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Abstract: Alzheimer’s disease (AD) is a prevalent neurological disorder affecting memory function in elderly 
persons. Indeed, AD exhibits abnormality in cognitive behaviors and higher susceptibility to neuropsychiatric 
symptoms (NPS). Various factors including aging, sex difference and NPS severity, are implicated during in 
development of AD. In this study, we evaluated behavioral abnormalities of AD model, PDAPP transgenic mice at 
young age using the Morris Water Maze test, which was established to assess hippocampal-dependent learning 
and memory. We found that female AD model mice exhibited spatial learning dysfunction and highly susceptible 
to NPS such as anxiety and depression, whereas spatial reference memory function was comparable in female 
PDAPP Tg mice to female wild type (WT) mice. Spatial learning function was comparable in male AD model mice 
to male WT mice. Multiple regression analysis showed that spatial learning dysfunction was associated with NPS 
severity such as anxiety and depression. Furthermore, the analysis showed that spatial reference memory function 
was associated with status of depression, but not anxiety. Thus, these results suggest female dominance of spatial 
learning dysfunction in the AD model mice accompanying increased NPS severity. The understandings of AD model 
may be useful for the development of therapeutic agents and methods in human AD.
Key words: Alzheimer’s disease model, cognitive function, correlation analysis, neuropsychiatric symptom, PDAPP 
Tg mice

Introduction

Alzheimer’s disease (Ad) is one of neurodegenerative 
disorders. the degree of neural cell loss in hippocampus 
correlates with the severity of Ad [1–3]. Because the 
emotional behavior and cognitive function relate to hip-
pocampus, Ad causes abnormal cognitive functions 
spatial learning function and spatial reference memory 
function and neuropsychiatric symptoms (NPs) includ-

ing anxiety and depression [4–11]. NPs is also called 
behavioral and psychological symptoms of dementia 
(BPsd) [12]. Medications on BPsd such as anti-psy-
chotics, anti-depressants, mood stabilizers, and hyp-
notic drugs are clinically used in patients with Ad [13].

the cognitive dysfunction is associated with NPs in 
Ad [14–17]. it is reported that women are susceptible 
to NPs than men [18]. Sex difference is a risk factor for 
neurodegenerative disorders [19]. the genetic factor, sex 
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difference and environmental factors are implicated in 
the development of Ad [20, 21]. in fact, women have a 
higher risk of developing of Ad than men [21].

One of Ad model mice, the platelet-derived growth 
factor promoter-driven amyloid precursor protein 
(PdAPP) transgenic (tg) mice, which overexpress mu-
tated form of the human amyloid precursor protein (APP) 
bearing both the swedish (K670N/M671L) and indiana 
(V717F) mutations [22]. it is reported that middle-aged 
(4–6 months of age) and old-aged (over 10 months of 
age) PdAPP tg mice show impaired cognitive function 
and motivation to escape the water in Morris water maze 
(MwM) test with pathological conditions mainly in the 
hippocampus [23–26]. however, we found that young-
aged (10–12 weeks of age) PdAPP tg mice showed 
abnormal cognitive functions in MwM test, and the 
cognitive dysfunctions were ameliorated by neural cell 
transplantation [27, 28]. these results suggested that we 
may utilize PdAPP tg mice at young age for Ad re-
search. it can reduce the time and costs required to study.

MwM test has useful procedures to assess spatial 
cognitive functions and NPs severity, and parameters of 
MWM test were affected by various factors including 
sex difference [29–34]. in this study, we analyzed cogni-
tive functions and behavioral symptoms in MwM test 
using both sexes of PdAPP tg mice at young age for 
further understanding of the property of the Ad model 
mice.

Materials and Methods

Ethics Statement
All experiments were approved by the Animal Care 

and use Committee in st. Marianna university school 
of Medicine (sMu) and were conducted according to 
the institutional ethical guidelines for animal experi-
ments and safety guidelines for gene manipulation ex-
periments.

Mice
Ad model, PdAPP tg mice (strain name: B6.Cg-tg 

(PdGFB-APPswind) 20Lms/2J), were obtained from 
the Jackson Laboratory (Bar harbor, Me, usA, rrid: 
MMrrC_034836-JAX) [22]. Middle-aged (4–6 months 
of age) and old-aged (Over 10 months of age) PdAPP 
tg mice showed impaired cognitive dysfunction in 
MwM test [23]. however, the parameters for cognitive 
function and NPs severity in the young-aged (10–12 
weeks of age) PdAPP tg mice were largely unknown. 
PdAPP tg mouse lines were maintained by breeding 
PdAPP tg males to littermate control females. Mice 
were kept in the environmentally controlled clean room 

at the animal center of sMu.

