPOs show that viral
suppression of PO activity is derived from obstruction of proteolytic cleavage of PPOs.
Such manipulation of the PPO activation pathway by RSV mediates viral stability in the
hemolymph and is crucial for the RSV transmission process.

RESULTS
Transcriptional response of PPO activation pathway genes to RSV in two

immune organs. The PPO activation pathway in insects contains hemolymph pro-
teases (HPs), prophenoloxidase-activating proteases/factors (PPAPs/PPAFs), PPOs, and
serpins (see Fig. S1 in the supplemental material). These components were searched for
in the protein set of the small brown planthopper (19) through alignment with the
characterized homologous proteins of 10 insect species (see Table S1 in the supple-
mental material) and further confirmed through phylogenetic analysis. Seven HPs
(Fig. 1A), seven PPAPs/PPAFs (Fig. 1B), three PPOs (Fig. 1C), and seven serpins (Fig. 1D)
were identified in the small brown planthopper.

The gene response of the PPO activation pathway to RSV was checked in the fat
body and hemocytes of viruliferous and nonviruliferous planthoppers using quantita-
tive real-time PCR (qRT-PCR) (Fig. 2; see also Fig. S1). In the fat body, compared to those
in the nonviruliferous planthoppers, the transcript levels of HP6, HP7, PPAP1, PPAF1,
PPAF2, PPAF3, and PPO1 were upregulated, and HP1 and the transcript levels of inhibitor
genes serpin2 and serpin5 were downregulated in the viruliferous planthoppers. In the
hemocytes, the transcript levels of HP1, HP4, PPAP2, PPAP3, and PPAF3 were downregu-
lated, and only that of PPAP1 was upregulated in the viruliferous planthoppers. RSV
activated this pathway in fat bodies but inhibited it in hemocytes. Therefore, the
transcriptional responses of the PPO activation pathway to RSV were different between
the fat body and the hemocytes of vector insects.
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PO activity was inhibited by RSV in vector insects. Because zymogen PPOs are
converted to active POs, we compared the PO activities of viruliferous and nonvirulif-
erous planthoppers through surveying the production of melanin, using dopamine as
a substrate. The levels of PO activities were 13.9 units (U) and 5.2 U in the hemolymph
of nonviruliferous and viruliferous adult planthoppers and were 8.5 U and 3.1 U in the
whole body, respectively (Fig. 3A). The enzymatic activity decreased by approximately
63% in viruliferous insects. Nonviruliferous insects were fed on RSV-infected rice
seedlings for 3 days, and the virus was allowed to incubate in insects for 5 days, 7 days,

FIG 1 Phylogenetic trees of PPO activation cascade members of the small brown planthopper and other
insect species. The neighbor-joining method (pairwise deletion and p-distance model) was used.
Bootstrap analysis (1,000 replicates) was applied to evaluate the internal support of the tree topology.
Bootstrap values higher than 60% were present at the nodes. (A) HPs. (B) PPAPs/PPAFs. (C) PPOs. (D)
Serpins. The cascade members of the small brown planthopper are highlighted in italics and bold letters.
The GenBank accession numbers of all of the proteins are listed in Table S1. Aa, Aedes aegypti; Ag,
Anopheles gambiae; Bm, Bombyx mori; Dm, Drosophila melanogaster; Hd, Holotrichia diomphalia; Ha,
Helicoverpa armigera; Hc, Hyphantria cunea; Ls, Laodelphax striatellus; Ms, Manduca sexta; Of, Ostrinia
furnacalis; Tm, Tenebrio molitor.
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9 days, and 15 days postinoculation (dpi) from the beginning of the 3-day inoculation.
The PO activity in the whole body of RSV-borne insects decreased from 7 dpi compared
to that of nonviruliferous insects fed on healthy rice seedlings, and the maximum
reduction was 59% at 15 dpi (Fig. 3B). When RSV crude preparations from viruliferous
insects were microinjected into the hemolymph of nonviruliferous insects, viral repli-
cation was observed at 5 dpi (Fig. 3C), and the PO activity significantly decreased at 5,
7, and 9 dpi compared to that of the control group, which was injected with crude
preparations from nonviruliferous insects (Fig. 3D). Thus, the PO activity of the plan-
thoppers is reduced by RSV.

To further verify the influence of RSV on PO activity, we delivered E. cloacae
(Gram-negative) or M. luteus (Gram-positive) bacteria into nonviruliferous and virulif-
erous adult planthoppers. The PO activity in nonviruliferous insects was induced in an
obvious manner at 24 h after inoculation, while the enzymatic activity did not change
in viruliferous insects subjected to the same bacterial treatments (Fig. 3E). Therefore, PO
activity was still inhibited even though the planthoppers were coinfected with RSV and
bacteria.

To counter the influence of RSV on PO activity, double-stranded RNA of CP (dsRNA-
CP) was injected with RSV crude preparations into nonviruliferous insects. The viral
amount was dramatically reduced at 7 dpi, as represented by detection of less CP than

FIG 2 Differential responses of PPO activation pathway genes to RSV in the fat body and hemocytes of
planthoppers measured by quantitative real-time PCR. The relative transcript level of each gene to that of EF2 is
reported as the mean � SE. Fat bodies from 20 to 30 individuals and hemocytes from 100 to 150 individuals in a
replicate and eight replicates for each organ were used. FB, fat body. H, hemocytes. *, P � 0.05; **, P � 0.01.
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was measured after the injection of the mixture of dsGFP-RNA and the RSV crude
preparation (Fig. 3F). The inhibition of viral replication resulted in increased PO activity,
which attained the enzymatic level seen with nonviruliferous insects (Fig. 3F). All of the
experiments mentioned above showed that RSV had an inhibitive effect on the PO
activity of the vector insects.

FIG 3 PO activity was inhibited by RSV in planthoppers. (A) PO activity in the hemolymph and whole body of
viruliferous and nonviruliferous planthoppers. Totals of 10 and 12 replicates were used for hemolymph and
whole-body samples, respectively. (B) PO activity was measured in the whole body of planthoppers fed on
RSV-infected rice seedlings (RSV feeding), and the virus was allowed to incubate in insects for different times. The
control group was nonviruliferous insects fed on rice seedlings without RSV infection (mock feeding). Six to nine
replicates were used for each group. (C) Relative RNA levels of CP in the planthoppers injected with RSV crude
preparations. Six to 10 replicates were tested for each group. (D) PO activity in the whole body of planthoppers
injected with RSV crude preparations (V) or crude preparations from nonviruliferous insects (NV). Five to eight
replicates were used for each group. (E) PO activity in nonviruliferous or viruliferous planthoppers infected with E.
cloacae or M. luteus at 24 h. The control group was injected with water. Five or six replicates were used for each
group. *, P � 0.05; **, P � 0.01. (F) Variations in CP and PO activity in planthoppers injected with the mixture of V
and the double-stranded RNA of CP (dsCP). The control group was injected with a mixture of the double-stranded
RNA of GFP (dsGFP) and V or NV. Five to eight replicates were used for each group. A homemade anti-CP polyclonal
antibody was applied to quantify CP. An anti-human �-tubulin monoclonal antibody was used to measure tubulin
as an internal control. Different letters indicate statistically significant differences in PO activity. M, marker.
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Adverse effects of POs on RSV stability in the hemolymph of vector insects. To
investigate the effect of PO activity on virus fate in vector insects, two inhibitors of PPO
activation, serpin2 and serpin7, were manipulated. In viruliferous planthoppers, knock-
ing down serpin2 and serpin7 using a mixture of dsserpin2-RNA and dsserpin7-RNA
increased PO enzymatic activity (Fig. 4A). Although the elevated PO activity did not
affect the viral load in the whole body at the CP RNA and protein levels (Fig. 4A), the
viral load in the hemolymph significantly decreased at the CP level, but there was no
difference in viral load in the rest body (Fig. 4B; see also Fig. S2A). After RSV particles
were purified from the hemolymph using ultracentrifugation, distinct melanization
around RSV particles was observed in the serpin knockdown group but not in the
dsGFP-RNA injection group under a transmission electron microscope (Fig. 4C). When
a RSV crude preparation was injected with the mixture of dsserpin2-RNA and dsserpin7-
RNA into nonviruliferous planthoppers, PO activity was activated, and the viral load in
the whole body, hemolymph, or the rest body was dramatically reduced at 4 dpi
compared to the levels seen with the control groups (Fig. 4D and E; see also Fig. S2B).

