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Abstract

Currently approved replication-competent and inactivated vaccines are limited by excessive 

reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently 

immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, 

peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges 

through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are 

biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to 

immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery 

vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological 

advantage, the wide range of available amino acids allows for facile de novo design or 

straightforward modifications to existing sequences. This has permitted the development of 

vaccines and immunotherapies tailored to specific disease models, as well as generalizable 

platforms that have been successfully applied to prevent or treat numerous infectious and non­

infectious diseases. In this review, we briefly introduce the immune system, discuss the structural 

determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, 

and highlight the utility of these materials using notable examples of their innate and adaptive 

immunomodulatory capacity.
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1. Introduction

Vaccination aims to generate lasting immunological memory against both infectious and 

non-infectious diseases and has proven to be one of the most successful public health 

initiatives in history [1]. Despite this, vaccines for a number of intractable diseases like 
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malaria, human immunodeficiency virus (HIV), cancers, and autoimmune diseases have yet 

to be approved [2]. To date, approximately 100 vaccines have been licensed for clinical 

use in the United States, most of which utilize inactivated or attenuated pathogens [3]. 

While whole-organism vaccines stimulate robust and long-lived immunity, their potential to 

cause undesirable side effects has prompted the use of subunit vaccines that contain only 

antigenic proteins or epitopes derived from the target pathogen [4]. These subunit vaccines 

address many of the disadvantages of traditional formulations; however, their reduced 

immunogenicity necessitates co-administration of adjuvants to elicit immune responses 

sufficient for memory formation. As adjuvants are themselves reactogenic and often poor T 

cell immunopotentiators, significant effort has been devoted to developing alternative means 

of improving subunit vaccine efficacy [5].

As our knowledge of immunology expands, the exploitation of specific pathways continues 

to come into focus as a key aspect of vaccines and immunotherapies. A major goal of 

the cross-disciplinary field of immunoengineering is to exert spatial and temporal control 

over the activity of the immune system, primarily by using rationally designed biomaterials 

to produce safer vaccines and shed light on its less-understood functions [6, 7]. While 

many commonly used polymeric, metallic, and ceramic biomaterials are immunologically 

inert, biologically derived macromolecules such as proteins, peptides, and peptidomimetics 

are prone to immune recognition [8, 9]. These biomolecules can serve as antigens, 

delivery vehicles, and adjuvants in subunit vaccines to localize release, protect therapeutics 

from proteolytic degradation, and induce the appropriate immune phenotype required 

for protection. Beyond their applications as prophylactic or therapeutic vaccine carriers, 

biomaterial-based co-delivery of multiple innate immune signals or pharmacological agents 

can be used as efficient combinatorial therapies [10, 11].

Due to their chemically defined nature, ease of de novo design and synthesis, 

biocompatibility, and degradability, peptides serve as useful building blocks for fabricating 

biomaterials with various physicochemical properties and functionalities [12]. Using the 

diversity of available natural and non-natural amino acids, peptides can be programmed 

to self-assemble into hierarchical architectures, notably fibrils, tapes, ribbons, nanotubes, 

vesicles, micelles, and nanocages [13]. The chemical versatility of their constitutive amino 

acids grants peptides a high degree of tunability, permitting sequence modifications that alter 

assembly, target specific cells or organs, impede enzymatic degradation, impart stimulus­

responsiveness, or enable conjugation to other organic or inorganic molecules. In the context 

of vaccines, the multivalency of peptide suprastructures facilitates repetitive presentation of 

antigens on their surface, leading to enhanced uptake by immune cells and higher antibody 

titers relative to monovalent antigens [14]. This self-adjuvanticity allows for the marginal 

efficacy of subunit vaccines to be overcome without the use of toxic adjuvants and reduces 

the total amount of antigen required to attain protective immunity, both of which help avoid 

deleterious side effects. This review focuses on immunoengineering strategies based on 

self-assembling synthetic peptide-, peptidomimetic-, and protein-based biomaterials. The 

utility of this approach will be illustrated by selected studies using coiled coil fibrils 

and nanoparticles, β-sheet fibrils, peptide amphiphiles, and self-assembling subunit protein 

nanoparticles.

O’Neill et al. Page 2

Acta Biomater. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Supramolecular peptide-based structures

Peptide self-assembly is a spontaneous process driven by hydrophobic packing, hydrogen 

bonding, van der Waals forces, and electrostatics. The wide range of available amino acids 

enables one to intentionally modify primary sequences to engender specific secondary 

structures such as α-helices and β-sheets that drive the reliable formation of organized 

suprastructures. Self-assembly can also be achieved by peptidomimetics composed of a 

peptide domain chemically bound to other macromolecules, including lipids, nucleic acids, 

and sugars. Like self-assembling peptides, whole protein subunits can undergo assembly via 

non-covalent interactions to form three-dimensional architectures. Here, we briefly discuss 

the design rules and structural determinants of four widely used classes of peptide- and 

protein-based nanomaterials.

2.1. Peptide coiled coils

The canonical structure of a coiled coil is a left-handed supercoil of two or more right­

handed α-helices stabilized by non-covalent bonds [15, 16]. The α-helices characteristic to a 

coiled coil typically follow a seven-amino acid heptad repeat pattern with residues specified 

as “abcdefg” occupying the positions illustrated in Fig. 1A, though several exceptions 

exist [17–19]. By controlling the identities of the amino acids at different locations in the 

heptad, the emergent structure of the coiled coil can be tailored. The a and d residues in a 

coiled coil’s hydrophobic core can be chosen to dictate the oligomerization state between 

two and four helices (Fig. 1B), while further modifications can permit up to seven-helix 

assemblies [20–22]. It is known that asparagine residues at the a position preferentially 

pair with asparagine residues at the same position in adjacent helices, a property especially 

useful for specifying the parallel or antiparallel nature of a coiled coil [23]. The residues 

at e and g flank the hydrophobic region and often contain charge-complementary pairs that 

electrostatically stabilize the bundle and can select for homo- or heteromultimeric assembly 

and parallel or antiparallel orientation [24, 25]. The exterior amino acids at the c, f, and b 
positions can be tuned to affect solubility and direct higher-order assembly [26].