Morris water maze test
For assessment of spatial cognitive functions and NPs 

in young PdAPP tg mice and littermate control mice as 
wt mice at 10–12 weeks of age, these mice were sub-
jected to MwM test [24, 31, 35]. Mice were tested for 
6 consecutive days in each trial as follows: visible test 
at the first day, hidden test for 4 days, and probe test at 
the final day. A pool (radius: 50 cm) was filled with 
opacified water at 26 ± 0.5°C. The water basin was sur-
rounded by a brown curtain. An escape platform (diam-
eter: 15 cm) made of transparent acrylic resin was placed 
in one of four quadrants in the pool and submerged 1.5 
cm below the water surface at visible and hidden test 
(Fig. 1A).

At the visual test, the platform was visualized by a 
mark using a black bottle placed on the platform (Fig. 
1B). Mice were gently placed into the water basin facing 
the wall. they were allowed to search for the platform 
for 90 s; if they did not reach the platform in the defined 
time, they were manually placed onto the platform. they 
were left on the platform for 30 s to learn and memories 
the special position before the next attempt. the visible 

Fig. 1. schematic representation of Morris water maze test. (A) 
Mice were subjected to Morris water maze (MwM) test 
using a pool (radius: 50 cm) with opacified water and a 
transparent plastic escape platform (diameter: 15 cm) for 
6 consecutive days as follow: (B) visible test, (C) hidden 
test, and (d) probe test. the area of 10-cm-wide banded 
zone along the wall was defined as the peripheral area for 
behavioral analysis. (B) At the first day, visible test using 
the platform, its position being visualized by a black bottle 
on it with an ample space for the mouse to stay on it. (C) 
hidden test for 4 consecutive days using escape platform 
without a black bottle. (d) At the last day, probe test with 
the same condition except removal of the escape platform. 
the swimming trajectory was monitored by a CCd camera 
and recorded in PC.
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test was performed for examination of the visual ability 
and motivation to escape from water. Mice which did 
not reach the platform 4 times in 8 attempts were ex-
cluded from this study (wt mice (male: n=0 (0/23, 0%), 
female: n=1 (1/29, 3.4%) and PdAPP tg mice (male: 
n=7 (7/102, 6.9%), female: n=4 (4/123, 3.3%).

Following 4 consecutive days, to examine the spatial 
learning function, mice were trained to find the hidden 
platform using spatial cues (hidden test: 4 attempts per 
day, Fig. 1C). they allowed to search for the platform 
for 90 s; if they did not reach the platform in the defined 
time, they were manually placed onto the platform. they 
were left on the platform for 30 s to learn and memorize 
the special position before the next attempt. we analyzed 
the data at day 4 in hidden test.

On the final day, to examine spatial reference memo-
ry function, mice were placed into the water basin with-
out platform (probe test: 1 attempt, Fig. 1d). Mice were 
allowed to search for the platform for 90 s; and the time 
required for the mouse to stay in the quadrant area where 
the target platform had existed or not was recorded. the 
time of each performance was summed up and expressed 
in percent of the total time. the number of crossing over 
the target platform and untargeted platform ranges was 
counted.

in this study, we measured various parameters of each 
test component of MwM test for assessment of cognitive 
functions and NPs [30–34]. the time to reach the plat-
form was defined as the platform escape latency (max 
90 s). At the visible test, we defined escape latency from 
the water (s) as “the motivation” to escape the water. At 
the hidden test, we defined escape latency (s) as “the 
spatial learning function”. At the probe test, we defined 
duration in target or untargeted guardant area as “the 
spatial reference memory function”. At each test, we 
defined mean swimming speed (s) as “the locomotion 
activity”, thigmotaxis (s) as intensity of “anxiety”, and 
immobility time (s) as intensity of “depression”. the 
exploration in the periphery area (10-cm-wide banded 
zone along the wall) was defined as thigmotaxis, and 
suspension time in the water was defined as immobility 
time (Fig. 1A). the location and moving speed in the 
water basin were digitally recorded by an automated 
tracking system (O’hara & Co., Ltd., tokyo, Japan), 
which was implemented in the modified software based 
on the image J software (Nih, Bethesda, Md, usA).

