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Background: The present study compared the predictive performance of pretreatment
computed tomography (CT)-based radiomics signatures and clinicopathological and CT
morphological factors for ligand programmed death-ligand 1 (PD-L1) expression level and
tumor mutation burden (TMB) status and further explored predictive models in patients
with advanced-stage non-small cell lung cancer (NSCLC).

Methods: A total of 120 patients with advanced-stage NSCLC were enrolled in this
retrospective study and randomly assigned to a training dataset or validation dataset.
Here, 462 radiomics features were extracted from region-of-interest (ROI) segmentation
based on pretreatment CT images. The least absolute shrinkage and selection operator
(LASSO) and logistic regression were applied to select radiomics features and develop
combined models with clinical and morphological factors for PD-L1 expression and TMB
status prediction. Ten-fold cross-validation was used to evaluate the accuracy, and the
predictive performance of these models was assessed using receiver operating
characteristic (ROC) and area under the curve (AUC) analyses.

Results: The PD-L1-positive expression level correlated with differentiation degree (p =
0.005), tumor shape (p = 0.006), and vascular convergence (p = 0.007). Stage (p = 0.023),
differentiation degree (p = 0.017), and vacuole sign (p = 0.016) were associated with TMB
status. Radiomics signatures showed good performance for predicting PD-L1 and TMB
with AUCs of 0.730 and 0.759, respectively. Predictive models that combined radiomics
signatures with clinical and morphological factors dramatically improved the predictive
efficacy for PD-L1 (AUC = 0.839) and TMB (p = 0.818). The results were verified in the
validation datasets.

Conclusions: Quantitative CT-based radiomics features have potential value in the
classification of PD-L1 expression levels and TMB status. The combined model further
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improved the predictive performance and provided sufficient information for the guiding of
immunotherapy in clinical practice, and it deserves further analysis.
Keywords: radiomics features, computed tomography, non-small cell lung cancer (NSCLC), programmed death-
ligand 1 (PD-L1), tumor mutation burden (TMB)
INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for 75%–85% of
all lung cancers. Approximately 80% of NSCLC cases are
diagnosed at an advanced stage, when curative surgery is not
an ideal option (1). Systemic platinum-based doublet
chemotherapy is the standard treatment strategy and may
provide survival benefits for locally advanced patients, with
progression-free survival (PFS) of 3.6–4.8 months and median
overall survival (mOS) ranging from 7.9 to 10.3 months (2).
These limited and unsatisfactory survival times have necessitated
the development of novel treatment modalities, such as
immunotherapy, for patients with advanced-stage NSCLC (3).

Immunotherapy is changing the therapeutic strategy for
NSCLC to immune checkpoint inhibitors (ICBs). Programmed
cell death protein 1 (PD-1) and its ligand programmed death-
ligand 1 (PD-L1) play crucial roles in tumor immune escape and
the development of the tumor immune microenvironment and
closely correlate with tumor generation and invasion (4).
Antibodies binding on the PD-1/PD-L1 have been identified in
NSCLC patients who were not sensitive to platinum-based
chemotherapy (5, 6). Accumulating evidence confirmed that
blocking this pathway reversed the immune escape
microenvironment and improved the endogenous antitumor
immune response (7). The PD-L1 expression level is a
commonly used biomarker that indicates whether a patient
should receive ICB. Lung cancer patients with PD-L1 positivity
are more sensitive to immunotherapy (8, 9). In addition, PD-L1
expression in the early stages of NSCLC could be used as a
predictive biomarker for subsequent therapies (10). However,
some studies declared an opposite viewpoint. As Diggs et al. (11)
and Hirsch et al. (12) reported, PD-L1-negative or low-positive
patients also had a good response to antibodies due to high
tumor heterogeneity (13). Therefore, PD-L1 expression status
alone is not treated as a predictive biomarker of response but
rather a useful risk factor for identifying patients who are more
likely to benefit from anti-PD-1/PD-L1 monotherapy. Several
other candidate predictive biomarkers were associated with
clinicopathological factors, the tumor microenvironment, and
tumor-infiltrating cells. Tumor mutation burden (TMB), as an
important predictive surrogate biomarker of prognosis and
response to immunotherapy, has been widely investigated in
clinical trials (14–16). Hellmann et al. (17) and Rizvi et al. (18)
indicated that higher TMB correlated with favorable outcomes
using next-generation sequencing (NGS) assay, which support its
potential predictive value. Gandara et al. (19) also suggested that
higher TMB in tissues was associated with efficacy of first-line
immunotherapy, and TMB in blood predicted the response in
NSCLC patients treated with ICB as a second-line treatment.
Currently, the gold standards for the detection of PD-L1
2

expression and TMB are biopsy specimens or surgical
resection, which are limited in patients in poor condition due
to the invasiveness, time-consuming, tumor heterogeneity, and
unrepeatability (20, 21). Therefore, the development of a novel,
accurate, and noninvasive method for PD-L1 and TMB
assessment is appealing for clinical practice.