After the purified RSV particles were incubated with crude preparation from non-
viruliferous planthoppers and the substrate dopamine for 3 h at 25°C, a great deal of
melanin accumulated around RSV particles (Fig. 4F). This melanization was suppressed
in the presence of phenylthiourea (PTU), a specific inhibitor of POs (Fig. 4F). When the
melanin-trapped RSV particles were injected into nonviruliferous planthoppers, the CP
RNA level in the whole body did not increase with time; instead, it showed a downward
trend, in contrast to the remarkable rate of viral replication in the control group
(Fig. 4G). Consequently, CP was only minimally detectable in the hemolymph and the
rest body of the insects at 144 h postinjection with dopamine-treated RSV (Fig. 4H).

These data indicated that the activated PPOs were able to induce melanization,
which was detrimental to the stability of RSV in the hemolymph and suppressed viral
replication. Therefore, the ability to inhibit PO activity is crucial for RSV spread in vector
insects.

Reduction in PO production by RSV in vector insects. Considering that PO
activity is related to the amount of PO proteins, we measured the protein levels of PPOs
and POs in nonviruliferous and viruliferous planthoppers. The three PPOs of L. striatellus
(LsPPOs) had over 68% amino acid sequence identity, with a size of approximately
79 kDa. On the basis of alignment with Drosophila melanogaster and Holotrichia di-
omphalia PPOs, whose cleavage sites for proteolytic activation were determined pre-
viously (20, 21), the cleavage sites of LsPPOs were predicted. The first candidate
cleavage sites were residue R48 for LsPPO1 and LsPPO2 and residue R49 for LsPPO3,
potentially producing 74-kDa LsPOs (Fig. 5A). The second candidate cleavage site was
R162 for the three LsPPOs, putatively producing 61-kDa LsPOs (Fig. 5A). An anti-LsPPO
polyclonal antibody was generated using an in vitro-expressed fragment of LsPPO1-
antigen (from amino acid residues 174 to 500) as the antigen, which showed over 70%
identity to the corresponding fragments of LsPPO2 and LsPPO3. This antibody was able
to recognize all three in vitro-expressed LsPPOs in the Western blot assay (Fig. S3).

When the anti-LsPPO antibody was applied to detect the protein levels of LsPPOs
and LsPOs in the crude proteins from nonviruliferous and viruliferous planthoppers, a
dark 79-kDa band corresponding to the size of LsPPOs appeared, and the levels of band
intensity were similar between nonviruliferous and viruliferous planthoppers, suggest-
ing similar protein levels of PPOs (Fig. 5B). However, LsPO proteins with a putative size
of 74 kDa or 61 kDa were not clearly observed. To eliminate the effect of LsPPOs on
LsPOs in the Western blot, we excised the polyvinylidene difluoride (PVDF) membrane
at the site of the 72-kDa marker, and then the two pieces of membrane were separately
incubated with the anti-LsPPO antibody. Subsequently, a band of 61 kDa appeared
(Fig. 5C), indicating the presence of LsPO candidates.

Then, we conducted three experiments to verify LsPO candidates. As the expression
of the PPO activation factor PPAF2 was interfered with by the injection of dsPPAF2-RNA
in nonviruliferous planthoppers, the quantity of 61-kDa LsPO candidates and the level
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FIG 4 Adverse effects of POs on RSV stability in the hemolymph of planthoppers. (A) Variations in PO activity and
CP RNA and protein levels in the whole body of viruliferous planthoppers after injection of the mixture of
double-stranded RNAs of serpin2 and serpin7 (dsserpins) compared to those after injection of double-stranded RNA
of GFP (dsGFP). The PO activity was measured with seven replicates. The RNA levels of CP were quantified with eight
replicates. A homemade anti-CP polyclonal antibody was applied to quantify CP, and an anti-human �-tubulin
monoclonal antibody was used to measure tubulin as an internal control via Western blotting. (B) Western blot to
show CP in the hemolymph and rest body of viruliferous planthoppers after injection of dsserpins or dsGFP. A
homemade anti-lipoprotein polyclonal antibody was used to quantify lipoprotein (LP) as an internal control. (C)
Transmission electron microscopy images to show melanization around RSV particles isolated from the hemolymph
of viruliferous planthoppers after injection of dsserpins or dsGFP. The arrow indicates melanized viruses. (D)
Variations in PO activity and CP RNA and protein levels in the whole body of planthoppers 4 days after injection
of a mixture of RSV crude preparations (V) and dsserpins or dsGFP. PO activity was assayed with eight replicates.
The RNA levels of CP were quantified with six or seven replicates. (E) Western blot to show CP in the hemolymph
and rest body of planthoppers injected with a mixture of V and dsserpins or dsGFP. (F) Transmission electron
microscopy images to show melanization around purified RSV particles that were incubated with crude prepara-
tions from nonviruliferous planthoppers (NV) and dopamine in the presence or absence of phenylthiourea (PTU).
The arrow indicates melanized viruses. (G) qRT-PCR showing the relative RNA levels of CP in planthoppers injected
with a mixture of V, NV, and dopamine at different time points with 6 to 12 replicates. Dopamine was replaced by
Tris-HCl buffer in the control group. The boxed time points are magnified in the upper-left panel. (H) Western blot
to show CP in the hemolymph and rest body of planthoppers injected with a mixture of V, NV, and dopamine or
Tris-HCl buffer at 144 h postinoculation. M, marker. *, P � 0.05; **, P � 0.01.
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of PO activity significantly decreased (Fig. 5D; see also Fig. S2C). On the other hand,
when expression of serpin2 and serpin7 was knocked down using the mixture of
dsserpin2-RNA and dsserpin7-RNA, the protein level of LsPO candidates and the PO
activity dramatically increased (Fig. 5E; see also Fig. S2D). Furthermore, the inoculation

FIG 5 Reduction in PO production by RSV in planthoppers. (A) Sequence alignment of the PPO N terminus of several
insects. Possible proteolytic cleavage sites are marked with arrows. Ls, L. striatellus. Dm, D. melanogaster. Hd, H.
diomphalia. (B) Western blot assay showing the protein levels of LsPPOs and LsPOs in nonviruliferous and viruliferous
planthoppers using an anti-LsPPO antibody. An anti-human �-tubulin monoclonal antibody was used to measure
tubulin as an internal control. (C) Western blot assay showing the protein levels of LsPPOs and LsPOs by separate
blottings. The PVDF membrane was excised at the site of the 72-kDa marker, and then the two pieces of membrane were
separately incubated with the anti-LsPPO antibody. (D) Variations in PO activity and PO protein level in nonviruliferous
planthoppers after injection of double-stranded RNAs of PPAF2 (dsPPAF2) compared to those after injection of
double-stranded RNA of GFP (dsGFP). PO activity was assayed with six replicates. The relative transcript level of PPAF2
compared to that of EF2 was measured by qRT-PCR with six replicates and reported as the mean � SE. (E) Variations in
PO activity and PO protein level in nonviruliferous planthoppers after injection of a mixture of double-stranded RNAs of
serpin2 and serpin7 (dsserpins) compared to those after injection of dsGFP. PO activity was assayed with five replicates.
The relative transcript level of serpin2 and serpin7 compared to that of EF2 was measured by qRT-PCR with seven or eight
replicates and reported as the mean � SE. (F) Western blot assay showing the protein levels of LsPOs in nonviruliferous
planthoppers that were inoculated with M. luteus (ML) or water. M, marker. *, P � 0.05; **, P � 0.01.

Chen et al. ®

July/August 2020 Volume 11 Issue 4 e01453-20 mbio.asm.org 8

https://mbio.asm.org


of M. luteus in nonviruliferous insects remarkably promoted increases in the number of
LsPO candidates after 24 h (Fig. 5F; see also Fig. S2E), consistent with the induced PO
activity (Fig. 3E). Therefore, the band of 61-kDa proteins was confirmed as representing
LsPOs and the cleavage site of LsPPOs was R162. The LsPO protein levels were much
lower in viruliferous planthoppers than in nonviruliferous insects (Fig. 5C; see also
Fig. S2F), confirming that RSV had inhibited PO production from zymogen PPOs.