Taking advantage of the stable supramolecular association of α-helices into coiled coils, 

Burkhard and colleagues designed tri- or pentameric oligomers linked by a diglycine spacer 

and stabilized by disulfide linkages to produce self-assembling polyhedral nanoparticles 

with diameters of ~16 nm (Fig. 1J) [27]. These constructs have been shown to serve 

as effective self-adjuvanting antigen delivery vehicles [28, 29]. Other architectures utilize 

synthetic dimeric or trimeric coiled coils to produce two- or three-fold symmetric hexagonal 

lattices that assemble into molecular cages ~100 nm in diameter [30, 31]. These cages 

are composed of pepides with only a single coiled coil-forming region linked together 

by intermolecular cysteine disulfide linkages (Fig. 1K). Coiled coils can also assemble 

into filamentous structures, as demonstrated by the formation of Coil29 helical nanotubes 

(Fig. 1C) [26]. In contrast to purely peptide-based systems, coiled coil lipopeptides have 

been used as building blocks of virus-like particles (VLPs) that assemble via coiled coil 

oligomerization and lipid tail hydrophobic interactions [32].
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2.2. Peptide β-sheets

β-sheets are composed of parallel or antiparallel β-strands that are stabilized by backbone 

hydrogen bonding (Fig. 1D,E) and assemble into sheets displaying a characteristic right­

handed twist [39–41]. β-sheets can be designed de novo by mimicking naturally occurring 

peptides, referencing the measured propensities of amino acids to be found in particular 

secondary structures, and taking cues from established rational design methods [42–

45]. While early synthetic β-sheets resembled globular proteins, most contemporary self­

assembling β-sheet conformations are more reminiscent of amyloids [46, 47]. As amino 

acid residues within a β-strand alternate between being positioned above and below the 

hydrogen bonding plane, peptides with alternating hydrophobic and hydrophilic residues 

form facially amphipathic sheets (Fig. 1F) [36, 48]. In solution, these β-strands assemble 

into bilayer fibrils with a hydrophobic core and hydrophilic surfaces (Fig. 1G,H) [49–

52]. These are stabilized by the same hydrogen bonding network as traditional β-sheets 

and by packing of hydrophobic residues into the fibril core, along with electrostatic 

interactions between charged residues and π-π stacking of aromatic groups, if present 

[53–55]. At sufficiently high concentrations, these fibrils entangle to immobilize solvent 

molecules and form a hydrogel, as first observed by Zhang et al. using the 16-amino 

acid amphipathic sequence Ac-(AEAEAKAK)2-NH2 (EAK16) [56]. β-rich self-assembling 

peptide morphologies can be modified by varying their amino acid sequences, although 

the effect is less intuitively predictable than in coiled coils. Several well-characterized 

amphipathic peptides with various sequences have been reported, including EAK16, Ac­

(RADA)4-NH2 (RADA16), Ac-(FKFE)2-NH2 (KFE8), Ac-QQKFQFQFEQQ-NH2 (Q11), 

and VKVKVKVKVDPPTKVKVKVKV-NH2 (MAX1) [56–62]. Nilsson and coworkers 

used the prototypic sequence Ac-(XKXE)2-NH2, where X denotes a hydrophobic amino 

acid, to show that the supramolecular- and bulk-scale properties of the resulting structures 

can be tuned by modifying the degree of hydrophobicity and aromaticity of the X residues 

[63, 64]. Alterations to other peptides have similarly produced biomaterials with variable 

physicochemical properties [65–69].

2.3. Peptide amphiphiles

In their simplest form, PAs are structural or functional peptides conjugated to lipid tails that 

assemble into nanofibers, bilayers, micelles, or vesicles [70, 71]. The peptide components 

of complex PAs often contain a stabilizing β-sheet-forming domain or a polyionic domain 

for improved solubility. Hydrophobic packing of the alkyl tails, hydrogen bonding between 

the β-strands, and electrostatic interactions between the charged amino acids drive PA 

assembly in aqueous environments and determine their morphology, persistence length, 

and packing density (Fig. 1I) [72–74]. Further, when a β-sheet-forming domain in a 

PA contains both hydrophilic and hydrophobic amino acids, their relative positions can 

be altered to result in different fibril morphologies such as helical and twisted ribbons 

[75]. Numerous cross-linking chemistries have been applied to PA molecules to enhance 

the physical and chemical robustness of the resultant structures [37, 76]. This tunability 

makes PAs well-suited for programming molecular interactions and dictating bulk hydrogel 

properties [77]. Biofunctional moieties linked to the N-termini of PAs appear on the surface 

of the assemblies, inspiring their application as scaffolds in tissue engineering, regenerative 

medicine, and drug delivery [72].
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2.4. Protein subunit nanoparticles

In addition to secondary structures, fully folded tertiary structures can be employed to 

generate self-assembled nanoparticles that imitate the natural repetitiveness, geometry, size, 

and shape of pathogens. Researchers have developed highly purified natural and synthetic 

protein subunits that offer the collective strength of multivalent antigen presentation, 

stability, and immunogenicity to induce levels of protective immunity comparable to live 

attenuated vaccines [78]. While PA micelles are stabilized by hydrophobic packing of 

their lipid tails, protein nanoparticles generally rely on non-covalent bonding that mimics 

natural viral capsids [79, 80]. The earliest example of a self-assembling protein was isolated 

from the tobacco mosaic virus (TMV) and formed rod-like particles [81]. Since then, 

numerous VLPs composed of single or multiple pathogenic proteins have been described as 

templates for antigen display [82–84]. Notably, protein PIII from filamentous phage f1, Ty 

protein from baker’s yeast, surface or core antigens from hepatitis B virus (HBV), human 

parvovirus, poliovirus, rotavirus, herpes virus, TMV, picornavirus, and papillomavirus 

(HPV) have all found considerable success in this context [85–94].

In contrast to bacterial or viral protein scaffolds, several studies have utilized non­

viral, natural proteins such as ferritin, lumazine synthase, and encapsulin to fabricate 

self-assembling nanoparticles that present a variety of antigens [95–99]. Recently, 

computationally designed single- or dual-protein nanoparticles have gained prominence 

as platforms for the multimeric display of immunogens. Baker and co-workers have 

pioneered the use of self-assembling protein nanoparticles with geometries specifically 

tailored to present the ectodomains of influenza, HIV, and respiratory syncytial virus (RSV) 

viral glycoproteins [100]. Homotrimers of designed repeat proteins presenting N-terminal 

helices facilitated the assembly of nanoparticles with tetrahedral, octahedral, or icosahedral 

symmetries, all of which presented correctly folded HIV-1 Env, influenza hemagglutinin 

(HA), and prefusion RSV F trimers as confirmed by antibody binding experiments. The 

King lab computationally designed 28-nm-wide, 120-subunit nanoparticles with icosahedral 

symmetry constructed from trimeric (I53–50A) and pentameric (I53–50B) components that 

assemble in vitro by simple mixing [101]. Multivalent presentation of the receptor-binding 

domain of SARS-CoV-2 S glycoprotein on the I53–50 nanoparticles produced potent 

neutralizing antibody responses, indicating that such computational strategies permit rapid 

development of subunit vaccines candidates against urgent public health threats [102].