Radiomics is inspired by the combination of artificial
intelligence and medical imaging. High-throughput and
quantitative imaging features reflect the underlying
pathophysiology and reveal information on tumor phenotypes
(22, 23). Computed tomography (CT) is routinely used for tumor
staging and diagnosis in clinical practice. Previous results
showed that computed tomography radiomics analysis (CTRA)
could be applied in the prediction of gene mutations and tumor
phenotypes. Most radiomics research focused on epithelial
growth factor receptor (EGFR) (24) and anaplastic lymphoma
kinase (ALK) mutations (25), and only a few studies mentioned
PD-L1 expression or TMB status in patients treated with
chemotherapy (26, 27). Theoretically, the tumor phenotype
provided by CT hides a potential correlation with PD-L1 and
TMB expression status, which can be quantitatively analyzed.
Therefore, the present study compared the performance of the
radiomics signature and pretreatment clinical and morphological
factors in predicting PD-L1 and TMB status, then developed and
validated optimal predictive models to identify patients who may
benefit from immunotherapy.
MATERIALS AND METHODS

Patient Selection
For this study, a total of 120 patients were retrospectively
enrolled from January 2017 to October 2019 at Shandong
Provincial Hospital Affiliated to Shandong First Medical
University. The following inclusion criteria were used: 1)
pathological diagnosis of lung adenocarcinoma via biopsy or
bronchofiberoscopy; 2) clinical stages III–IV according to the
eighth edition the American Joint Committee on Cancer (AJCC)
using pretreatment CT; 3) PD-L1 expression level was tested by
immunohistochemistry (IHC); 4) no antitumor therapy received;
and 5) sufficient tumor tissue for IHC staining to evaluate PD-L1
express ion leve l and NGS to detec t TMB sta tus .
Clinicopathological and CT morphological variables were
collected in accordance with the protocol and are detailed
in Table 1.

The Research Ethics Committee of Shandong Provincial
Hospital Affiliated to Shandong First Medical University
approved this study. All protocols were performed in
accordance with the guidelines and ethical principles stated in
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the 1964 Helsinki declaration. Informed consent was obtained
from all participants.

Immunohistochemistry Staining and Next-
Generation Sequencing Assay
Formalin-fixed paraffin-embedded (FFPE) samples from NSCLC
patients were sliced at a thickness of 3–4 µm. Unstained sections
were de-waxed in xylene, rehydrated in a series of ethanol
solutions, and subjected to antigen retrieval in a microwave
under middle-to-high pressure for 5 min. Sections were stained
with an anti-PD-L1 [VENTANA, clone(c): sp-263] primary
antibody in a humidified chamber at 37°C for 60 min then
incubated with secondary anti-rabbit and anti-mouse antibodies
(Zhongshan Golden Bridge Biotechnology Company) at 37°C for
15 min. Subsequently, 3’3’-diaminobenzidine (DAB) was used to
visualize PD-L1 staining. Slides were counterstained with
hematoxylin and differentiated with acid alcohol (28). As a
previous study stated, we defined “PD-L1 expression positive”
Frontiers in Oncology | www.frontiersin.org 3
as 50% or more viable tumor cells exhibiting membrane staining
with any intensity [tumor proportion score (TPS) ≥50%] (29).

We followed the conventional method, and tumor DNA was
isolated from FFPE tumor sections. The tumor samples were
subjected to NGS using capture panels representing 1,024
cancer-related genes in Gene+OncoMDR, which was
performed on HiSeq NGS platforms (Illumina Inc., San Diego,
CA, USA). TMB was calculated as the total number of mutations
counted divided by the size of the coding region of the targeted
territory per Mb. Alternations that were known as germline
polymorphisms and oncogenic drivers were excluded. According
to a related study, the median score was the cutoff value of 4/Mb
(30). The variation data reported in this paper have been
deposited in the Genome Variation Map (GVM) in Big Data
Center, Beijing Institute of Genomics (BIG), Chinese Academy
of Science, under accession number GVM000133.
Region of Interest Segmentation and
Feature Extraction
All patients underwent pretreatment contrast-enhanced
diagnostic chest, abdomen, and neck CT. CT images were
obtained using a 256 detector row CT scanner (Phillips,
Netherlands). The image parameters were as follows: tube
rotation time 0.5 s; voltage of 110–120 Kvp; tube current of
150–200 mA; and reconstruction slice thickness of 2.5 mm with
standard soft-tissue algorithm reconstruction.