NS3 was responsible for the reduction in PO production. To further reveal the
molecular mechanisms underlying the inhibition of PO production from proteolyzed
PPOs by RSV, the viral proteins binding to LsPPOs were pulled down from viruliferous
planthoppers through a coimmunoprecipitation assay using the anti-LsPPO polyclonal
antibody. Homemade monoclonal anti-CP, anti-NS3, and anti-SP antibodies and the
polyclonal anti-NSvc4 antibody (22) were applied to detect the viral proteins in the
pulldown products. The results showed that CP, NS3, and NSvc4 but not SP were
precipitated with LsPPOs from the viruliferous planthoppers (Fig. 6A). The interactions
between recombinantly expressed LsPPO1-Flag and CP-His, NS3-His, or NSvc4-His but
not SP-His were further confirmed using an in vitro coimmunoprecipitation assay
(Fig. S4A). The results showed that CP, NS3, or NSvc4 may participate in the regulation
of PPO proteolysis. To verify this point, in vitro-expressed and purified NS3, CP, or NSvc4
was injected together with M. luteus into nonviruliferous planthoppers. Only NS3
suppressed the induction of PO activity (Fig. 6B) and the production of POs (Fig. 6C; see
also Fig. S2G) stimulated by M. luteus, while CP and NSvc4 did not affect bacterial
stimulation of PO production (Fig. 6B and C; see also Fig. S2G). After an anti-CP,
anti-NS3, or anti-NSvc4 antibody was injected with RSV crude preparation into non-
viruliferous planthoppers, only the anti-NS3 antibody rescued the PO activity, which
was inhibited by RSV at 8 dpi, whereas the other two antibodies did not influence the
PO activity (Fig. 6D). Thus, NS3 was the main player in the regulation of PPO proteolysis.

As the proteolytic cleavage site for the LsPPOs was R162, three fragments of LsPPO1
with a Flag tag were recombinantly expressed in Escherichia coli, i.e., N1 from the N
terminus to amino acid residue 210; N2 from amino acid residue 100 to residue 210,
with a narrower cleavage region; and C from amino acid residue 211 to the C terminus.
An in vitro coimmunoprecipitation assay showed that NS3 bound to the N1 and N2
fragments but did not bind the C fragment of LsPPO1 (Fig. 6E), indicating that NS3 is
able to occupy the cleavage site of LsPPOs to prevent PO production. Interestingly, CP
and NSvc4 bound to N1 and C but did not bind to N2 (Fig. S4B), supporting the idea
that the two proteins did not affect PO production. We further tested the interactions
between NS3 and other two LsPPOs. The in vitro coimmunoprecipitation assay showed
that NS3 bound to LsPPO3 (Fig. 6F) and its N2 fragment (from amino acid residue 102
to residue 212 with a cleavage site; Fig. 6G), but not to LsPPO2 (Fig. 6F). Therefore, RSV
suppressed PPO proteolysis mainly through binding the cleavage sites of PPO1 and
PPO3 with the nonstructural protein NS3.

DISCUSSION

One of the key stages for persistent plant viruses and animal arboviruses is circu-
lation in the insect hemolymph to reach various organs after viruses are released from
the insect gut. During the circulation process, these viruses have to deal with the
immune response in insect hemolymph. The PPO activation pathway is one of the
primary immune systems in insect hemolymph. Although this pathway is well known
to play an important role in defense against pathogenic fungi, bacteria, and viruses (6,
7), the involvement of this pathway in the control of plant virus transmission by vector
insects has not been investigated. In this study, we report that a persistent plant virus
utilizes its nonstructural protein to suppress PO production and melanization for stable
viral circulation in vector insects.

In what was to our knowledge the first case study of the interplay between a plant
virus and the PPO activation pathway of a vector insect, we found that RSV reduced PO
activity by approximately 60% in viruliferous planthoppers. In contrast, pathogenic
viruses also inhibit the PO activity of the host but to a larger degree. For example, the
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FIG 6 NS3 was responsible for the reduction in PO production. (A) Coimmunoprecipitation (Co-IP) assay for the
interaction between LsPPOs and RSV proteins in vivo using an anti-LsPPO polyclonal antibody. Rabbit IgG was used
as a negative control. Homemade monoclonal anti-CP, anti-NS3, and anti-SP antibodies and polyclonal anti-NSvc4
and anti-LsPPO antibodies were used in Western blot analysis. V-planthopper, the total proteins from viruliferous
adult planthoppers. (B) Comparisons of PO activity in nonviruliferous planthoppers injected with a mixture of M.
luteus (ML) and recombinantly expressed NS3-His, CP-His, NSvc4-His, or BSA compared to that of the control group
insects injected with BSA and water. Seven to 10 replicates were used. *, P � 0.05; **, P � 0.01. ns, no significant
difference. (C) Western blot assay showing the variation in LsPOs in the nonviruliferous planthoppers that were
injected with a mixture of ML and NS3-His, CP-His, or NSvc4-His. The control group was injected with BSA and water
or ML and BSA. An anti-LsPPO polyclonal antibody and anti-human �-tubulin monoclonal antibody were used. M,
marker. (D) Comparisons of PO activity among planthoppers injected with a mixture of crude preparations from
nonviruliferous planthoppers (NV) and IgG, RSV crude preparations (V) and IgG, V and anti-NS3 polyclonal antibody,
V and anti-CP polyclonal antibody, or V and anti-NSvc4 polyclonal antibody. Five to seven replicates were used.
Different letters indicate statistically significant differences in PO activity. (E) Co-IP assay for the interaction between

(Continued on next page)
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PO activity of white spot syndrome virus (WSSV)-infected shrimp decreased approxi-
mately 6-fold at 2 and 3 dpi compared to that of uninfected shrimp (23). The PO activity
of Helicoverpa armigera was inhibited by baculovirus by 7.4-fold at 48 h postinoculation
(hpi) and 4.2-fold at 72 hpi compared to the results seen with controls (24). Therefore,
inhibition of insect humoral melanization seems to be a common characteristic for
plant viruses and pathogenic viruses but the degrees of inhibition differ. Plant viruses
show weaker suppression regulation of the insect PPO system than pathogenic viruses.
This distinction could represent one of the important conditions accounting for the
different replication levels of the two types of viruses in insects, i.e., limited replication
of plant viruses in vector insects versus uncontrolled replication of pathogenic viruses
in host insects.

The weak suppression of the insect PPO system has biological significance for plant
viruses. When PPOs of planthoppers were artificially activated in vivo or in vitro, obvious
melanization appeared with the ultracentrifugation-purified RSV particles trapped by
melanin, and melanization resulted in instability of RSV in the hemolymph. However,
this melanization phenomenon was not observed directly in the PPO-activated hemo-
lymph because RSV particles were undetectable in vivo, probably due to the low viral
load and inconsistencies in the shapes of the viruses. The melanization phenomenon
was also not found in vector insects carrying other persistent plant viruses or arbovi-
ruses, perhaps because of the suppressive effect of the viruses on the PPO system.
Although the extent of plant virus inhibition of the insect PPO system is not as large as
that shown by pathogenic viruses, this weak suppression is enough to eliminate the
possibility of melanization and to ensure stable circulation of plant viruses in insect
hemolymph. In contrast, fungi and bacteria usually activate the PPO system and induce
melanization, as shown by such species as Beauveria bassiana in Anopheles gambiae
and Ostrinia furnacalis (9, 25), M. luteus and Saccharomyces cerevisiae in Bombyx mori
(26), M. luteus and B. bassiana in Drosophila (27), and Staphylococcus aureus and Vibrio
parahaemolyticus in Procambarus clarkii (28). Thus, viruses have effects opposite of
those of fungi and bacteria on the PPO activation pathway of insects or other arthro-
pods.