Experimental design and statistical analysis
the truncated violin plot of each parameter in MwM 

test were drawn by Prism8 software (GraphPad, san 
diego, CA, usA), and red bar indicating the median, 
and dark dot line indicating the quartiles. All statistical 

analysis was performed using JAsP software (JAsP Ver-
sion 0.14.1, team (2020), jasp-stat.org). data were sta-
tistically assessed using two-way ANOVA and tukey-
Kramer post-hoc test, with PdAPP genotype and sex as 
independent variables, and moving speed (cm/s), thig-
motaxis (s), immobility time (s), escape latency (s) and 
duration in target (%) as dependent variable [36, 37]. 
Multiple regression analysis was assessed using escape 
latency (s) in visible and hidden tests and duration time 
in target (%) as dependent variable, thigmotaxis (%) and 
immobility time (%) as explanatory variables.

Results

The motivation to escape the water negatively 
associated with status of anxiety and depression

in visible test, we assessed the parameters about es-
cape latency, moving speed, thigmotaxis, and immobil-
ity time in both sexes PdAPP tg mice and wt mice. 
We found that all parameters were significantly affected 
by genotype (escape latency: F (3, 261)=14.3422, 
P<0.001, Moving speed: F (3, 261)=10.8720, P=0.001, 
thigmotaxis: F (3, 261)=16.2629, P<0.001, and immo-
bility time: F (3, 261)=8.0029, P=0.005). however, the 
effects of sex (escape latency: F (3, 261)=0.0416, 
P=0.839, Moving speed: F (3, 261)=0.0003, P=0.986, 
thigmotaxis: F (3, 261)=0.0481, P=0.827, and immobil-
ity time: F (3, 261)=0.3504, P=0.554) nor interaction 
between two factors (escape latency: F (3, 261)=3.7567, 
P=0.054, Moving speed: F (3, 261)=0.4025, P=0.526, 
thigmotaxis: F (3, 261)=1.7605, P=0.186, and immobil-
ity time: F (3, 261)=1.1044, P=0.294) were not signifi-
cant. we found that all parameters except for immobil-
ity time in the visible test increased significantly in 
female PdAPP tg mice compared with female wt mice 
(Figs. 2A–d). However, all parameters had no differ-
ences between male PdAPP tg mice and male wt mice 
(Figs. 2A–d). Multiple regression analysis showed es-
cape latency in the visible test was significantly associ-
ated with the status of thigmotaxis and immobility time 
(table 1).

The spatial learning function was abnormal in young 
PDAPP Tg mice and the spatial learning function 
associated with the status of anxiety and depression

it is well-known that middle and old PdAPP tg mice 
have the cognitive dysfunction [23, 38]. in the hidden 
test using young PdAPP tg mice, we found that all pa-
rameters were significantly affected by genotype (Escape 
latency: F (3, 261)=14.3, P<0.001, Moving speed: F (3, 
261)=10.9, P=0.001, thigmotaxis: F (3, 261)=16.2, 
P<0.001, and, immobility time: F (3, 261)=8.00, 
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P=0.005). However, the effects of sex (Escape latency: 
F (3, 261)=0.0416, P=0.839, Moving speed: F (3, 
261)=0.0003, P=0.986, thigmotaxis: F (3, 261)=0.0481, 
P=0.827, and immobility time: F (3, 261)=0.3504, 
P=0.554) nor interaction between two factors (escape 
latency: F (3, 261)=3.757, P=0.294, Moving speed: F 
(3, 261)=0.402, P=0.526, thigmotaxis: F (3, 261)=1.761, 
P=0.186, and, immobility time: F (3, 261)=1.104, 
P=0.294) were not significant. We found that all param-
eters in the hidden test increased significantly in female 
PdAPP tg mice compared with female wt mice. how-
ever, these parameters had no differences between male 
PdAPP tg mice and male wt mice (Figs. 3A–d). thus, 
female, but not male, PdAPP tg mice at young age 
showed abnormal spatial reference function. Multiple 
regression analysis showed escape latency in the hidden 
test was significantly associated with the status of thig-
motaxis and immobility time (table 2). thus, these re-
sults reveal that NPs severity is implicated in the level 
of spatial learning function.