An attractive feature of protein subunit nanoparticles is their ability to adopt different 

symmetries and structures with diameters ranging from 10 to 150 nm depending on the 

proteins used in their fabrication, allowing for optimal interactions with immune cells 

[78, 82, 95, 103]. Atomic and molecular manipulations have enabled the production of 

custom protein sequences as an alternative to natural proteins [104, 105]. De novo design 

permits the inclusion of heterologous epitopes or antigens into otherwise purely structural 

nanoparticles, representing a limitless array of possible antigen combinations that can be 

obtained by covalent chemical attachment before or after assembly.
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3. Principles of the immune system

The body shields itself from infectious threats through a series of concerted immune 

responses. During initial exposure or vaccination, dendritic cells (DCs), macrophages 

(MΦs), and B cells, collectively known as antigen-presenting cells (APCs), internalize 

antigens and undergo maturation upon encountering danger signals [6]. These mature 

APCs then display antigens to CD8+ and CD4+ T cells through major histocompatibility 

complexes (MHCs) I and II, respectively, in draining lymph nodes (dLNs) and secondary 

lymphoid organs (Fig. 2). Antigen-specific B cells engage with CD4+ T cells to engender 

various helper T (TH) cell phenotypes that initiate and polarize B cell clonal proliferation to 

generate plasma cells or memory B cells [106]. Together, these T and B cell pools form the 

basis of lasting immunological memory.

Instilling long-lived immunity requires recognition of danger signals by pattern recognition 

receptors (PRRs) on APCs to prompt upregulation of costimulatory molecules and cytokines 

[107]. PRRs recognize danger-associated molecular patterns (DAMPs), including alarmins 

and other by-products of local tissue damage, or pathogen-associated molecular patterns 

(PAMPs), which are molecules of microbial origin such as flagellin, lipopolysaccharides 

(LPS), cell wall proteins, single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA), 

and DNA [108, 109]. Although the PRR family also comprises NOD-like receptors (NLRs), 

RIG-I-like receptors (RLRs), and C-type lectin receptors (CLRs), Toll-like receptors (TLRs) 

are the most widely studied and exploited class of PRRs due to their superior functionality 

and diversity [110]. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the 

surface of immune cells and trigger myeloid differentiation factor 88 (MyD88) signaling that 

activates NF-κB and cytokine release [111]. TLR2 binds bacterial lipopeptides and has been 

demonstrated to form heterodimers with TLR1, TLR6, and TLR10, expanding its ligand 

repertoire. TLR4 additionally recruits and signals through the TRIF/TRAM pathway and is 

well-known for its recognition of bacterial LPS, while TLR5 binds bacterial flagellin [112, 

113]. TLR3, TLR7, TLR8, and TLR9 are located within the membranes of endosomes and 

predominantly sense PAMPs of viral origin [111, 114]. These intracellular TLRs differ in 

their signaling mechanisms and distribution across different cell types [111]. TLR agonists 

are being investigated as viable targets for subunit human vaccines; notably, TLR9 and 

TLR4 agonists that recognize unmethylated CpG oligodeoxynucleotides (CpG-ODN) and 

bacterial LPS, respectively, are licensed for clinical use [115–121].

Signals delivered to T cells via APC interactions determine the strength and phenotype of 

the cellular immune response [122, 123]. Primed T cells initiate a series of transcriptional 

programs that lead to the production of effector cytokines and rapidly proliferate into 

antigen-experienced effector T cells. After the threat is cleared, the population of effector T 

cells will begin to contract through programmed cell death pathways, leaving memory T cell 

pools that can persist for years [124–126]. Memory T cells patrol tissues and the circulatory 

system to neutralize previously encountered agents by performing programmed effector 

functions exerted through cytolytic activity and signaling to neighboring cells to enhance 

pathogen clearance [127]. Memory T cells can be divided into tissue-resident, effector, and 

central memory subsets identifiable by the differential expression of a variety of surface 
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molecules, such as CD44, CD45RA, CD62L, CD69, CCR7, KLRG1, CD27, and CD127 

[126].

Immunoengineering aims to improve the efficacy of vaccines and therapeutics to combat 

infectious diseases, cancers, and autoimmune conditions. While broadly acting substances 

may effectively stimulate the innate immune system, their lack of specificity may impede 

induction of anamnestic immunological memory. Therefore, it is critical to consider the 

nature of the pathogenic agent, the pathogenesis of the disease, and the type of protection 

required when engineering vaccines or immunotherapies.

4. Modulating innate immunity

Innate immune cells, namely MΦs and DCs, provide the first line of defense against 

infections and coordinate downstream adaptive immune responses [128]. Since the 1990s, 

there have been substantial advances in our understanding of the innate immune system, 

due in part to the discovery of PRRs, their corresponding ligands, and their molecular 

mechanisms. While peptide-based supramolecular nanomaterials enable the design of safer 

vaccine platforms, a thorough understanding of their interactions with innate immune cells is 

required to avoid unexpected side effects.

In vivo, peptide nanomaterials quickly encounter APCs at the injection site, which have 

been reported to engulf particulate antigens more efficiently than soluble antigens [129, 

130]. Using fluorescent labeling, Collier and coworkers showed that Q11 nanofibers are 

internalized as early as six hours after administration [131]. A subsequent study found 

that the magnitude of nanofiber internalization by DCs is dependent on the net charge 

of the assemblies, with positive charge enhancing uptake and negative charge abrogating 

uptake [132]. Interestingly, DCs that internalized Q11-OVA323–339 fibrils exhibited minimal 

activation, as evidenced by low levels of CD80 and CD86 upregulation despite robust 

antibody and T cell responses [133]. While numerous studies have confirmed that 

APCs readily internalize peptide-based nanomaterials, further investigation is necessary to 

determine if their uptake is mediated through specific receptors and if the materials trigger 

PRR pathways in a manner similar to pathogenic components [34, 133, 134].

The intracellular fate of peptide-based assemblies and the mechanisms that dictate their 

processing and clearance by APCs are instrumental in ascertaining their immunological 

determinants, efficacy, and long-term safety. Studies using the amphipathic peptide KFE8 

showed that the self-adjuvanting potential of β-sheet-rich peptide nanofibers was due to 

their ability to engage autophagy in MΦs and DCs [135]. MHC antigen presentation to 

CD4+ and CD8+ T cells was severely impaired by autophagy inhibitors or in mice deficient 

in autophagy pathways. This finding has significant implications for subunit vaccines, 

as autophagy is a homeostatic and inducible function affecting multiple aspects of the 

immune system, including innate sensing, inflammatory signaling, cytokine regulation, 

and metabolism [136, 137]. Autophagy is also crucial for clearance of neurodegenerative 

amyloids in Alzheimer’s and Huntington’s diseases; however, in vitro cellular toxicity of 

peptide assemblies has not been observed despite their structural similarities to disease­

associated amyloids [135, 138]. This is presumably because the nanofibers fibrillize 
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rapidly without passing through the prolonged lag phase characteristic of disease-associated 

amyloids. Further, the repetitive nature of many self-assembling peptides may promote the 

production of antibodies capable of recognizing aggregated cross-β morphologies such as 

amyloid-β (Aβ). This is supported by a study using the hydrophobic sequence VIAVIA 

(a double repeat of Aβ40–42), antibodies against which also recognized Aβ deposits in 

mouse and human brain sections [139]. Insights into the cellular actions of Q11 indicated 

that total knockout of the transcription factor MyD88, which is known to regulate TLR 

signaling, significantly reduces T cell responses to peptide nanofibers [131]. In contrast, 

using adoptive transfer to produce mice with T cell-specific MyD88 deficiency did not 

inhibit the immunogenicity of the nanofibers. This implies that, like other adjuvants, peptide 

nanofibers mobilize both MyD88-dependent and MyD88-independent signaling pathways 

in APCs and T cells. This is reflected in studies demonstrating higher degrees of DC 

maturation, upregulation of chemotactic molecules such as MCP-1α/CCL2, KC/CXCL-1, or 

upregulation of cytokines such as G-CSF, interleukin-5 (IL-5), IL-6, and IL-1β [131, 133, 

140].