The nonstructural NS3 protein of RSV occupied the cleavage sites of PPOs, impeding
PO production from PPOs. This “PPO suppressor” activity is a newly revealed function
for NS3, in addition to its being a suppressor of RNA silencing in host plants and of the
26S proteasome-mediated defense response in vector insects (29, 30). In addition, CP
and NSvc4 also bound PPOs, but they neither affected PPO cleavage nor inhibited PO
activity. Their roles in the PPO system need further exploration. The regulation strate-
gies of pathogenic viruses in hosts are different from those of RSV in vector insects.
WSSV makes many efforts to inhibit the PPO system of shrimp: the viral protein
WSSV453 binds proPPAP2 to interfere with its conversion to active PPAP2; the viral
protein WSSV164 directly inhibits PO catalytic ability; and WSSV induces the expression
of shrimp miR-315 to reduce the expression of PPAP3 (31–33). In H. armigera, baculo-
virus downregulated protein levels of most PPO cascade members but upregulated
serpin5 and serpin9 expression in the hemolymph (24). Microplitis demolitor bracovirus
is a symbiotic polydnavirus of the braconid wasp Microplitis demolitor. Two viral
proteins, Egf1.0 and Egf1.5, inhibited PPAP release from proPPAP and its PPO digestion
activity in Manduca sexta, which is the host of braconid wasps (34, 35). Therefore,
different viruses have evolved different mechanisms to suppress the insect PPO im-
mune pathway. Only by clarifying the exact mechanism for each specific virus can we
exploit it for regulating the relation between viruses and hosts in an intended direction.

FIG 6 Legend (Continued)
a recombinantly expressed fragment of LsPPO1 (LsPPO1-N1-Flag, LsPPO1-N2-Flag, or LsPPO1-C-Flag) and NS3-His
using an anti-Flag monoclonal antibody. The total proteins from E. coli expressing empty pET28a vector were used
as a negative control. An anti-Flag or anti-His monoclonal antibody was used in Western blot analysis. (F) Co-IP
assay for the interaction of recombinantly expressed LsPPO2-His or LsPPO3-His with NS3-His using an anti-LsPPO
polyclonal antibody. (G) Co-IP assay for the interaction between LsPPO3-N2-Flag and NS3-His using an anti-Flag
monoclonal antibody.
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The members of the L. striatellus PPO activation cascade were identified based on
sequence homology with those of other insects. HPs, PPAFs, PPOs, and serpins are
comparatively conserved among insects, while three PPAPs of L. striatellus show high
levels of divergence from orthologs of other insects, represented by only 29% to 37%
identity in amino acid sequences with orthologs of other insects. Whether the three
PPAPs possess PPO digestion activity requires experimental verification. The responses
of most PPO cascade members to RSV infection were different in the two immune
organs, as shown by activation of this pathway in the fat body and inhibition in
hemocytes. Similar situations were also observed in other studies. For example, the
transcript level of a PPAP of white shrimp, Litopenaeus vannamei, was suppressed in
hemocytes and enhanced in gill in response to infection by Vibrio harveyi (36). HP2 was
downregulated in hemocytes but upregulated in the fat body of M. sexta after infection
with E. coli (37). Why the PPO cascade behaves differently in the two immune organs
in the presence of pathogens deserves further investigation.

In summary, we found that a persistent plant virus suppressed the function of PPO
immune effectors in the hemolymph of vector insects to ensure virus stability during
circulation in the hemolymph. This stage is vital for successful transmission of persistent
plant viruses from vector insects to host plants. Stimulation of the insect PPO activation
pathway would be a promising avenue for controlling the transmission of vector-borne
viruses, such as through upregulating HPs, PPAPs, or PPAFs; inhibiting serpins; or
designing competitive inhibitors to block the binding of NS3 with PPOs.

MATERIALS AND METHODS
Small brown planthopper strains. The viruliferous and nonviruliferous small brown planthopper

strains used in this study were established from field populations collected from Jiangsu Province, China.
The insects were reared on seedlings of Oryza sativa L. subsp. japonica var. nipponbare rice in glass
incubators at different insectaries (38). To ensure that the RSV-carrying frequency was no less than 90%,
the viruliferous strain was screened every 3 months via dot enzyme-linked immunosorbent assay
(Dot-ELISA) with a monoclonal anti-CP antibody as described previously (38).

Identification of PPO cascade members of L. striatellus. Protein sequences of the PPO activation
pathway proteins from Aedes aegypti, A. gambiae, B. mori, D. melanogaster, M. sexta, Tenebrio molitor, H.
diomphalia, O. furnacalis, H. armigera, and Hyphantria cunea were applied for BLAST analysis in the gene
set and transcriptome of L. striatellus (18, 19) using BLASTp with a cutoff E value of �10�5. The
phylogenetic relationships of these L. striatellus candidate PPO cascade members to those from other
insect species were analyzed with the neighbor-joining method (pairwise deletion and p-distance model)
using Mega 6.06 software (RRID: SCR_000667). Bootstrap analysis (1,000 replicates) was applied to
evaluate the internal support of the tree topology.

Collection of fat bodies and hemolymph. Adult planthoppers were gently laniated from abdomens
with surgical forceps in 10 mM Tris-HCl buffer (pH 8.0) on a glass slide. The white fat bodies floating in
the buffer were collected using a 0.5-to-10-�l pipette and transferred to 1.5-ml centrifuge tubes
containing 100 �l of TRIzol reagent. Eight replicates and fat bodies from 20 to 30 individuals in a replicate
were prepared.

To collect hemolymph, 30 adult planthoppers were gently laniated from abdomens with surgical
forceps in 100 �l of 10 mM Tris-HCl buffer (pH 8.0) on a glass slide. The buffer and laniated planthoppers
were transferred to a 500-�l centrifuge tube with a small hole at the bottom of the tube. The 500-�l
centrifuge tube was put in a 1.5-ml centrifuge tube and centrifuged at 2,000 � g for 15 min at 4°C. The
supernatant in the 1.5-ml outer tube was kept as clear hemolymph solution and used for PO activity
assay. Ten replicates were prepared.

We removed legs of adult planthoppers with surgical scissors and gently pressed abdomens. Small
drops of transparent hemolymph, containing hemocytes, exuded from wound sites and were collected
into 1.5-ml centrifuge tubes with 100 �l of TRIzol reagent for total RNA isolation from hemocytes. Eight
replicates and hemocytes from 100 to 150 individuals in a replicate were prepared.

PO activity assay. Twenty adult planthoppers were homogenized in 100 �l of 10 mM Tris-HCl buffer
(pH 8.0) and centrifuged at 12,000 � g for 15 min at 4°C, and 65 �l of the supernatant was gently mixed
with 100 �l of 4 mg/ml dopamine in 10 mM Tris-HCl buffer (pH 8.0) in a 96-well plate at 27°C for 10 min.
Twelve replicates for viruliferous and nonviruliferous planthoppers were prepared. For analysis of PO
activity from hemolymph, 65 �l of the clear hemolymph solution was mixed with 100 �l of 4 mg/ml
dopamine. The absorbance of melanin was monitored at 490 nm (A490) by the use of a SpectraMax
Paradigm reader (Molecular Devices, San Jose, CA, USA) every 5 min. The protein concentration of the
supernatant was determined using the Bradford method. One unit (U) of PO activity was defined as 0.001
ΔA490 for every milligram protein in 1 min (39). Values representing the PO activity of each group are
represented as means � standard errors (SE). Differences were statistically evaluated in SPSS 17.0 using
Student’s t test to compare two means or using one-way analysis of variance (ANOVA) followed by
Tukey’s test for multiple comparisons.
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RNA isolation and cDNA synthesis. Total RNA was isolated from fat bodies, hemocytes, or whole
bodies (five as a replicate) using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. RNA was treated with a Turbo DNA-free kit (Ambion, Austin, TX, USA) to
eliminate genomic DNA contamination. One microgram of RNA was subjected to reverse transcription to
cDNA using a Moloney murine leukemia virus (M-MLV) reverse transcription system (Promega, Madison,
WI, USA) and random primers (Promega) following the manufacturer’s instructions.