The spatial reference memory function was normal 
in young PDAPP Tg mice and the spatial learning 
function associated with status of depression

At the probe test, all parameters except for thigmo-
taxis: F (3, 261)=12.93, P<0.001), were not affected by 
genotype (duration in target: F (3, 261)=0.275, P=0.600, 

Moving speed: F (3, 261)=1.169, P=0.281, and immobil-
ity time: F (3, 261)=1.739, P=0.188). And the effects of 
sex (duration in target: F (3, 261)=0.230, P=0.632, Mov-
ing speed: F (3, 261)=0.489, P=0.485, thigmotaxis: F 
(3, 261)=0.403, P=0.526, and immobility time: F (3, 
261)=1.346, P=0.247) and interaction between two fac-
tors (duration in target: F (3, 261)=0.199, P=0.656, 
Moving speed: F (3, 261)=0.170, P=0.680, thigmo-
taxis: F (3, 261)=1.169, P=0.281, and immobility time: 
F (3, 261)=2.938, P=0.088) were not significant. We 
found that thigmotaxis in the probe test significantly 
increased in female, but not male PdAPP tg mice com-
pared with wt mice (Fig. 4C). however, other param-
eters had no differences the both sexes PDAPP Tg mice 
and wt mice (Figs. 4A–d). Multiple regression analy-
sis showed that duration time in target was significantly 
associated with the status of immobility time but not 
thigmotaxis (table 3). thus, these results reveal that 
status of depression is implicated in the level of spatial 
reference memory function.

Discussion

in this study, we found that the spatial learning func-
tion was associated with NPs severity. Although the 
interaction between genotype and sex was not signifi-
cant, young female PDAPP Tg mice definitely exhibited 

Fig. 2. Female PdAPP tg mice showed neuropsychiatric symptoms in the visible test. Behavioral and psycho-
logical symptoms of wt mice (male: n=23, white, female: n=28, blue) and PdAPP tg mice (male: n=95, 
black, female: n=119, yellow) were assessed by the visible test with the following parameters: (A) escape 
latency as a motivation to escape the water, (B) Moving speed as a locomotion activity, (C) thigmotaxis as 
an intensity of anxiety, and (d) immobility as an intensity of depression. *P<0.05. P values are derived 
from tukey-Kramer post hoc test.

Table 1. Effect of thigmotaxis and immobility time combined genotype on escape latency in the visible test

Variable Coefficients standard error Lower 95% Ci upper 95% Ci P value

intercept 2.985 0.485 2.03 3.941 <0.001
thigmotaxis (%) 1.025 0.028 0.97 1.081 <0.001
immobility time (%) 0.093 0.015 0.063 0.123 <0.001

Data are presented as β coefficients and standard error with lower and upper 95% confidence interval (CI) and P 
value. Multiple r2=0.874. Adjusted r2=0.873. ViF=1.000.
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Fig. 3. Abnormal spatial learning function of female PdAPP tg mice showing its association with neuropsychiat-
ric symptoms in the hidden test. spatial learning function of wt mice (male: n=23, white, female: n=28, 
blue) and PdAPP tg mice (male: n=95, black, female: n=119, yellow) were assessed by the hidden test 
with the following parameters: (A) escape latency as a motivation to escape the water, (B) Moving speed 
as a locomotion activity, (C) thigmotaxis as an intensity of anxiety, and (d) immobility as an intensity of 
depression. *P<0.05. P values are derived from tukey-Kramer post hoc test.

Table 2. Effect of thigmotaxis and immobility time combined genotype on escape latency in the hidden test

Variable Coefficients standard error Lower 95% Ci upper 95% Ci P value

intercept 10.09 0.657 8.793 11.38 <0.001
thigmotaxis (%) 0.891 0.021 0.85 0.932 <0.001
immobility time (%) 0.144 0.02 0.104 0.184 <0.001

Data are presented as β coefficients and standard error with lower and upper 95% confidence interval (CI) and P 
value. Multiple r2=0.936. Adjusted r2=0.936. ViF=1.705.

Fig. 4. spatial reference memory function was normal in both sexes of PdAPP tg mice and was associate with the 
status of depression in the probe test. spatial learning function of wt mice (male: n=23, white, female: 
n=28, blue) and PdAPP tg mice (male: n=95, black, female: n=119, yellow) were assessed by the hidden 
test with following parameters: (A) duration time in the target and untargeted quadrant areas as a spatial 
reference memory functions, (B) Moving speed as a locomotion activity, (C) thigmotaxis as an intensity 
of anxiety, and (d) immobility time as an intensity of depression. *P<0.05. P values are derived from 
tukey-Kramer post hoc test.