CT images were imported into 3D Slicer software edition 4.7
(Harvard, USA) and read with lung (1,500/-500 Hu) and
mediast inal (300/-60 Hu) window sett ings . Tumor
segmentation was performed to select primary lesions of
NSCLC cases after image acquisition. Two independent
oncologists with 10 years and 15 years of experience who were
blinded to the clinical data manually contoured the region of
interest (ROI). Consensus was reached via discussion when
interobserver variability was apparent.

A total of 462 quantitative feature extractions were performed
by the open-source Imaging Biomarker Explorer software (IBEX,
MD Anderson, Houston, TX, USA) and categorized into five
subtypes: 1) first-order features; 2) size and shape features; 3)
histogram intensity features; 4) texture features involving gray-
level co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), and gray-level size zone matrix (GLSZM); and 5)
wavelet features. Briefly, the first-order features described the
distribution of voxel intensities. Size and shape features
described the morphological structure of the lesion. Histogram
intensity features characterized the distribution of voxel
intensities in the tumor. Texture features (GLCM, GLRLM,
and GLSZM) conveyed information on the spatial relationships
between voxels. Wavelet features provided a tractable method of
decomposing features into different frequency sub-bands,
performing intensity and texture features derived from wavelet
transformations of CT images (Supplementary File 1).

To improve texture discrimination, all radiomics features
were subjected to z-score normalization and transformed to a
mean of 0 and a standard deviation of 1. Thirty patient images
were randomly selected for reproducibility testing using inter-
TABLE 1 | The clinicopathological and morphological factors of patients with
NSCLC in the training dataset and validation dataset.

Factors Training Validation p

Age 63
(49–78)

62
(48–77)

0.711

Gender 0.274
Male 54 22
Female 36 8

Smoking 0.830
Yes 53 19
No 37 11

ECOG PS 0.143
0–1 72 20
2 18 10

Stage 0.661
T3 61 19
T4 29 11

Shape 0.086
Round 57 13
Irregular 33 17

Location 0.503
Central 58 22
Peripheral 32 8

Speculation 0.673
Yes 35 13
No 55 17

Cusp angle 0.313
Yes 18 9
No 72 21

Vacuole sign 0.286
Yes 34 15
No 56 15

Pleural indentation 0.391
Yes 31 13
No 59 17

Vascular convergence 0.527
Yes 52 15
No 38 15

Differentiation Degree 0.137
Well 24 10
Median 41 17
Poor 25 3
ECOG PS, Eastern Cooperative Oncology Group Performance Status; NSCLC, non-small
cell lung cancer.
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observer and intra-observer assessments. Tumor segmentation
by two oncologists was the inter-observation, and one
radiologist’s repeating of the tumor contouring was the intra-
observation. Features with inter-/intra-class correlation
coefficients (ICCs) ≥0.8 were considered robust and selected
for further analysis.

Feature Selection and Radiomics
Signature Building
The present study used a machine-learning method for feature
selection in R3.4.2 (Auckland, New Zealand). To minimize
overfitting and selection bias, the least absolute shrinkage and
selection operator (LASSO) algorithm was performed for the
regression of high-dimensional data. The LASSO regression
model was conducted by 10-fold cross-validation based on the
minimum criteria using the glmnet package in R software (31)
(version 3.4.2, http://www.r-project.org/) (Supplementary File 2).
The likelihood ratio test was used for backward stepwise selection,
which used Akaike’s information criterion (AIC) as the stopping
rule. The radiomics signatures (Rad-score) were calculated as a
linear combination of the selected features.

Statistical Analysis
Combined models on the basis of clinical, CT morphological,
and radiomics features were developed by binomial logistic
regression for PD-L1 expression and TMB status. The chi-
square test or Fisher’s test was employed to analyze categorical
variables. The Mann–Whitney U-test was used to compare the
continuous variables between groups. The predictive value was
assessed by the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve analysis using the pROC
Frontiers in Oncology | www.frontiersin.org 4
package in R software (32). A two-sided p-value <0.05 was
considered a significant difference.
RESULTS

A total of 120 patients with NSCLC were included in this
retrospective analysis. The flowchart of the research is
presented in Figure 1. Patients were randomly divided into a
training dataset (90 patients) or a validation dataset (30 patients).
The clinicopathological and CT morphological variables
are summarized in Table 1. There were no significant
differences between these factors in the training or validation
datasets, including age, differentiation level, staging, and
other variables.