To improve the intrinsic immunogenicity of fibrillar peptide nanomaterials, researchers 

have incorporated various immune ligands that can trigger specific innate pathways. 

Xu and coworkers have designed several enzyme-responsive peptide systems, including 

taurine-modified NBD-DFDF and Nap-FFK(NBD)Yp, that aggregate intracellularly in the 

presence of esterase or alkaline phosphatase, respectively [141, 142]. A related peptide, 

Nap-DFDFDFD Yp, has been shown to selectively inhibit cancer cells by modulating 

NF-κB expression [143]. Fibrils composed of Nap-GDFDFDY functionalized with tuftsin 

(TKPR), a tetrapeptide from the heavy chain Fc of IgG, markedly upregulated the 

costimulatory markers CD40 and CD80, tumor necrosis factor-α (TNF-α), and interferon-γ 
(IFN-γ) [134]. Treatment of splenocytes with the same construct resulted in the release 

of IL-6 and IL-12, indicative of a pro-inflammatory response similar to those elicited by 

some TLRs. The nanoadjuvant 3DSNA, consisting of Nap-GDFDFDY functionalized with 

adamantaneacetic acid and a polylysine tail, upregulated CD80 and CD86, inducing NF-κB 

signaling [144]. Other groups have utilized cell-penetrating peptides (CPPs) conjugated to 

peptide nanofibers to improve uptake by DCs, enhance CD8+ T cell responses, and reduce 

tumor burden, suggesting that uptake, adjuvanticity, and immune responses can be tuned by 

the inclusion of functional moieties [145, 146]. In contrast to exogenously functionalized 

fibrils, Tandon et al. showed that the peptide TR433 self-assembles into fibrils that can 

intrinsically stimulate the TLR4 pathway in mouse and human primary and reporter cells 

[147]. The antibody titers observed for TR433 co-administered with OVA were comparable 

to those for OVA in complete Freund’s adjuvant (CFA). A related study observed that 

Q11-OVA323–339 nanofibers did not activate TLR4 but potentiated equivalent antibody 

responses [148]. Thus, further investigation is required to elucidate the specific advantages 

of dual-purpose platforms such as TR433.

The Tirrell group and others have extensively researched PAs, which are known to interact 

via clathrin-independent carrier (CLIC) mechanisms and whose lipid tails may initiate raft­

based endocytosis for entry into MΦs and DCs [149, 150]. Further intracellular trafficking 

of PAs is governed by the chemical nature of their lipid chain, making them highly 

versatile structures for vaccines and immunotherapies [150, 151]. The palmitic acid lipid 

O’Neill et al. Page 8

Acta Biomater. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tails traditionally used in PA construction do not activate TLR2, but they can be replaced 

by lipids that act as TLR2 and TLR4 agonists in addition to stabilizing the amphiphile 

nanofibers [152].

APC engagement with nanoparticles composed of natural or synthetic proteins is heavily 

influenced by their shape, size, charge, hydrophobicity, and antigen glycosylation [78, 

153]. Various nanoparticle designs based on protein subunits, lipids, and polymers have 

been functionalized for engagement with APC endocytic receptors, including DC-specific 

intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN/CD209), dendritic and 

thymic epithelial cell-205 (DEC-205/CD205), mannose receptor (MR/CD206), and Fc 

receptor (FcR), with different DC subsets showing different uptake affinities and outcomes 

for a given VLP [154–159]. Due to their favorable characteristics and suitability for large­

scale manufacturing in bacteria and insect cells, protein subunit nanoparticles are among 

the most promising vaccine therapeutics under development [82]. However, their long-term 

stability profiles and inherent safety concerns regarding possible contamination during their 

recombinant expression must be considered and addressed. The effects of nanoparticles on 

the innate immune system have recently been discussed in a review article by Bachmann and 

coworkers [160].

While supramolecular peptide assemblies based on MAX1 and other β-sheet-forming 

peptides are intrinsically antimicrobial, multivalent presentation of natural antimicrobial 

peptides (AMPs) has been used to augment this capacity [161, 162]. The structurally 

and compositionally diverse family of AMPs constitutes the first line of defense against 

invading pathogens, and all complex organisms and some microbes produce AMPs, which 

are typically ~10–40 amino acids long, positively charged, and contain a high proportion 

of hydrophobic residues that enable them to form fibrils, micelles, vesicles, or nanotubes 

depending on their composition and environmental conditions [163]. The generally accepted 

mode of action of AMPs is the destabilization of bacterial membranes by self-assembling 

into oligomeric structures that facilitate pore formation and cell lysis [164]. Interestingly, 

the ability of AMPs to regulate aspects of the immune system has made them potential 

candidates as vaccine adjuvants [165, 166]. In particular, neutrophilderived defensins have 

been shown to regulate cytokine responses, DC maturation, and TH cell polarization. In 

mice, defensins effectively promote and enhance antigen-specific immunity, presenting an 

attractive avenue for the development of self-adjuvanting supramolecular vaccines [167].

5. Modulating adaptive immunity

Unlike the innate immune system, the adaptive immune system is characterized 

by specificity, immunological memory, and discrimination between self (endogenous 

molecules) and nonself (exogenous molecules, such as pathogenic components) [128]. 

Within this system, B cells generate broadly neutralizing antibodies but require assistance 

from follicular helper T (TFH) cells to mature into long-lived plasma cells. CD8+ and CD4+ 

T cells are the primary drivers of cell-mediated protection, recognizing antigen on the 

surface of APCs and differentiating into cytotoxic T cells and helper T cells (e.g., TH1, TH2, 

TH17), respectively. B cells recognize antigens through B cell receptors (BCRs) and the 

dense, structurally ordered antigenic arrays presented by filamentous peptide nanostructures 
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or symmetric nanoparticles allow for multiple binding events between the constructs and 

B cells to occur simultaneously, facilitating receptor-mediated internalization of antigens 

[28, 148, 168, 169]. Thus, the density and distribution of antigen on peptide assemblies 

are key features that can be used to modulate their efficacy [170]. Antigenic multivalency 

can also be exploited to overcome tolerance in autoimmune diseases and transplant 

rejection by presenting self-antigens to T cells in the context of tolerogenic signals and 

anti-inflammatory cytokines [171]. B and T lymphocytes are closely linked, as the same 

antigen–BCR interactions that trigger B cell signaling are necessary for downstream T cell 

responses and the subsequent long-lived secretion of antibodies by plasma cells [172, 173].