Table 3. Effect of thigmotaxis and immobility time combined genotype on duration time in target in the probe test

Variable Coefficients standard error Lower 95% Ci upper 95% Ci P value

intercept 26.96 2.174 22.68 31.24 <0.001
thigmotaxis (%) −0.002 0.032 −0.065 0.062 0.955
immobility time (%) −0.212 0.023 −0.258 −0.166 <0.001

Data are presented as β coefficients and standard error with lower and upper 95% confidence interval (CI) and P 
value. Multiple r2=0.276. Adjusted r2=0.267. ViF=1.140.
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spatial learning dysfunction and NPs compared to young 
female wt mice. even more surprising was that mul-
tiple regression analysis showed that the level of spatial 
reference memory function was associated with the sta-
tus of depression, but not anxiety, and spatial reference 
memory function was similar to wt mice in both sexes 
of PdAPP tg mice. thus, female PdAPP tg mice at 
young ages can reduce the time and costs required to the 
Ad research such as the elucidation of Ad pathogenesis 
and the development of Ad treatment.

Many reports using Ad model did not refer sex of 
experimental animals. we found that female PdAPP tg 
mice showed spatial learning dysfunction and high NPs 
severity in MWM test and these parameters are signifi-
cantly associated. it was reported that various factors 
including sex, age and species influence MWM perfor-
mance [29]. Notably, male animals have an advantage 
in spatial cognitive function [39–41]. And development 
patterns of psychological symptoms is differ in sex [42]. 
These reports and our findings suggest that a level of the 
spatial learning function may be caused by the difference 
in NPs severity at the age recognized between the sexes. 
NPs such as anxiety and depression is typical features 
of Ad [43–45]. Effect of music therapy on anxiety and 
depression moderated Ad phenotypes [46]. it was well 
known that females showed more intense NPs than 
males [18, 42, 47–50]. in fact, women have a higher risk 
of developing of Ad than men [21]. For the treatment 
of NPs and cognitive dysfunction, anti-NPs drugs such 
as anti-psychotics, anti-depressants, mood stabilizers, 
and hypnotic drugs are used for Ad patients [13].

Physical activity was associated with a risk for cogni-
tive decline and dementia [51, 52]. in this study, we 
found that moving speed in water decreased in PdAPP 
tg mice. Locomotion activity regulated by theta oscil-
lations in CA1 region of the hippocampus [53]. Neural 
cell loss at CA1 regions in the hippocampus is a typical 
pathology in Ad patients and the loss in CA1 appeared 
in the early stage of Ad [54, 55]. Neural cell loss ap-
peared from the juvenile aged PdAPP tg mice and the 
extent of neuron loss in the CA1 region increased with 
age [56]. thus, these reports and our results suggested 
that loss of neural cells in the CA1 region may contrib-
ute the impairment of the locomotion activity in Ad 
patients.

in the current study, PdAPP tg mice showed abnor-
mal spatial learning function, but spatial reference 
memory function was normal. Previously, we showed 
transplantation of neural cells into dentate gyrus im-
proved cognitive dysfunction of PdAPP tg mice [27, 
28]. The therapeutic effect for spatial learning function, 
but not spatial reference memory function correlated 

with NPs severity on PdAPP tg mice, in part [57]. 
Physical exercise-promoted neurogenesis improved spa-
tial learning dysfunction and anxiety-like behavior but 
not spatial reference memory dysfunction in mouse 
models [58, 59]. in addition, the voltage- and calcium-
activated potassium channels (BK channels)-deficient 
mice showed that impaired spatial learning function and 
normal spatial reference memory function [60]. On the 
other hand, repulsive axon guidance molecule, FLrt2-
deficient mice showed that abnormal spatial reference 
memory function and normal spatial learning function 
in MwM test [61]. These reports and our findings sug-
gested that the synaptic mechanism underlying the spa-
tial learning function and spatial reference memory 
function were different in the models.

the understandings of this Ad model will be of ben-
efit for the development of new therapeutic strategies 
for Ad. in general, old Ad model animals used for Ad 
research. it needs a considerable time and costs. Our 
results suggested that spatial learning function associ-
ated well with NPs severity such as anxiety and depres-
sion, and spatial reference memory function associated 
with status of depression in young female PdAPP tg 
mice. NPs may be frequently accompanied by spatial 
cognitive dysfunction in human AD. Our findings reveal 
that female PdAPP tg mice at young age can be useful 
experimental Ad model to reduce the time and costs.
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