The results of clinicopathological and CT morphological
factors between patients with positive/negative PD-L1
expression and high/low TMB status in the training set are
listed in Tables 2 and 3. The differentiation degree (p = 0.005)
and tumor shape (p = 0.006) were associated with PD-L1
expression. PD-L1-positive expression was found more
frequently in patients with vascular convergence (p = 0.007).
We did not determine the predictive values of smoking status
(p = 0.437), cusp angle (p = 0.787), or other factors for PD-L1
expression. Staging (p = 0.023) and differentiation degree (p =
0.017) showed statistically significant differences in the
identification of TMB status. Higher TMB status tended to
correlate with vacuole signs (p = 0.016). There was no
discrepancy in TMB status by tumor location (p = 0.509). The
clinical models were generated on the basis of multivariate
FIGURE 1 | Workflow of study design and radiomics process. IHC, immunohistochemistry, immunobiological staining; NGS, next-generation sequencing; CT,
computed tomography; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve; ROC, receiver operating characteristic.
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regression analysis, which showed moderate performance for the
classification of PD-L1 and TMB with AUCs of 0.650 and
0.661, respectively.

The radiomics analysis contained 462 features; all of them
were extracted from the segmented pretreatment CT images.
After robust and reproducibility tests, 238 out of 462 features
were preserved for further analysis with an ICC greater than 0.8.
To construct the radiomics signatures for PD-L1 and TMB
assessment, six and five features were respectively filtered in the
training cohort with non-zero coefficients in the LASSO logistic
regression model. LASSO was performed using 10-fold cross-
validation based on the minimum criteria. The selected features
are listed in Table 4. PD-L1 expression prediction using the above
radiomics signature showed a favorable assessment efficacy with
an AUC of 0.730, and the AUC was 0.759 for discriminating the
mutation status of TMB.
Frontiers in Oncology | www.frontiersin.org 5
According to multivariate analysis, the combined models were
constructed using a combination of the clinicopathological, CT
morphological factors, and radiomics signatures. ROC analysis of
the training dataset demonstrated that we improved the
predictive efficacy of PD-L1 expression compared to the
radiomics signature and clinical model alone, with an AUC of
0.839, sensitivity of 0.917, and specificity of 0.481. The combined
model maintained a high predictive value in the validation dataset
with an AUC of 0.793, sensitivity of 0.894, and specificity of 0.502
(Figure 2 and Table 5). Compared to the radiomics signature or
clinical model, the integrated model showed better performance
for TMB status prediction according to the increased AUC =
0.818, sensitivity = 0.953, and specificity = 0.614. As the results
demonstrated, an obvious separation between high and low TMB
status was detected in the validation dataset with an AUC = 0.786
(Figure 3 and Table 6).
TABLE 2 | The correlation of PD-L1 expression level and clinicopathological with
CT morphological factors.

Factors Positive Negative p

Age 62
(49–78)

63
(50–77)

0.562

Gender 0.263
Male 32 22
Female 26 10

Smoking 0.437
Yes 35 18
No 23 14

ECOG PS 0.417
0–1 48 24
2 10 8

Stage 0.059
T3 35 26
T4 23 6

Shape 0.006
Round 43 14
Irregular 15 18

Location 0.503
Central 36 22
Peripheral 17 15

Speculation 0.102
Yes 19 16
No 39 16

Cusp angle 0.787
Yes 11 7
No 47 25

Vacuole sign 0.496
Yes 20 14
No 38 18

Pleural indentation 0.069
Yes 24 7
No 34 25

Vascular convergence 0.007
Yes 40 12
No 18 20

Differentiation Degree 0.005
Well 20 4
Median 28 13
Poor 10 15
ECOG PS, Eastern Cooperative Oncology Group Performance Status.
TABLE 3 | The correlation of TMB status and clinicopathological with CT
morphological factors.

Factors High Low p

Age 63
(48–76)

63
(49–78)

0.427

Gender 0.519
Male 29 25
Female 16 20

Smoking 0.086
Yes 31 22
No 14 23

ECOG PS 0.187
0–1 39 33
2 6 12

Stage 0.023
T3 25 36
T4 20 9

Shape 0.382
Round 26 31
Irregular 19 14

Location 0.509
Central 31 27
Peripheral 14 18

Speculation 0.666
Yes 19 16
No 26 29

Cusp angle 0.430
Yes 11 7
No 34 38

Vacuole sign 0.016
Yes 23 11
No 22 34

Pleural indentation 0.078
Yes 21 10
No 28 31

Vascular convergence 0.137
Yes 32 20
No 13 25

Differentiation Degree 0.017
Well 6 18
Median 24 17
Poor 15 10
August 2021 | Vo
lume 11 | Article 6
ECOG PS, Eastern Cooperative Oncology Group Performance Status; TMB, tumor
mutation burden.
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DISCUSSION

With the evolution of immune therapy, predictive biomarkers
have become increasingly important in the guiding of NSCLC
treatment according to the latest National Comprehensive
Cancer Network (NCCN) guidelines. The present study
developed pretreatment CT-based radiomics signatures to
effectively classify positive/negative PD-L1 expression levels
and high/low TMB status in NSCLC patients. The combination
model AUCs were higher than the clinical models and radiomics
signatures alone, which indicated that it was a reliable means of
identifying patients who may benefit from immunotherapy at
diagnosis. The conclusions were consistent with the independent
validation cohort. To our knowledge, few related studies referred
to pretreatment CT-based radiomics of PD-L1 and TMB in
advanced-stage NSCLC patients.
TABLE 4 | The predictive values of radiomics features for PD-L1 expression levels and TMB status.