Though the multivalency of supramolecular peptide constructs is recognized as a significant 

advantage, antibody production against the scaffolds themselves could lead to vehicle­

induced immunosuppression. This has been observed for adenovirus vaccines, with anti­

carrier immunity generated during initial exposure impeding the efficacy of booster doses. 

While this effect is a result of our natural ability to defend against adenoviruses, the immune 

system also recognizes non-pathogenic repetitive and organized structures as foreign 

because these patterns are largely absent from the extracellular environment. However, 

inherent immunogenicity of the structural components of supramolecular peptide vaccines 

has not been reported to date and remains an under-studied aspect of the field.

5.1. Adaptive immune responses to peptide coiled coils

In recent years, fibrillar coiled coils have found success as vaccine adjuvants, suggesting 

utility beyond applications in structural biology [34, 174, 175]. A noteworthy example is the 

peptide Coil29, which assembles into a tetrameric nanotubular structure [26]. Conjugation 

of T cell and B cell epitopes to the radially outward-facing N-termini of Coil29 promotes 

multivalent antigen presentation and enhanced antibody and cellular immune responses, 

indicating potential adjuvant-like activity [34]. Due to the versatility of de novo peptide 

design, Coil29 nanofiber length can be regulated using capping peptides that either create 

kinks in the fibril or terminate its propagation, resulting in more consistent fibril lengths 

[174]. Immunological assessment of Coil29 linked to a CD8+ T cell epitope revealed that 

the capped fibrils induced higher levels of antigen-specific CD8+ T cells in lymph nodes 

relative to their uncapped counterparts, confirming that dimensional control over peptide 

assemblies may be critical for optimizing their adjuvanticity. Coiled coil peptides modified 

with nicotine-6-hexanoic acid and TH cell epitopes have been developed by Clegg and 

coworkers as nicotine vaccines to aid smoking cessation [175]. The vaccine was constructed 

by attaching the hapten via carboxyl–amine crosslinking at the f and c positions, allowing 

for display on the carrier surface. Antibody titers on par with alum-adjuvanted formulations 

were observed in mice vaccinated with the coiled coilnicotine conjugates. Inclusion of 

the TLR4-agonist glucopyranosyl lipid A (GLA-SE) further increased antibody levels and 

decreased nicotine entry into the brain by 91% compared to a saline group. In subsequent 

studies, multi-haptenated coiled coil carriers improved vaccine efficacy and reduced nicotine 

toxicity in rats [176, 177]. In addition to de novo designed sequences, a naturally occurring 

recombinant flagellin protein (FliC) has been reported to assemble into supramolecular 

helical architectures, and modified FliC filaments decorated with the D3 envelope protein of 
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dengue virus elicited strong T-independent antibody responses [178]. Thus, these structures 

may be applicable as vaccines for immunocompromised patients that lack CD4+ T cells.

Self-assembling peptide nanoparticles containing coiled coil oligomerization domains 

have been shown to generate long-lived humoral and cellular immunity in disease 

models including malaria, HIV, toxoplasma, influenza, bronchitis, and SARS [28, 179–

183]. Incorporating a TLR5-activating flagellin domain as a structural component of the 

nanoparticles augmented their immunogenicity [29]. Coiled coil peptides with terminal Tau 

or Aβ domains that assemble into spherical nanoparticles have demonstrated usefulness as 

prophylactic or therapeutic vaccines in pre-clinical models of allergic asthma, influenza, 

and infertility [184]. Boato et al. linked a phospholipid tail to a naturally occurring trimeric 

coiled coil peptide from the RSV F1 glycoprotein to fabricate fully synthetic VLPs with size 

and structure comparable to natural viruses [32]. Biophysical analysis confirmed that the 

VLP was composed of 24 constituent trimeric coiled coils, each of which displayed three 

epitopes. The potency of these particles was assessed in rabbits using the model organic 

hapten Lucifer Yellow CH or a peptide sequence derived from the HIV-1 protein gp120.

5.2. Adaptive immune responses to peptide β-sheets

While numerous tissue engineering applications have confirmed that self-assembling β-sheet 

fibrils are well-tolerated, Rudra et al. reported that fibrils functionalized with immunogenic 

epitopes are self-adjuvanting and lead to high antibody titers against the presented 

antigens [148]. When the glutamine-rich peptide Q11 was conjugated to OVA323–339, 

the assemblies induced antibodies levels comparable in magnitude and persistence to 

OVA323–339 administered in CFA. Further, unlike the exogenously adjuvanted OVA323–339 

formulation, the Q11-OVA323–339 fibrils did not cause local inflammation at the injection 

site. Malaria model experiments supported that this self-adjuvanticity is highly relevant 

to vaccine development, eliciting durable and protective anti-malaria antibodies [185]. 

Insights into the mechanism of action revealed a critical role for CD4+ T cells in the 

observed humoral response, which was independent of the TLR2, TLR5, and NALP3 

inflammasome pathways [185, 186]. While antibodies are relatively easy to generate, the 

activation threshold for efficient priming of CD8+ T cells is higher due to costimulatory 

requirements from APCs [187]. Intranasal delivery of Q11 nanofibers bearing the MHC I 

epitope OVA257–264 (SIINFEKL) were found to effectively protect against infection with 

a mouse-adapted human influenza strain (PR8) expressing OVA257–264 [188]. Si et al. 

demonstrated that, compared to parenteral vaccination, intranasal delivery of Q11 nanofibers 

bearing the influenza acid polymerase epitope PA224–233 (SSLENFRAYV) induced higher 

levels of lung-resident effector and memory CD8+ T cell responses and protected mice 

against an influenza challenge [189]. Analysis of cell populations in the lungs of vaccinated 

mice indicated that Q11 nanofibers are processed by CD103+ lung DCs, triggering a strong 

antigen-specific TH17 response in the mucosal tissue and dLNs [190]. Inclusion of the 

panDR T cell epitope PADRE in IL-17-Q11 nanofibers increased anti-IL-17 antibody 

production while reducing imiquimod-induced psoriasis in mice without added adjuvants 

[191, 192]. Further, the declining antibody titers over time could be recovered by a recall 

exposure to the IL-17-PADRE-Q11 construct. In addition to eliciting antibodies against 

foreign proteins, peptide nanofiber vaccines targeting autologous molecules like TNF-α can 
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overcome B cell tolerance and generate antibodies that prevent inflammation [193]. As 

an alternative to monoclonal antibody therapies, active immunization is comparatively cost­

efficient, produces lasting effects, and elicits a polyclonal response that includes different 

isotype specificities that can enhance the breadth of protection. Full-length proteins (e.g., 

GFP) can be bound to fibers using phosphonate–cutinase or other orthogonal chemistries 

to expand the repertoire of possible functional antibodies against pathogens [194]. In lieu 

of chemistries that only permit functionalization of mature fibrils, controlling the rate of 

β-sheet formation enables multiple full-length proteins to be incorporated without impeding 

self-assembly [195].