Quantitative real-time PCR. Quantitative real-time PCR (qRT-PCR) was used to quantify the relative
RNA levels of RSV CP and PPO cascade members of L. striatellus in the whole body or two immune organs.
The primers for each gene are listed in Table S2 in the supplemental material. qRT-PCR was performed
in 20 �l of reaction agent composed of 10 �l of 2� SYBR green PCR master mix (Fermentas, Waltham,
MA, USA), 1 �l of cDNA template, and a 0.25 �M concentration of each primer by the use of a LightCycler
480 II system (Roche, Basel, Switzerland). The thermal cycling conditions were 95°C for 2 min followed by
40 cycles of 95°C for 30 s, 60°C for 30 s, and 68°C for 40 s. The transcript level of translation elongation
factor 2 (EF2) was quantified as an internal reference to normalize the cDNA templates. The relative
transcript level of each gene is reported as the mean � SE. Differences were statistically evaluated using
Student’s t test in SPSS 17.0.

Double-stranded RNA synthesis and delivery. Double-stranded RNAs (dsRNAs) for PPAF2, serpin2,
serpin7, CP, and the green fluorescent protein gene (GFP) were synthesized using a T7 RiboMAX Express
RNA interference (RNAi) system (Promega) following the manufacturer’s protocol and assessed by
agarose gel electrophoresis for their purity and integrity. The corresponding PCR primers of dsRNA for
these genes are listed in Table S2. Injection of 23 nl of dsRNAs at 6 �g/�l for each gene was performed
on the adult planthoppers. The dsRNAs were delivered into the hemolymph in the ventral thorax by
microinjection through a glass needle using a Nanoliter 2000 injector (World Precision Instruments,
Sarasota, FL, USA).

Interference with serpin and PPAF2 expression. Viruliferous adult planthoppers were injected with
23 nl of a mixture containing dsserpin2-RNA and dsserpin7-RNA at 6 �g/�l. dsGFP-RNA at 6 �g/�l was
injected as a control. The transcript levels of the two serpins were quantified by qRT-PCR to calculate the
interference rates at 4 dpi, with six replicates. The PO activity was measured at 4 dpi, with seven
replicates. The RNA levels of CP in the whole body were quantified at 8 dpi, with eight replicates. The
protein levels of CP in the whole body, hemolymph, and rest body were assayed at 8 dpi using Western
blotting, with five replicates. The melanization of RSV particles isolated from the hemolymph was
observed with a transmission electron microscope.

Nonviruliferous adult planthoppers were injected with 23 nl of dsPPAF2-RNA or a mixture containing
dsserpin2-RNA and dsserpin7-RNA at 6 �g/�l. The control group was injected with 23 nl of dsGFP-RNA at
6 �g/�l. The insects were collected at 4 dpi. The interference rates of the three genes were quantified by
qRT-PCR, with six to eight replicates. The PO activity was measured, with five or six replicates. The protein
levels of LsPPO/LsPO were checked using Western blot analysis, with four replicates.

Feeding small brown planthoppers with rice seedlings carrying RSV. Nonviruliferous five-instar
nymphs were fed on RSV-infected rice seedlings for 3 days and then transferred to healthy rice seedlings.
The planthoppers were collected at 5, 7, 9, and 15 dpi for a PO activity assay. Another group of
nonviruliferous nymphs were raised on healthy rice seedlings as negative controls. Six to nine replicates
were prepared for each group.

Injection of small brown planthoppers with RSV crude preparations. Fifty viruliferous adult
planthoppers were homogenized with a disposable polypropylene pestle in 100 �l of 10 mM Tris-HCl
buffer (pH 8.0) contained in a 1.5-ml tube. After centrifugation at 12,000 � g for 15 min at 4°C, the
supernatant was kept. The centrifugation was repeated four times in total, and the supernatant from the
last centrifugation was used as the RSV crude preparation. A total of 23 nL of RSV crude preparations was
injected into the hemolymph of nonviruliferous adult planthoppers through a glass needle using a
Nanoliter 2000 injector. Injection of 23 nl of crude extracts from nonviruliferous adult planthoppers was
used as a negative control. The planthoppers were collected at 3, 5, 7, and 9 dpi for the PO activity assay,
with five to eight replicates for each group. The RNA level of CP in planthoppers was quantified with
qRT-PCR at 2 and 5 dpi, with six to 10 replicates.

Injection of small brown planthoppers with a mixture of RSV crude preparations and dsRNAs.
Equal aliquots of RSV crude preparations and dsCP-RNAs were mixed, and 23 nl of the mixture was
injected into nonviruliferous adult planthoppers. Injections of a mixture of RSV crude preparations and
dsGFP-RNA or a mixture of crude extracts from nonviruliferous adult planthoppers and dsGFP-RNA were
used as negative controls. At 7 dpi, proteins were extracted from five planthoppers for Western blot
analysis of CP amount, with three biological repeats. PO activity was also assayed with five to eight
replicates.

Equal aliquots of RSV crude preparations, dsserpin2-RNAs, and dsserpin7-RNAs were mixed, and 23 nl
of the mixture was injected into nonviruliferous adult planthoppers. Injection of a mixture of RSV crude
preparations and dsGFP-RNA was used as a negative control. Total RNA was isolated from five plan-
thoppers at 4 dpi to quantify the RNA level of CP using qRT-PCR, with six or seven replicates. Proteins
were extracted at 4 dpi from whole bodies, hemolymph, and rest body for Western blot analysis of CP
amount. PO activity in whole bodies was assayed with eight replicates.

Injection of small brown planthoppers with a mixture of RSV crude preparations and antibod-
ies. Equal aliquots of RSV crude preparations and each polyclonal anti-CP, anti-NS3, or anti-NSvc4
antibody were mixed, and 23 nl of the mixture was injected into nonviruliferous adult planthoppers. At
4 dpi, the insects were injected with 32.2 nl of the corresponding polyclonal antibody a second time. The
control groups were injected with a mixture of RSV crude preparations and IgG, with a mixture of crude
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preparations from nonviruliferous insects and IgG, or with IgG alone a second time. The planthoppers
were collected at 7 dpi for the PO activity assay, with five to seven replicates.

Injection of small brown planthoppers with bacterial and viral proteins. E. cloacae was cultured
to an optical density at 600 nm (OD600) of 0.15 and then diluted 1,000 times with water before use.
Freeze-dried M. luteus was dissolved in water at 1 mg/ml. A total of 23 nl of E. cloacae or M. luteus was
injected into nonviruliferous and viruliferous adult planthoppers. A control group was injected with
water. PO activity was assayed at 24 hpi with five or six replicates. Proteins were extracted from five M.
luteus-injected insects and from the control group at 24 hpi for LsPPO/LsPO detection using Western blot
analysis. Four replicates were prepared.

In another experiment, M. luteus was mixed with in vitro-expressed and purified viral protein (NS3, CP,
or NSvc4). Nonviruliferous adult planthoppers were injected with 23 nl of a mixture containing 4 mg/ml
M. luteus and 2 mg/ml NS3, 46 nl of a mixture containing 2 mg/ml M. luteus and 0.25 mg/ml CP, or 46 nl
of a mixture containing 2 mg/ml M. luteus and 1 mg/ml NSvc4. The control groups were injected with
4 mg/ml M. luteus and 2 mg/ml bovine serum albumin (BSA) or with water and 2 mg/ml BSA. Planthop-
pers were collected at 16 hpi for a PO activity assay, with 7 to 10 replicates, and for LsPPO/LsPO detection
using Western blot analysis, with three replicates.

Observation of RSV melanization and injection of melanized RSV. Hemolymph was isolated from
100 viruliferous adult planthoppers injected with dsserpins-RNA or dsGFP-RNA in 1.5 ml of 10 mM Tris-HCl
buffer (pH 8.0). After centrifugation at 10,000 � g and 4°C for 30 min, the supernatant was kept and
ultracentrifuged at 100,000 � g and 4°C for 1 h. The pellet was suspended in 20 �l of 10 mM Tris-HCl
buffer (pH 8.0). RSV crude preparations from the whole body were first centrifuged at 10,000 � g and 4°C
for 30 min, and then the supernatant was ultracentrifuged at 100,000 � g and 4°C for 2 h. The pellet was
suspended in 1.5 ml of 10 mM Tris-HCl buffer (pH 8.0) for a second ultracentrifugation for 2 h. The pellet
was suspended in 30 �l of Tris-HCl buffer and incubated with 30 �l of nonviruliferous crude preparations
and 30 �l of 4 mg/ml dopamine for 3 h at 25°C. In another group, 1 �l of a solution consisting of water
and PTU (a specific inhibitor of PO) was added. Solutions were deposited on Formvar-carbon-coated
electron microscopy grids, stained with 2% (wt/vol) uranyl acetate, and observed under an electron
microscope (Tecnai G2 F20 Twin TMP; FEI, Eindhoven, Holland) at 80 kV.