Features PD-L1

Class AUC 95% CI p

Kurtosis Histogram 0.585 0.473–0.691 0.033
ClusterTendency GLCM 0.624 0.550–0.698 0.005
SizeZoneNonUniformity GLSZM 0.638 0.477–0.799 0.012
GrayLevelNonUniformityNormalized GLRLM 0.704 0.672–0.737 <0.001
HLH-LongRunHighGrayLevelEmphasis Wavelet 0.695 0.586–0.790 0.006
HLL-HighGrayLevelZoneEmphasis Wavelet 0.693 0.582–0.802 <0.001

Features TMB

Class AUC 95% CI p

InterquartileRange Histogram 0.733 0.562–0.864 <0.001
GrayLevelNonUniformity GLRLM 0.645 0.471–0.794 0.004
MaximumProbability GLCM 0.588 0.416–0.747 0.032
LHL-AverageIntensity Wavelet 0.521 0.350–0.688 0.027
HLL-RobustMeanAbsoluteDeviation Wavelet 0.650 0.571–0.729 <0.001
August 2021 | Volume 11 | Article
AUC, area under the curve; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; PD-L1, programmed death-ligand 1; TMB,
tumor mutation burden.
TABLE 5 | The predictive performance of the radiomics model, the clinical
model, and the combined model for predicting PD-L1 expression levels in the
training and validation sets.

PD-L1 Training

AUC 95% CI Sensitivity Specificity

Radiomics 0.730 0.637–0.823 0.833 0.704

Clinical 0.650 0.549–0.751 0.550 0.759

Combination 0.839 0.769–0.909 0.917 0.481

Validation

AUC 95% CI Sensitivity Specificity
Radiomics 0.722 0.625–0.819 0.794 0.692

Clinical 0.645 0.505–0.785 0.583 0.712

Combination 0.793 0.712–0.874 0.894 0.502
AUC, area under the curve; PD-L1, programmed death-ligand 1.
A B

FIGURE 2 | Receiver operating characteristic (ROC) curves of the biomarkers for classifying programmed death-ligand 1 (PD-L1) expression level based on clinical
factors alone (blue), radiomics features alone (green), and a combined model that combined clinical and radiomics features (red) in the training set (A) and validation
set (B).
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The present research demonstrated that PD-1 and its ligand
PD-L1 were confirmed as the most important breakthrough
targets in the development of effective ICB immunotherapy.
PD-1 is expressed on T cells, B cells, NK cells, and tumor-
infiltrating lymphocytes (TILs). Velcheti et al. (33) showed PD-
L1 expression on various types of cancer cells. The PD-1/PD-L1
pathway-induced downregulation of T cells, apoptosis, and
exclusion from the tumor microenvironment resulted in
immune escape (34). Cancer cells upregulate PD-L1 in
response to the immune system and form a suitable immune
suppression microenvironment for proliferation (35).
Investigations on the mechanism of PD-1/PD-L1 pathway
induction of immune escape are ongoing, which provide a
theoretical foundation and clinical direction for further
immunotherapy. More specifically, PD-1/PD-L1 induces a
conformational change in PD-1 that contributes to
phosphorylation of the cytoplasmic immunoreceptor tyrosine-
based inhibitory motif (ITIM) and the immunoreceptor
tyrosine-based switch motif (ITSM) by Src family kinases (36).
These phosphorylated tyrosine motifs subsequently recruit
protein tyrosine phosphatases [src homology 2 (SH2) domain-
Frontiers in Oncology | www.frontiersin.org 7
containing tyrosine phosphatase 2 (SHP-2) and SH2 domain-
containing tyrosine phosphatase 1 (SHP-1)] to attenuate T cell-
activating signals. Otherwise, PD-L1 also interacts with CD80,
which triggers inhibitory signals to activated T cells (37).
Blockade of the PD-1/PD-L1 interaction using monoclonal
antibodies would bring considerable survival benefit and
produce a durable response in NSCLC (38). Various studies in
NSCLCs reported 20%–25% and even 80% objective response
rates for PD-1/PD-L1 monoclonal antibodies (39). Gong et al.
(40) reported that the downregulation of PD-L1 could reduce
radiation resistance by promoting apoptosis. The combination of
PD-L1 antibodies and radiotherapy synergistically promoted
antitumor immunity by increasing CD8 T-cell infiltration and
decreasing the accumulation of myeloid-derived suppressor cells
(MDSCs) and tumor-infiltrating regulatory T cells (iTregs) in a
mouse model (40). PD-L1 may be used as a biomarker in NSCLC
patients with high expression (≥50%). The Food and Drug
Administration (FDA) approval for pembrolizumab in NSCLC
was received in October 2014 (41).