Comparable immunological results were obtained when antigens were displayed by 

alternative β-sheet-forming peptides such as KFE8, EAK16, RADA16, Nap-GDFDFDY, 

and Ac-(RVQV)3-COOH (Z1), suggesting that self-adjuvanticity is an intrinsic feature of 

this class of materials [134, 140, 186, 188, 196–202]. Nanofiber vaccines can carry a 

wide array of antigens, including bacterial or viral epitopes and addictive drug haptens. 

Fibrils composed of KFE8 linked to a cocaine hapten modified at the P3 site have been 

shown to boost anti-cocaine antibody titers without the need for exogenous adjuvants 

[197]. This significantly decreased cocaine-induced hyperactivity while avoiding the 

potential systemic toxicity associated with the strong adjuvants required by alternative 

strategies. One considerable advantage of peptide nanofibers is their ability to form self­

supporting and injectable hydrogels at high concentrations, a property that can be exploited 

for simultaneous presentation of antigens and sustained release of immunomodulatory 

compounds. For example, a hydrogel formed by KFE8 admixed with the West Nile virus 

immunoprotective envelope protein domain III (EIII) resulted in significantly higher anti­

EIII antibody titers in mice than free EIII co-administered with alum [203]. Its effectiveness 

was also supported by reduced weight loss and a threefold higher survival rate (60%). 

Woodrow and coworkers investigated optimized charge distribution and density to modulate 

the self-assembling properties of the model sequence Z1 and its derivatives with substituted 

residues or terminal groups [196]. These peptides assembled at lower concentrations than 

similar amphipathic peptides, demonstrated increased hydrogel mechanical strength, and 

elicited robust CD8+ T cell responses.

In contrast to de novo designed peptides, the naturally occurring β-sheet-forming 

amyloidogenic peptide I10 (SNNFGAILSS) can trigger NF-κB signaling without 

significantly affecting cell viability in a HEK reporter cell line expressing the human 

heterodimer TRL2/6 [204, 205]. When an influenza A matrix protein epitope (M2e) was 

conjugated I10, the M2e-I10 nanofibers activated NF-κB signaling pathways at levels 

comparable to unconjugated I10 nanofibers and produced M2e-specific antibodies with 

or without alum; however, NF-κB activation was not achieved by M2e alone. While the 

presence of alum enhanced antibody levels following the first and second immunizations 

with Me2-I10, there was no significant difference following the third immunization. In 

mice vaccinated without alum, isotyping data revealed higher levels of IgG2a subtype, 

indicative of TH1-type immunity typically associated with viral clearance [205, 206]. 

Beyond infectious disease and addiction models, a number of β-sheet-rich peptide constructs 

have been used as adjuvants in a variety of cancer models to minimize tumor burden [134, 

145, 207–211].
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While selecting from naturally occurring L-amino acids allows for control of 

physicochemical properties such as charge, hydropathy, and polarity, incorporating their 

D-enantiomers further enriches this diversity and impacts self-assembly behavior [142, 

144, 202, 211–217]. The geometric change in backbone-side chain connectivity of D­

enantiomers makes them resistant to proteases, preventing in vivo degradation [212, 218]. To 

demonstrate this, Nilsson and coworkers exposed L- and D-KFE8 fibrils to three proteases 

(chymotrypsin, trypsin, and proteinase K) and found that while the L-KFE8 fibrils were 

~50% degraded after 24 h and ~95% degraded after five days, the D-KFE8 fibrils were 

only marginally degraded after five days [218]. Adjusting the stoichiometric ratio (1:1 or 

3:1 L:D) of the enantiomers allowed for additional control over the proteolytic stability of 

the hydrogels. Biostability and biodistribution studies in mice demonstrated that L- and D­

enantiomers of Nap-GFFYGRGD degrade at different rates in plasma (95% or L-enantiomer 

and 17% of D-enantiomer digested after 24 h) and preferentially accumulate in different 

organ systems [219]. In a study comparing L- and D-KFE8 fibrils bearing OVA323–339, the 

improved in vivo stability of the D-enantiomers was associated with enhanced and persistent 

antibody responses while retaining the non-inflammatory status of the L-enantiomers [213]. 

Several D-amino acid-substituted self-assembling peptides based on the parent sequence 

Nap-GFFY and its D-enantiomer Nap-GDFDFDY have shown considerable promise as 

vaccines and immunotherapeutics in multiple disease models [220, 221]. Modified versions 

of this system include those with an added charged domain to facilitate uptake by APCs, 

substitution with phosphotyrosine to protect phosphorylated antigens, and the inclusion 

of the immunostimulatory immunoglobulin-derived tetrapeptide TKPR (tuftsin) or the 

nonsteroidal anti-inflammatory drug flurbiprofen [134, 144, 201, 202].

The self-adjuvanticity of peptide nanofibers has been complemented by combining them 

with TLR agonists to improve immunological memory. The commercialized RADA16 

hydrogel Puramatrix™ has been used as an adjuvant depot for the TLR9 agonist CpG 

and the recombinant hepatitis B surface antigen (rHB-sAg) [200]. It has also been used to 

encapsulate PLGA microparticles loaded with granulocyte-macrophage colony-stimulating 

factor (GM-CSF) and insulin to recruit and activate immune cells in a type 1 diabetes (T1D) 

mouse model [222]. Simple admixing of KFE8 fibrils bearing the glycoprotein B (gB) 

epitope from herpes simplex virus type 2 (HSV-2) with TLR3, TLR7, and TLR9 agonists 

(polyI:C, gardiquimod, and CpG, respectively) increased the frequency of gB-specific T 

cells in the dLNs, polyfunctional cytokine (IFN-γ and TNF-α) production, and HSV-2­

specific cytotoxicity [223]. Interestingly, the effector function of the T cells was found to 

be dependent on the type of TLR used. Antigenic EAK16 nanofibers displaying the HIV-1 

Gag p17 protein SL9 mixed with TLR7 and TLR8 agonists (imiquimod and resiquimod) 

demonstrated effective internalization via the endosomal pathway, co-localization within 

acidic intracellular compartments, and upregulation of CD83 [198]. The nanofibers 

enhanced multifunctional antigen-specific CD8+ T cell responses when co-cultured with 

peripheral blood mononuclear cells from HIV-1-infected individuals. Although the presence 

of TLR7 and TLR8 agonists promoted DC maturation and T cell stimulation, the generation 

of antigen-specific cytotoxic CD8+ T lymphocytes was dependent on physical linkage of 

the epitope to EAK16. In contrast to simple admixing, the chemical versatility of amino 

acids and terminal peptide groups allow TLR agonists to be covalently bound to peptide 
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nanofibers. In Bacillus Calmette-Guérin (BCG)-primed mice, intranasal administration 

of coassembled fibrils composed of KFE8 presenting Mycobacterium tuberculosis (Mtb) 

antigens and KFE8 presenting the TLR2 agonist Pam2 Cys (P2C) expanded CD8+ T cell 

pools in the lungs eightfold, resulting in an additional 0.5 log reduction of Mtb burden 

compared to BCG alone [140]. This showed that nanofiber-based vaccines can be used to 

boost protection conferred by licensed vaccines like BCG. While combinations of peptide 

nanofibers and TLR agonists have proven to be effective inducers of humoral and cellular 

immunity, the synergy between their mechanisms of action has yet to be uncovered.