Thirty microliters of RSV crude preparation from the whole body was incubated with 30 �l of
nonviruliferous crude preparation and 30 �l of 4 mg/ml dopamine for 3 h at 25°C. Dopamine was
replaced by Tris-HCl buffer in the control group. Then, 23 nl of the mixture was injected into nonviru-
liferous adult planthoppers. Insects were collected at 2, 12, 24, 36, 48, 72, 96, 120, and 144 hpi to quantify
the RNA level of CP using qRT-PCR. Six to 12 replicates were prepared. Proteins were extracted from the
hemolymph and rest body of planthoppers at 144 hpi to check the protein level of CP using Western blot
assay.

Western blot analysis for CP, LsPPOs, and LsPOs. Proteins were extracted from five whole bodies,
hemolymph, and the rest body of 20 viruliferous planthoppers or RSV-injected planthoppers in 50, 50,
and 200 �l of 10 mM Tris-HCl buffer (pH 8.0), respectively, for Western blot analysis. A homemade anti-CP
polyclonal antibody was applied to quantify CP. An anti-human �-tubulin monoclonal antibody
(EASYBIO, Beijing, China) was used to measure tubulin as an internal control in whole-body and rest body
samples. A homemade anti-lipoprotein polyclonal antibody was used to quantify lipoprotein as an
internal control in hemolymph samples (40). The protein levels of LsPPOs and LsPOs in planthoppers
were revealed using a homemade anti-LsPPO polyclonal antibody. To eliminate the effect of LsPPOs on
LsPOs in the Western blot, the PVDF membrane was excised at the site of the 72-kDa marker, and then
the two pieces of membrane were separately incubated with the anti-LsPPO antibody. The density of CP
or LsPOs was quantified with Gelpro32 image analysis software and normalized to that of tubulin or
lipoprotein. Differences were statistically evaluated in SPSS 17.0 using Student’s t test to compare two
means or one-way ANOVA followed by Tukey’s test for multiple comparisons.

Protein expression and purification and antibody preparation. The full-length open reading
frames (ORFs) of NS3, CP, SP, NSvc4, LsPPO1, LsPPO2, and LsPPO3 and a fragment of lipoprotein (amino
acid residues 39 to 600, named lipoprotein-antigen) were amplified from a viruliferous planthopper
cDNA library and ligated with PEGM-Teasy plasmid. A Flag tag was added to the 3= terminus of LsPPO1,
LsPPO1-N1 (amino acid residues 1 to 210), LsPPO1-N2 (100 to 210), LsPPO1-C (211 to 692), and
LsPPO3-N2 (102 to 212) through PCR. A His tag from the pET28a vector was added to the 5= terminus
of NS3, CP, SP, NSvc4, LsPPO1, LsPPO1-antigen (residues 174 to 500), LsPPO2, LsPPO3, and lipoprotein-
antigen (residues 39 to 600). The primer sequences for each gene are listed in Table S2. His-tagged
fragments were inserted into the pET28a vector between restriction sites BamHI and XhoI and Flag-
tagged fragments between NcoI and EcoRI through homologous recombination using an In-Fusion HD
cloning kit (TaKaRa Bio USA, Inc., Mountain View, CA, USA). The recombinant pET28a plasmids were
transformed into E. coli strain BL21(DE3) for protein expression. After overnight induction with 0.5 mM
isopropyl �-D-thiogalactoside at 16°C, cells were collected by centrifugation and sonicated for 30 min in
ice water. The supernatant was kept for coimmunoprecipitation assay and protein purification. The
expressed recombinant proteins LsPPO1-antigen and lipoprotein-antigen were purified using Ni Sep-
harose (GE Healthcare, Buckinghamshire, United Kingdom) following the manufacturer’s instructions and
served as antigens to produce anti-LsPPO and anti-lipoprotein rabbit polyclonal antibodies at Beijing
Protein Institute Co., Ltd. (Beijing, China). The specificity of the anti-LsPPO antibody was tested by
recognizing in vitro-expressed LsPPO1-His, LsPPO2-His, and LsPPO3-His in a Western blot assay.

Coimmunoprecipitation assay. Ten micrograms of rabbit anti-LsPPO polyclonal antibody was first
incubated with 50 �l of Dynabeads protein G (Novex, Thermo Fisher Scientific, Waltham, MA, USA) for
10 min at room temperature, and then 400 �l of the total proteins from viruliferous adult planthoppers

Chen et al. ®

July/August 2020 Volume 11 Issue 4 e01453-20 mbio.asm.org 14

https://mbio.asm.org


in 10 mM Tris-HCl buffer (pH 8.0) was added and incubated for 2 h at 4°C. Approximately 10% of the total
protein was reserved as input. Rabbit IgG (Merck Millipore, Billerica, MA, USA) was used as a negative
control. After three washes with washing buffer (Novex), the antibody-protein complex was disassociated
from the beads with elution buffer (Novex) for Western blot analysis using homemade monoclonal
anti-CP, anti-NS3, and anti-SP antibodies and polyclonal anti-NSvc4 and anti-LsPPO antibodies (22).

Five micrograms of mouse anti-Flag monoclonal antibody was incubated with 50 �l of Dynabeads
protein G (Novex) for 10 min at room temperature. Then, 400 �l of a 1:1 mixture of recombinantly
expressed LsPPO1-Flag and viral protein (NS3-His, CP-His, SP-His, or NSvc4-His) or a 1:1 mixture of a
recombinantly expressed fragment of LsPPO1 (LsPPO1-N1-Flag, LsPPO1-N2-Flag, or LsPPO1-C-Flag) and
viral protein (NS3-His, CP-His, or NSvc4-His) or a 1:1 mixture of recombinantly expressed LsPPO3-N2-Flag
and NS3-His was added and the reaction mixture was incubated for 30 min at 4°C. Ten micrograms of
rabbit anti-LsPPO polyclonal antibody was incubated with 50 �l of Dynabeads protein G (Novex) for
10 min at room temperature. Then, 400 �l of a 1:1 mixture of recombinantly expressed LsPPO2-His and
NS3-His or LsPPO3-His and NS3-His was added and the reaction mixture was incubated for 30 min at 4°C.
The total proteins from E. coli expressing empty pET28a were applied in the control group. After three
washes performed with washing buffer (Novex), the antibody-protein complex was disassociated from
the beads with elution buffer (Novex) for Western blot analysis performed with anti-Flag or anti-His
monoclonal antibodies (CWBiotech, Beijing, China).

Data availability. GenBank accession numbers of PPO activation cascade members are listed in
Table S1.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.3 MB.
FIG S2, PDF file, 0.3 MB.
FIG S3, PDF file, 0.3 MB.
FIG S4, PDF file, 0.6 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.

ACKNOWLEDGMENTS
We thank Zhen Zou and Yanhong Wang from the Institute of Zoology, Chinese

Academy of Sciences, for providing Enterobacter cloacae and Micrococcus luteus and
giving precious suggestions.

This work was supported by grants from the Natural Science Foundation of China
(no. 31802017) and the State Key Research Development Program of China (no.
2019YFC1200504 and 2019YFC1200201).

L.K. and F.C. designed the study and wrote the paper. X.C. performed most exper-
iments and drafted the manuscript. J.Y., W.W., and H.L. helped to perform the micro-
injections in the dsRNA experiments.

REFERENCES
1. Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D,

Susi P, Torrance L. 2013. Status and prospects of plant virus control
through interference with vector transmission. Annu Rev Phytopathol
51:177–201. https://doi.org/10.1146/annurev-phyto-082712-102346.