Although ICB has been proven successful, some major
challenges still need to be overcome, involving drug resistance,
low response rate, and immune-related adverse events. The
mechanism of immunotherapy for NSCLC remains indistinct
and indefinite. As an indicator for ICB treatment, PD-L1
expression varies between tumor stages, cases, and samples,
and information on the molecular regulation of PD-1/PD-L1 is
limited. Certain oncogenic signaling pathways may promote
tumor growth by driving PD-L1 expression, which leads to
immune evasion. Evidence obtained in the past few years has
shown that oncogenic signals derived from basic transcription
factors, effector elements of signaling pathways, and changes in
upstream receptor activity affected the expression of PD-L1.

The first evidence that the oncogenic activation of the
mitogen-activated protein kinase (MAPK) pathway was
associated with immune evasion of NSCLC cells came from
the discovery that treatment with mutant BRAF inhibitors led to
increased T-cell infiltration and the downregulation of PD-L1
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of the biomarkers for tumor mutation burden (TMB) status prediction based on the clinical model (blue),
radiomics model (green), and a combined model that combined clinical and radiomics features (red) in the training set (A) and validation (B) set.
TABLE 6 | The predictive performance of the radiomics model, the clinical
model, and the combined model for predicting TMB status in the training and
validation sets.

TMB Training

AUC 95% CI Sensitivity Specificity

Radiomics 0.759 0.657–0.861 0.830 0.636
Clinical 0.661 0.547–0.775 0.651 0.773
Combination 0.818 0.728–0.908 0.953 0.614

Validation

AUC 95% CI Sensitivity Specificity
Radiomics 0.731 0.632–0.830 0.784 0.649
Clinical 0.639 0.513–0.765 0.667 0.674
Combination 0.786 0.713–0.859 0.879 0.512
AUC, area under the curve; TMB, tumor mutation burden.
August 2021 | Volume 11 | Article 620246
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expression in the melanoma microenvironment (42). The MAPK
pathway was also involved in the upregulation of PD-L1 in
tumor cells in response to chemotherapy drugs (43). For
example, a MEK inhibitor blocked paclitaxel-induced PD-L1
expression, and a low concentration of cisplatin stimulated the
expression of PD-L1 via MAPK activation. Furthermore, several
studies confirmed the role of the phosphoinositide 3-kinases
(PI3Ks)/protein kinase B (Akt) pathway in the regulation of PD-
L1 in cancer cells. PI3K inhibitors acted on tumor cells that were
resistant to BRAF inhibitors and resulted in a decrease in PD-L1
expression. Studies showed that probably the PI3K/Akt pathway
regulated PD-L1 expression by either transcriptional or
posttranscriptional mechanisms in a cell and tissue type-
dependent manner (44). Inhibition of Akt led to decreased
PD-L1 expression, and its downstream effector mammalian
target of rapamycin (mTOR)/S6 did not mediate Akt-induced
PD-L1 expression (45). Despite mTOR, another downstream
target of Akt, nuclear factor kappa B (NF-ĸB) regulated PD-L1
expression. It had been shown that Akt by activation of NF-kB
upregulates the expression of PD-L1.

Hypoxia-inducible factor (HIF)-1 regulated PD-L1 via binding
to the PD-L1 promoter hypoxia response element (HRE) site to
promote PD-L1 transcription in tumor cells (TCs) and the tumor
microenvironment (46). There were two HRE-binding sites, HRE-
1 and HRE-4; among them, HRE-4 has higher affinity to HIF-1
than HRE-1. NF-ĸB was a common transcriptional factor and had
been shown to be involved in the regulation of PD-L1. Fang et al.
(47) pointed out that NF-ĸB regulated Epstein–Barr virus latent
membrane protein 1 (LMP1)-induced PD-L1 expression as the
caffeic acid phenethyl ester, which decreased the induction of PD-
L1 expression. NF-ĸB also had a main role in interferon proteins
(IFN)-g-induced PD-L1 expression. Signal transducer and
activator of transcription 3 (STAT3) had also been
demonstrated to regulate PD-L1 via binding with the PD-L1
promoter and regulating its transcription. Marzec et al. (48)
suggested that STAT3 regulated PD-L1 and its transcription via
binding to the PD-L1 promoter.