5.3. Adaptive immune responses to PAs

In the last decade, micelles and nanofibers composed of PAs have been utilized as vaccine 

carriers in a variety of disease models [152, 224–228]. Tirrell and coworkers reported a 

PA-based vaccine comprising OVA257–264 and dipalmitic acid that assembles into cylindrical 

micelles ~eight nm in diameter and typically between 50 and 300 nm in length [152]. 

In mice, these PAs triggered a robust OVA257–264-specific cytotoxic T cell response that 

reduced tumor burden without added adjuvants and was equivalent to OVA257–264 in 

incomplete Freund’s adjuvant (IFA). The humoral immunogenicity of PAs was demonstrated 

using dipalmitic acid conjugated to J8, a B cell epitope derived from group A Streptococcus 
(GAS) bacteria [224]. Co-delivery (10 mol%) with either the TLR2 agonist P2C-SK4 or the 

TLR4 agonist monophosphoryl lipid A (MPLA) further improved antibody titers. When J8­

dipalmitic acid peptide solutions were heated to anneal the assembled micelles, fibril lengths 

increased to two orders of magnitude larger than their width [225]. Without exogenous 

adjuvants, the annealed micelles elicited antibody levels comparable to unconjugated J8 in 

IFA. The protective efficacy of PA-based vaccines was confirmed in mice using the J14 GAS 

epitope [229–232].

Ulery and coworkers investigated the effect of incorporating a polyionic group into a PA 

containing OVA319–340 and mono- or dipalmitic acid [233, 234]. By altering the lipid tail 

number and the position of the (EK)4 or (KE)4 polyionic group, PA micelle morphology and 

size could be modulated to influence their immunogenicity [234]. Long fibrils assembled 

from molecules consisting of a single palmitic acid, an OVA319–340 epitope, and an 

intervening (EK)4 moiety were unable to enter lymphatic vessels and produced virtually no 

IgG. When the polyionic head group of dipalmitic acid-containing PAs was varied between 

the positively charged K8, negatively charged E8, and zwitterionic (KE)4 sequences, surface 

charge-dependent uptake of the micelles by APCs and preferential accumulation in the 

lymph nodes were observed.

Modifying PAs with the cell-penetrating Tat peptide facilitated internalization by APCs 

and upregulated MHC II and CD86, which enhanced vaccination outcomes in an influenza 

model [226]. Rather than directly attaching antigens, a PA displaying a C-terminal free 

biotin group was synthesized to capture biotinylated antigens via streptavidin linkers 

[235]. Using OVA257–264 as a model antigen, this approach improved cytokine release and 

cross-presentation in mice compared to OVA257–264 adjuvanted with CpG. Instead of lipid 

tails, micelles formed by PAs consisting of 3-diethylaminopropyl isothiocyanate (DEAP), a 

cleavable MMP-2 substrate, and a short D-peptide antagonist (DPPA-1) of programmed cell 
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death ligand-1 were used to encapsulate an indoleamine 2,3-dioxygenase inhibitor [236]. 

In a melanoma model, treatment with these micelles amplified CD8+ T cell populations 

and subsequently slowed tumor growth, reducing overall mortality. Detailed biodistribution 

studies have concluded that PAs are generally non-cytotoxic and could be a promising 

avenue for the development of subunit vaccines and immunotherapies against infectious and 

non-infectious diseases [237, 238]. Non-lipidated PAs composed of a poly(hydrophobic 

amino acid) domain linked to a hydrophilic peptide have been used to preserve the 

conformation of conjugated antigens, which in some cases is necessary to elicit protective 

immunity against certain pathogens [239, 240]. Further, supramolecular lipopeptide-based 

vaccines incorporating non-natural amino acids have been shown to maintain structural 

integrity in harsh in vivo environments such as the mucosa, gut, and other biological barriers 

[241, 242].

5.4. Adaptive immune responses to protein subunit nanoparticles

Protein subunit nanoparticles are derived from natural (virus-, bacteria-, plant-, or animal­

derived) sources or designed de novo and lack the genetic material necessary for 

replication but otherwise resemble natural viruses. The multivalent nature of protein subunit 

nanoparticles and their ability to both encapsulate and deliver antigens makes them attractive 

for eliciting robust adaptive immunity, while their amenability to chemical functionalization 

avoids the antigen size limitations seen in some recombinant systems [159, 173, 243, 244]. 

Nanoparticles composed of virus- or bacteria-derived proteins can also activate PAMPs, 

which contribute to immunological memory [245]. Since the discovery of HBV protein 

VLPs in the sera of infected patients, nanoparticles derived from the surface antigen 

HBsAg or the core antigen HBcAg have been included in two licensed HBV vaccines 

(Engerix-B and Recombivax-HB) [82, 246]. Analogous protein nanoparticle vaccines 

containing recombinant HPV L1 major capsids that assemble into ~50 nm virions have 

been approved as HPV prophylactics (Cervarix and Gardasil) [247, 248]. Carrier-induced 

immunosuppression can impede vaccine responses due to pre-existing immunity to viral 

proteins; however, chimeric HBcAg nanoparticles carrying human rhinovirus, malaria, and 

RSV epitopes effectively circumvent this phenomenon, potentially enabling vaccination 

against various diseases using identical carriers [249–252].

Molino et al. fabricated a caged protein structure consisting of 60 self-assembling units 

of the non-viral E2 core of pyruvate dehydrogenase linked to CpG, which was used 

to encapsulate the model antigen OVA257–264 [253]. Treatment of DCs with the protein 

nanocages increased antigen presentation compared to soluble epitope and stimulated DC 

maturation, as evidenced by upregulated CD86 and MHC II. The effectiveness of E2 

nanoparticles was confirmed using preclinical melanoma and HIV-1 vaccines [254–257]. 