2. Hogenhout SA, Ammar el D, Whitfield AE, Redinbaugh MG. 2008. Insect
vector interactions with persistently transmitted viruses. Annu Rev Phyto-
pathol 46:327–359. https://doi.org/10.1146/annurev.phyto.022508.092135.

3. Liu W, Gray S, Huo Y, Li L, Wei T, Wang X. 2015. Proteomic analysis of
interaction between a plant virus and its vector insect reveals new
functions of hemipteran cuticular protein. Mol Cell Proteomics 14:
2229 –2242. https://doi.org/10.1074/mcp.M114.046763.

4. Kingsolver MB, Huang Z, Hardy RW. 2013. Insect antiviral innate
immunity: pathways, effectors, and connections. J Mol Biol 425:
4921– 4936. https://doi.org/10.1016/j.jmb.2013.10.006.

5. Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S.
2018. Mosquito innate immunity. Insects 9:95. https://doi.org/10.3390/
insects9030095.

6. Kanost MR, Jiang H. 2015. Clip-domain serine proteases as immune
factors in insect hemolymph. Curr Opin Insect Sci 11:47–55. https://doi
.org/10.1016/j.cois.2015.09.003.

7. Cerenius L, Lee BL, Soderhall K. 2008. The proPO-system: pros and cons
for its role in invertebrate immunity. Trends Immunol 29:263–271.
https://doi.org/10.1016/j.it.2008.02.009.

8. Binggeli O, Neyen C, Poidevin M, Lemaitre B. 2014. Prophenoloxidase
activation is required for survival to microbial infections in Drosophila. PLoS
Pathog 10:e1004067. https://doi.org/10.1371/journal.ppat.1004067.

9. Yassine H, Kamareddine L, Osta MA. 2012. The mosquito melanization
response is implicated in defense against the entomopathogenic fungus
Beauveria bassiana. PLoS Pathog 8:e1003029. https://doi.org/10.1371/
journal.ppat.1003029.

10. Jiang H. 2008. The biochemical basis of antimicrobial responses in
Manduca sexta. Insect Sci 15:53– 66. https://doi.org/10.1111/j.1744-7917
.2008.00187.x.

11. Meekins DA, Kanost MR, Michel K. 2017. Serpins in arthropod biology.
Semin Cell Dev Biol 62:105–119. https://doi.org/10.1016/j.semcdb.2016
.09.001.

12. An C, Ishibashi J, Ragan EJ, Jiang H, Kanost MR. 2009. Functions of
Manduca sexta hemolymph proteinases HP6 and HP8 in two innate
immune pathways. J Biol Chem 284:19716 –19726. https://doi.org/10
.1074/jbc.M109.007112.

13. Wang Y, Jiang H, Cheng Y, An C, Chu Y, Raikhel AS, Zou Z. 2017.
Activation of Aedes aegypti prophenoloxidase-3 and its role in the
immune response against entomopathogenic fungi. Insect Mol Biol
26:552–563. https://doi.org/10.1111/imb.12318.

14. Wei TY, Yang JG, Liao FR, Gao FL, Lu LM, Zhang XT, Li F, Wu ZJ, Lin QY,
Xie LH, Lin HX. 2009. Genetic diversity and population structure of rice

RSV Suppresses PPO Activation in Its Insect Vector ®

July/August 2020 Volume 11 Issue 4 e01453-20 mbio.asm.org 15

https://doi.org/10.1146/annurev-phyto-082712-102346
https://doi.org/10.1146/annurev.phyto.022508.092135
https://doi.org/10.1074/mcp.M114.046763
https://doi.org/10.1016/j.jmb.2013.10.006
https://doi.org/10.3390/insects9030095
https://doi.org/10.3390/insects9030095
https://doi.org/10.1016/j.cois.2015.09.003
https://doi.org/10.1016/j.cois.2015.09.003
https://doi.org/10.1016/j.it.2008.02.009
https://doi.org/10.1371/journal.ppat.1004067
https://doi.org/10.1371/journal.ppat.1003029
https://doi.org/10.1371/journal.ppat.1003029
https://doi.org/10.1111/j.1744-7917.2008.00187.x
https://doi.org/10.1111/j.1744-7917.2008.00187.x
https://doi.org/10.1016/j.semcdb.2016.09.001
https://doi.org/10.1016/j.semcdb.2016.09.001
https://doi.org/10.1074/jbc.M109.007112
https://doi.org/10.1074/jbc.M109.007112
https://doi.org/10.1111/imb.12318
https://mbio.asm.org


stripe virus in China. J Gen Virol 90:1025–1034. https://doi.org/10.1099/
vir.0.006858-0.

15. Xiao D, Li W, Wei T, Wu Z, Xie L. 2010. Advances in the studies of Rice
stripe virus. Front Agric China 4:287–292. https://doi.org/10.1007/s11703
-010-1039-1.

16. Toriyama S. 1986. Rice stripe virus: prototype of a new group of viruses
that replicate in plants and insects. Microbiol Sci 3:347–351.

17. Xiong R, Wu J, Zhou Y, Zhou X. 2008. Identification of a movement
protein of the tenuivirus rice stripe virus. J Virol 82:12304 –12311. https://
doi.org/10.1128/JVI.01696-08.

18. Zhao W, Lu L, Yang P, Cui N, Kang L, Cui F. 2016. Organ-specific
transcriptome response of the small brown planthopper toward rice
stripe virus. Insect Biochem Mol Biol 70:60 –72. https://doi.org/10.1016/
j.ibmb.2015.11.009.

19. Zhu J, Jiang F, Wang X, Yang P, Bao Y, Zhao W, Wang W, Lu H, Wang Q,
Cui N, Li J, Chen X, Luo L, Yu J, Kang L, Cui F. 2017. Genome sequence
of the small brown planthopper, Laodelphax striatellus. Gigascience
6:1–12. https://doi.org/10.1093/gigascience/gix109.

20. Chosa N, Fukumitsu T, Fujimoto K, Ohnishi E. 1997. Activation of pro-
phenoloxidase A1 by an activating enzyme in Drosophila melanogaster.
Insect Biochem Mol Biol 27:61– 68. https://doi.org/10.1016/s0965-1748
(96)00070-7.

21. Lee SY, Kwon TH, Hyun JH, Choi JS, Kawabata SI, Iwanaga S, Lee BL. 1998.
In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-
oxidase-activating factors isolated from hemolymph of coleopteran,
Holotrichia diomphalia larvae. Eur J Biochem 254:50 –57. https://doi.org/
10.1046/j.1432-1327.1998.2540050.x.

22. Zhao W, Wang Q, Xu Z, Liu R, Cui F. 2019. Distinct replication and gene
expression strategies of the Rice Stripe virus in vector insects and host
plants. J Gen Virol 100:877– 888. https://doi.org/10.1099/jgv.0.001255.

23. Sutthangkul J, Amparyup P, Charoensapsri W, Senapin S, Phiwsaiya K,
Tassanakajon A. 2015. Suppression of shrimp melanization during white
spot syndrome virus infection. J Biol Chem 290:6470 – 6481. https://doi
.org/10.1074/jbc.M114.605568.

24. Yuan C, Xing L, Wang M, Wang X, Yin M, Wang Q, Hu Z, Zou Z. 2017.
Inhibition of melanization by serpin-5 and serpin-9 promotes baculovi-
rus infection in cotton bollworm Helicoverpa armigera. PLoS Pathog
13:e1006645. https://doi.org/10.1371/journal.ppat.1006645.

25. Chu Y, Liu Y, Shen D, Hong F, Wang G, An C. 2015. Serine proteases SP1
and SP13 mediate the melanization response of Asian corn borer, Os-
trinia furnacalis, against entomopathogenic fungus Beauveria bassiana.
J Invertebr Pathol 128:64 –72. https://doi.org/10.1016/j.jip.2015.02.010.

26. Sakamoto M, Ohta M, Suzuki A, Takase H, Yoshizawa Y, Kitami M, Sato R.
2011. Localization of the serine protease homolog BmSPH-1 in nodules
of E. coli-injected Bombyx mori larvae and functional analysis of its role
in nodule melanization. Dev Comp Immunol 35:611– 619. https://doi
.org/10.1016/j.dci.2011.01.003.