The role of miRNAs in the upregulation or downregulation of
PD-L1 expression was revealed recently. This regulation may
involve direct binding to PD-L1 mRNA or indirectly affect the
expression of other PD-L1 regulatory factors. MiR-34a, which
binds to the 3’ untranslated region (UTR) of PD-L1, reduced PD-
L1 mRNA levels in NSCLC cells (49). P53 may inhibit the
expression of PD-L1 via miR-34 in NSCLC. Previous research
reported that IFN-g suppressed miR-513 expression, and the
overexpression of miR-513 blocked IFN-g-induced PD-L1
expression (50). In contrast, tumor necrosis factor (TNF)-a and
IFN-g induced miR-155 and inhibited PD-L1 expression (51).
Both miR-513 and miR-155 may be considered a system to fine-
tune PD-L1 expression upon IFN-g signaling. MiRNAs also
influenced PD-L1 expression in an indirect manner. MiR-197
suppressed PD-L1 expression via its direct action on the CKS1B-
STAT3 cascade in NSCLC. Exosomes derived from NSCLC cells
carrying low levels of miR-34c-3p could be transported into the
cytoplasm of NSCLC cells and accelerate NSCLC invasion and
migration by upregulation of integrin a2b1. MiR-34c-3p can be a
Frontiers in Oncology | www.frontiersin.org 8
diagnostic and prognostic marker for NSCLC. We trust MiR-34c-
3p might be considered as a therapeutic target for NSCLC (52).

There is no doubt about the crucial role of PD-L1 expression
status in predicting the checkpoint inhibitor response and
prognosis in patients with NSCLC, but few studies have linked
radiomics features extracted from pretreatment CT to the
prediction of PD-L1 expression. A recent study evaluated PD-L1
expression based on PET/CT images in patients with NSCLC. CT
radiomics signatures for PD-L1 expression over 1% or 50% scored
0.86 and 0.91, respectively, which were much higher than
radiomics signatures based on PET and PET/CT (26). First, the
predictive model did not include clinical factors or morphological
features. Second, the sample size was too small, and the
construction model of PD-L1 expression from radiomics
features was not robust. Third, it was obvious that the PET
imaging resolution and definition were lower than those in CT,
which contributed to the limited number of features and an
uncertain result. Yoon et al. (53) inferred that a combined
predictive model that used clinical and radiomics features (AUC
= 0.646) showed better performance than the clinical model alone
(AUC = 0.550). Their conclusion is consistent with our AUC =
0.784, but the predictive efficacy of their model was much lower.

Positive PD-L1 expression level could be performed as an
indicator of response rate specifically for adenocarcinoma
patients, and it was even better than chemotherapy (54).
However, some reports challenged this conclusion and stated
that patients with negative PD-L1 expression also responded to
immunotherapy with a 0%–17% objective response rate (55).
Otherwise, the evaluated methods of PD-L1 expression were
limited, and the cutoff values of positive PD-L1 expression are
variable in some literature (56, 57). Therefore, the identification
of another treatment decision-related biomarker is a priority for
antitumor immunotherapy. A robust response to checkpoint
inhibitors was reported in NSCLC, gastric cancer, and melanoma
with higher TMB status. High TMB status may result in more
neoantigens, which are much more easily recognized by the
immune system and more sensitive to anti-PD-L1 antibodies. A
total of 240 patients with advanced NSCLC were assessed
recently for TMB according to the median count of 7.4/Mb
(15), but a median mutation TMB was determined to be 9.9/Mb
in patients who received atezolizumab in Kowanetz et al. (58).
Due to filtering methods and diverse NGS panel contents, it was
challenging to compare TMB results between these studies. The
threshold of TMB must be validated and evaluated in further
investigations using standard and uniform procedures.

The genomic heterogeneity of malignant tumors contributes
to regional variations in stromal structure and may be described
as an imaging phenotype by features (59). The information
on PD-L1 expression and TMB status is commonly obtained
from biopsy or resected tissues and assessed using IHC
and NGS. Compared to traditional techniques, radiomics
can noninvasively evaluate and objectively reflect tumor
heterogeneity. Jiang et al. (26) reported that CT- and PET-
based radiomics signatures showed good performance for
distinguishing various expression degrees of PD-L1. TMB and
somatic driver mutations, such as EGFR/P53, were identified
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using CT radiomics parameters based on a machine-learning
technique, as O’Connor et al. (60) proposed. To date, only two
prior studies investigated the role of CT radiomics in decoding
TMB status. A previous study indicated that quantified
radiomics features of lesions were associated with TMB after
analysis of TMB data from 327 patients with NSCLC (61). Wang
et al. (30) evaluated 61 endometrial tumors in 51 patients and
demonstrated an AUC of 0.671 for assessing TMB using a
clinical–radiomics model. Compared to the results of Wang
et al. (30), our results revealed that the multimodality model
predicted TMB status more accurately. Therefore, the predictive
model constructed in the present study may provide sufficient
information for future therapy.