Lee and coworkers have described nanocages derived from bacterial ferritin or the artificial 

cage protein I3–01 as carriers for the TLR5 agonist protein FliC or a truncated variant 

(ΔFliC) lacking the Naip5 inflammasome-activating domain D0, as well as protective 

antigen from Bacillus anthracis or influenza HA [258]. Mice vaccinated with HA- and 

ΔFliC-conjugated nanocages demonstrated 100% survival after H1N1 influenza challenge 

and clinical observations improved on par with the 2016–2017 quadrivalent inactivated 

influenza vaccine. An emerging strategy using bacteriophage coat protein Qβ nanoparticles 
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has been used in clinical trials as a nicotine hapten carrier to aid smoking cessation 

and as a delivery vehicle displaying the minimal epitope Aβ1–6 for Alzheimer’s disease 

immunotherapy [259, 260]. Protein subunit nanoparticle vaccines have also been applied to 

prevent influenza, HIV, norovirus, and SARS-CoV-2 [102, 261–263].

6. Current challenges and future prospects

Peptide-based supramolecular nanomaterials have demonstrated effectiveness as 

prophylactics and therapeutics to manipulate the immune system in multiple preclinical 

disease models; however, several unresolved challenges must be addressed if they are to be 

approved for clinical use. A key goal in the coming years will be to achieve vaccination 

efficacy approaching that of live attenuated or inactivated pathogens, which contain a broad 

spectrum of antigens and PRR agonists. The reductionist design of most subunit vaccines 

lack these broad antigenic and agonistic profiles, limiting their potency. Attaining specific 

three-dimensional structures is essential to eliciting neutralizing antibodies against some 

antigens; thus, delivery methods that conformationally stabilize these moieties are required. 

This is difficult to achieve using peptides, particularly those with β-sheet-rich architectures, 

as their length scales and morphologies are often heterogeneous and it remains a nontrivial 

task to preserve their structural integrity in vivo.

Numerous supramolecular peptide-based vaccines have been shown to stimulate adjuvant­

free immune responses, but we have yet to elucidate the interactions between APCs and 

these multivalent structures and their influence on innate immunity, immunometabolism, B 

cell activation, and T cell memory formation. Emerging data on the combined effects of self­

adjuvanting peptide nanomaterials and TLR agonists suggest that synergistic pathways may 

differentially activate TLRs, inflammasome signaling, autophagy, and T-independent B cell 

signaling. Moreover, functionally modifying supramolecular assemblies can further promote 

protective immunity by facilitating spatiotemporal control over antigen delivery, promoting 

high-affinity antigen–BCR or antigen–MHC interactions, maturation of APC function to 

boost costimulation, and augmentation of environmental signals that drive type-specific 

cytokine profiles.

Many of the vaccination platforms discussed in this review use OVA as a model 

antigen due to its reliably strong immunogenicity, availability of immunological reagents, 

and accessibility to transgenic animal repositories. While this enables us to investigate 

the evolution of immunological mechanisms, therapeutic outcomes observed in OVA­

based pathogen or tumor models are not necessarily indicative of protection obtained 

using disease-relevant epitopes. Further, using large animal models such as rabbits, 

guinea pigs, ferrets, and non-human primates may accelerate translational efforts. 

Additionally, commercializing self-assembling peptide-based vaccines will require the 

continued development of cost-effective large-scale production that minimizes batch-to­

batch variation. Despite this challenge, one self-assembling peptide has been accepted 

as a medical device by regulatory authorities, providing a precedent that may accelerate 

development and ease the approval of other supramolecular peptide systems. In particular, 

the RADA16 construct PuraStat is CE-marked as a class III device in the European Union, 

permitting its use as a hemostatic during surgery [264]. In the United States, a similar 
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formulation is available in non-GMP forms for research purposes under the trade name 

PuraMatrix.

In summary, the development of supramolecular peptide-based immunomodulatory systems 

to prevent or treat disease holds great promise and warrants continued research to establish 

this emerging and versatile platform as a safe and effective alternative to current vaccines.
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Statement of significance

Subunit vaccines have recently gained considerable attention due to their favorable 

safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy 

requires co-administration of reactogenic adjuvants to boost immune responses. This 

has led to collaborative efforts between engineers and immunologists to develop 

nanomaterial-based vaccination platforms that can elicit protection without deleterious 

side effects. Self-assembling peptidic biomaterials are a particularly attractive approach 

to this problem, as their structure and function can be controlled through primary 

sequence design and their capacity for multivalent presentation of antigens grants them 

intrinsic self-adjuvanticity. This review introduces the various architectures adopted by 

self-assembling peptides and discusses their application as modulators of innate and 

adaptive immunity.
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Fig. 1. 
Supramolecular peptide, peptide amphiphile, and protein subunit nanoparticle structures. 

(A,B) Coiled coils are oligomers composed of two or more α-helices that typically display 

an abcdefg heptad repeat [33]. (C) Coil29 self-assembles into filamentous nanotubes in 

which individual coiled coil peptides associate with their N-termini facing radially outward 

(adapted with permission from [34], copyright 2017 American Chemical Society). β-sheets 

adopt either (D) parallel or (E) antiparallel orientation, both of which are stabilized 

by extensive hydrogen bonding networks [35]. β-sheets with alternating hydrophilic and 
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hydrophobic residues are (F) facially amphipathic and (G) laminate into bilayers that (H) 

propagate along the hydrogen bonding axis (adapted with permission from [36], copyright 

2017 American Chemical Society). (I) Peptide amphiphiles contain peptide head groups and 

lipid tails that assemble into cylindrical or spherical micelles (reprinted with permission 

from AAAS [37]). (J) Protein subunit nanoparticles incorporating trimeric and pentameric 

coiled coils assembly into polyhedral nanoparticles (adapted from [27], copyright 2006, with 

permission from Elsevier). (K) Coiled coil homotrimers covalently linked to the components 

of a heterodimeric coiled coil through disulfide bridges interact to form a hexagonal lattice 

that gives rise to closed nanocages (adapted with permission from [38], copyright 2018 

American Chemical Society).
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Fig. 2. 
Evolution of immune responses following supramolecular peptide-based vaccine delivery. 

After vaccine administration (1), tissue resident APCs such as DCs and MΦs internalize 

the constructs and process them through either the exogenous or endogenous pathway 

to present the antigenic epitopes on MHC II or MHC I molecules, respectively (2). The 

antigen-laden APCs then migrate to the dLNs for antigen presentation to CD4+ or CD8+ 

T cells. The interaction between MHC molecules and TCRs is supported by costimulatory 

signals, including ligand–receptor interactions and cytokine signaling, which enhance T 

cell responses and drive differentiation (3). TH cells then direct further immune activation 

through cytokine signaling and interaction with B cells and CD8+ T cells. Activated B 

cells interact with antigen-specific T cells and differentiate into plasma cells that produce 

long-lived antibody responses. Crosstalk between CD4+ and CD8+ T cells leads to the 

production of cytotoxic T lymphocytes that detect and eliminate infected cells (4). Created 

with https://www.BioRender.com.
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