27. Tang H, Kambris Z, Lemaitre B, Hashimoto C. 2006. Two proteases
defining a melanization cascade in the immune system of Drosophila. J
Biol Chem 281:28097–28104. https://doi.org/10.1074/jbc.M601642200.

28. Qin Z, Sarath Babu V, Lin H, Dai Y, Kou H, Chen L, Li J, Zhao L, Lin L. 2019.
The immune function of prophenoloxidase from red swamp crayfish
(Procambarus clarkii) in response to bacterial infection. Fish Shellfish
Immunol 92:83–90. https://doi.org/10.1016/j.fsi.2019.05.005.

29. Xiong R, Wu J, Zhou Y, Zhou X. 2009. Characterization and subcellular
localization of an RNA silencing suppressor encoded by Rice stripe
tenuivirus. Virology 387:29 – 40. https://doi.org/10.1016/j.virol.2009.01
.045.

30. Xu Y, Wu J, Fu S, Li C, Zhu ZR, Zhou X. 2015. Rice stripe tenuivirus
nonstructural protein 3 hijacks the 26S proteasome of the small brown
planthopper via direct interaction with regulatory particle non-ATPase
subunit 3. J Virol 89:4296 – 4310. https://doi.org/10.1128/JVI.03055-14.

31. Sutthangkul J, Amparyup P, Eum JH, Strand MR, Tassanakajon A. 2017.
Anti-melanization mechanism of the white spot syndrome viral protein,
WSSV453, via interaction with shrimp proPO-activating enzyme, Pm-
proPPAE2. J Gen Virol 98:769 –778. https://doi.org/10.1099/jgv.0.000729.

32. Sangsuriya P, Charoensapsri W, Sutthangkul J, Senapin S, Hirono I,
Tassanakajon A, Amparyup P. 2018. A novel white spot syndrome virus
protein WSSV164 controls prophenoloxidases, PmproPOs in shrimp
melanization cascade. Dev Comp Immunol 86:109 –117. https://doi.org/
10.1016/j.dci.2018.05.005.

33. Jaree P, Wongdontri C, Somboonwiwat K. 2018. White spot syndrome
virus-induced shrimp miR-315 attenuates prophenoloxidase activation
via PPAE3 gene suppression. Front Immunol 9:2184. https://doi.org/10
.3389/fimmu.2018.02184.

34. Beck MH, Strand MR. 2007. A novel polydnavirus protein inhibits the
insect prophenoloxidase activation pathway. Proc Natl Acad Sci U S A
104:19267–19272. https://doi.org/10.1073/pnas.0708056104.

35. Lu Z, Beck MH, Strand MR. 2010. Egf1.5 is a second phenoloxidase
cascade inhibitor encoded by Microplitis demolitor bracovirus. Insect
Biochem Mol Biol 40:497–505. https://doi.org/10.1016/j.ibmb.2010.04
.009.

36. Jang IK, Pang Z, Yu J, Kim SK, Seo HC, Cho YR. 2011. Selectively enhanced
expression of prophenoloxidase activating enzyme 1 (PPAE1) at a bac-
teria clearance site in the white shrimp, Litopenaeus vannamei. BMC
Immunol 12:70. https://doi.org/10.1186/1471-2172-12-70.

37. Jiang H, Wang Y, Kanost MR. 1999. Four serine proteinases expressed in
Manduca sexta haemocytes. Insect Mol Biol 8:39 –53. https://doi.org/10
.1046/j.1365-2583.1999.810039.x.

38. Zhao W, Yang P, Kang L, Cui F. 2016. Different pathogenicities of Rice
stripe virus from the insect vector and from viruliferous plants. New
Phytol 210:196 –207. https://doi.org/10.1111/nph.13747.

39. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Söderhäll I, Söderhäll K. 2007.
Phenoloxidase is an important component of the defense against Aeromo-
nas hydrophila Infection in a crustacean, Pacifastacus leniusculus. J Biol
Chem 282:33593–33598. https://doi.org/10.1074/jbc.M706113200.

40. Zou Z, Shin SW, Alvarez KS, Kokoza V, Raikhel AS. 2010. Distinct
melanization pathways in the mosquito Aedes aegypti. Immunity 32:
41–53. https://doi.org/10.1016/j.immuni.2009.11.011.

Chen et al. ®

July/August 2020 Volume 11 Issue 4 e01453-20 mbio.asm.org 16

https://doi.org/10.1099/vir.0.006858-0
https://doi.org/10.1099/vir.0.006858-0
https://doi.org/10.1007/s11703-010-1039-1
https://doi.org/10.1007/s11703-010-1039-1
https://doi.org/10.1128/JVI.01696-08
https://doi.org/10.1128/JVI.01696-08
https://doi.org/10.1016/j.ibmb.2015.11.009
https://doi.org/10.1016/j.ibmb.2015.11.009
https://doi.org/10.1093/gigascience/gix109
https://doi.org/10.1016/s0965-1748(96)00070-7
https://doi.org/10.1016/s0965-1748(96)00070-7
https://doi.org/10.1046/j.1432-1327.1998.2540050.x
https://doi.org/10.1046/j.1432-1327.1998.2540050.x
https://doi.org/10.1099/jgv.0.001255
https://doi.org/10.1074/jbc.M114.605568
https://doi.org/10.1074/jbc.M114.605568
https://doi.org/10.1371/journal.ppat.1006645
https://doi.org/10.1016/j.jip.2015.02.010
https://doi.org/10.1016/j.dci.2011.01.003
https://doi.org/10.1016/j.dci.2011.01.003
https://doi.org/10.1074/jbc.M601642200
https://doi.org/10.1016/j.fsi.2019.05.005
https://doi.org/10.1016/j.virol.2009.01.045
https://doi.org/10.1016/j.virol.2009.01.045
https://doi.org/10.1128/JVI.03055-14
https://doi.org/10.1099/jgv.0.000729
https://doi.org/10.1016/j.dci.2018.05.005
https://doi.org/10.1016/j.dci.2018.05.005
https://doi.org/10.3389/fimmu.2018.02184
https://doi.org/10.3389/fimmu.2018.02184
https://doi.org/10.1073/pnas.0708056104
https://doi.org/10.1016/j.ibmb.2010.04.009
https://doi.org/10.1016/j.ibmb.2010.04.009
https://doi.org/10.1186/1471-2172-12-70
https://doi.org/10.1046/j.1365-2583.1999.810039.x
https://doi.org/10.1046/j.1365-2583.1999.810039.x
https://doi.org/10.1111/nph.13747
https://doi.org/10.1074/jbc.M706113200
https://doi.org/10.1016/j.immuni.2009.11.011
https://mbio.asm.org

	RESULTS
	Transcriptional response of PPO activation pathway genes to RSV in two immune organs. 
	PO activity was inhibited by RSV in vector insects. 
	Adverse effects of POs on RSV stability in the hemolymph of vector insects. 
	Reduction in PO production by RSV in vector insects. 
	NS3 was responsible for the reduction in PO production. 

	DISCUSSION
	MATERIALS AND METHODS
	Small brown planthopper strains. 
	Identification of PPO cascade members of L. striatellus. 
	Collection of fat bodies and hemolymph. 
	PO activity assay. 
	RNA isolation and cDNA synthesis. 
	Quantitative real-time PCR. 
	Double-stranded RNA synthesis and delivery. 
	Interference with serpin and PPAF2 expression. 
	Feeding small brown planthoppers with rice seedlings carrying RSV. 
	Injection of small brown planthoppers with RSV crude preparations. 
	Injection of small brown planthoppers with a mixture of RSV crude preparations and dsRNAs. 
	Injection of small brown planthoppers with a mixture of RSV crude preparations and antibodies. 
	Injection of small brown planthoppers with bacterial and viral proteins. 
	Observation of RSV melanization and injection of melanized RSV. 
	Western blot analysis for CP, LsPPOs, and LsPOs. 
	Protein expression and purification and antibody preparation. 
	Coimmunoprecipitation assay. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