The hypothesis supporting the use of pathological phenotype
and radiomics in medicine is related to the underlying biological
processes. The procedures of medical imaging and the
development of high-throughput algorithms to extract
quantitative features from images have contributed to the
improvement of radiomics, which provide more information
on biological characteristics compared to the visual
interpretation of the image as a picture (62). Radiomics and
pathology fill the need to assess tumor heterogeneity. The
detection of tumor phenotype heterogeneity is one of the main
goals of novel therapeutic strategies, and the utility of blood
markers might present disadvantages that are overcome with the
use of radiomics and pathology (63).

We verified the stability of the model, and the results showed
that radiomics and combination models had good reliability. In
the training and validation datasets, the predictive accuracy,
specificity, and sensitivity resulting from 10-fold cross-validation
were greater than 0.7, which means that the results of the model
were not caused by overfitting. Kurtosis is a measure of the
“peakedness” of the distribution of ROIs. A lower value
indicates that the mass of the distribution is primarily toward a
spike near the mean value. Cluster tendency describes groupings
of voxels with similar gray-level values. SizeZoneNonUniformity
and GrayLevelNonUniformity variables were used to assess the
variability of size zone volume and gray-level intensity values in
the image, and lower values for both variables suggest lower
heterogeneity of size zone volumes and intensity values (64). In
contrast, gray-level nonuniformity normalization reflects the
similarity of the gray-level intensity values, and a lower value is
associated with a greater similarity in intensity values. Moreover,
HLH-LongRunHighGrayLevelEmphasis and HLL-HighGray
LevelZoneEmphasis were the means of the distribution of the
long homogeneous runs with high gray levels and the distribution
of the high gray-level zones with wavelet transformation.
InterquartileRange represents the range between the 25th and
75th percentiles of the CT image array. Maximum probability was
defined as the most predominant pair of neighboring intensity
values. HLL-RobustMeanAbsoluteDeviation was used to evaluate
the distance of all intensity values from the mean value. Our
results clearly demonstrated that histopathological heterogeneity
correlated with the radiomics features of CT images.
Quantification of the spatial complexity of tumor medical
images reveals the spatial complexity in pathology and the
Frontiers in Oncology | www.frontiersin.org 9
phenotypic intertumoral heterogeneity. Consistent with Choi
et al. (65), radiomics features may actually reflect spatial
heterogeneity in the ROI of the tumor.

In the traditional morphological features of NSCLC lesions,
we also reported that PD-L1 was statistically associated with
vascular convergence, and this conclusion was consistent with a
previous study (66). In addition to vascular convergence, some
researchers stated that cavitation or pleural indentation was a
surrogate indicator of PD‐L1 positivity and correlated with the
pathological invasiveness of the malignant nodule (67). However,
none of the remaining morphological features was related to PD-
L1 expression. A reasonable explanation for this result is the
clinical characteristics of the study population. Most previously
studied cases were early stage and resectable (68), and these
tumor morphological and biological features are vastly different
from our tumors. In summary, tumor phenotype was related to
radiomics features and was reflected in the radiological features.
However, more factors must be discussed.

Some clinical factors had predictive power, and this finding
suggests that these variables are relevant to genotype but are not
determining factors. Our multivariate analysis demonstrated
that differentiated grade was related to TMB. There was no
evidence of an association between TMB and somatic mutation
burden, but it is likely that tumors with a high somatic mutation
burden are poorly differentiated. This conclusion was reached
from recent research of a higher EGFR mutation in well-
differentiated tumors, which may be due to a reduction
in TMB associated with a single driver gene mutation
(69). Another finding of our study was PD-L1 expression
heterogeneity. High PD-L1 expression was detected in poorly
histological patterns, and similar results were mentioned
previously (70, 71). Because of PD-L1 expression heterogeneity,
we should select a representative slice containing the most
diverse histological subtypes. These factors were characteristics
of instability and uncertainty, and it was necessary to add
radiomics signatures to a clinical model to improve the
predictive efficacy in NSCLC.

There were some limitations in this study. First, it was a
retrospective study, and selection bias was inevitable. Prospective
studies are required to investigate and validate this hypothesis in
a larger sample size. Second, CT images were acquired from one
machine at a single center, which resulted in conclusions that are
hardly generalizable to other study centers. Multicenter and
outside databases are essential in future research. The third
shortcoming was that oncologists manually contoured all
ROIs. However, we evaluated the ICC via inter-/intra-
observations, which effectively reduced the likelihood of
deviations. Last, it would be better to examine whether
radiomics features were associated with survival following
therapy with checkpoint inhibitors in NSCLC patients.
CONCLUSION

In summary, the quantitative radiomics features extracted from
pretreatment CT were noninvasively associated with specific PD-
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L1 expression and TMB status. The combination of clinical
factors and radiomics signatures significantly improved the
predictive performance. Our findings suggest a promising
future for the guiding of immunotherapy in NSCLC patients
and deserve further in-depth study.
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