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A B S T R A C T

Objective: To explore the added value of dynamic functional connectivity (dFC) of the default mode network
(DMN) during resting-state (RS), during an information processing speed (IPS) task, and the within-subject
difference between these conditions, on top of conventional brain measures in explaining IPS in people with
multiple sclerosis (pwMS).
Methods: In 29 pwMS and 18 healthy controls, IPS was assessed with the Letter Digit Substitution Test and
Stroop Card I and combined into an IPS-composite score. White matter (WM), grey matter (GM) and lesion
volume were measured using 3 T MRI. WM integrity was assessed with diffusion tensor imaging. During RS and
task-state fMRI (i.e. symbol digit modalities task, IPS), stationary functional connectivity (sFC; average con-
nectivity over the entire time series) and dFC (variation in connectivity using a sliding window approach) of the
DMN was calculated, as well as the difference between both conditions (i.e. task-state minus RS; ΔsFC-DMN and
ΔdFC-DMN). Regression analysis was performed to determine the most important predictors for IPS.
Results: Compared to controls, pwMS performed worse on IPS-composite (p=0.022), had lower GM volume
(p < 0.05) and WM integrity (p < 0.001), but no alterations in sFC and dFC at the group level. In pwMS, 52%
of variance in IPS-composite could be predicted by cortical volume (β=0.49, p=0.01) and ΔdFC-DMN
(β=0.52, p < 0.01). After adding dFC of the DMN to the model, the explained variance in IPS increased with
26% (p < 0.01).
Conclusion: On top of conventional brain measures, dFC from RS to task-state explains additional variance in
IPS. This highlights the potential importance of the DMN to adapt upon cognitive demands to maintain intact IPS
in pwMS.

1. Introduction

Up to 50% of people with multiple sclerosis (pwMS) suffer from
problems with information processing speed (IPS), also known as
“cognitive slowing”. Deficits in IPS are among the first cognitive
symptoms in pwMS and related to reduced quality of life (Chiaravalloti
and DeLuca, 2008; Benedict et al., 2006; Amato et al., 2010; Glanz
et al., 2010). The search for neural correlates of IPS deficits resulted in
several structural and functional brain measures. These include white
and grey matter damage (e.g. lesions, atrophy and reduced tissue in-
tegrity) (Randolph et al., 2005; Mazerolle et al., 2013; Batista et al.,
2012), but also changes in activation and functional connectivity (FC)

during an IPS task or during resting-state (RS) (Genova et al., 2009;
Dobryakova et al., 2016; Wojtowicz et al., 2014). Although these
measures do explain IPS to a certain extent, there is still room to im-
prove the relationship between brain measures and IPS. For example,
intuitively IPS depends on the ability of the brain to rapidly transfer
information within its functional network. As FC measures have pre-
viously been averaged over the entire scanning session (i.e. time series),
from here on referred to as stationary FC (sFC), the variability in FC over
time has not been taken into account. With this latter measure, the
changes in connectivity strength during a time series are obtained, from
here on referred to as dynamic FC (dFC). As dFC seems to be behavio-
rally relevant with respect to cognition in healthy subjects (Cohen,

https://doi.org/10.1016/j.nicl.2018.05.015
Received 20 March 2018; Received in revised form 30 April 2018; Accepted 13 May 2018

⁎ Corresponding author.
E-mail address: q.vangeest@vumc.nl (Q. van Geest).

NeuroImage: Clinical 19 (2018) 507–515

Available online 15 May 2018
2213-1582/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2018.05.015
https://doi.org/10.1016/j.nicl.2018.05.015
mailto:q.vangeest@vumc.nl
https://doi.org/10.1016/j.nicl.2018.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2018.05.015&domain=pdf


2017; Jia et al., 2014; Gonzalez-Castillo and Bandettini, 2017) or
symptoms in neurological disorders (Zhang et al., 2016; Sambataro
et al., 2017; Douw et al., 2015), we argue that dFC could also be of
importance for maintained IPS in pwMS, as it could reflect the fast
changing connectivity patterns within the brain that cannot be captured
with sFC (Cohen, 2017).

1.1. Brain networks

The brain's functional network has an intrinsic organization, namely
various (interconnected) RS networks that can be identified with RS
functional magnetic resonance imaging (fMRI). This intrinsic organi-
zation of the brain has been linked to cognitive functioning, as it is
thought enable the flow of activity (i.e. information) during task per-
formance (Cole et al., 2016; Ito et al., 2017). An important brain net-
work related to cognitive (dys)functioning is the default mode network
(DMN) (Raichle, 2015). This network consists of several core regions,
including the medial temporal lobe, medial prefrontal cortex, posterior
cingulate cortex, and inferior parietal cortex (Raichle, 2015). Recent
studies have shown task-related “responsivity” in sFC of the DMN, that
is, the ability to change the connection strength upon task demands, to
enable information integration throughout the brain (Elton and Gao,
2015; Vatansever et al., 2015a).

1.2. Dynamics of the DMN

Previous studies have linked DMN dynamics during RS or task-state
to cognitive functioning, such as executive functioning, cognitive flex-
ibility, concept formation, and (working) memory, in healthy subjects
and individuals with neurological disorders (e.g. temporal lobe epilepsy
and MS) (Douw et al., 2015; Liu et al., 2018; Douw et al., 2016; Simony
et al., 2016; Vatansever et al., 2015b; Yang et al., 2014; Nomi et al.,
2017; van Geest et al., 2018). Furthermore, one study in healthy sub-
jects showed that a larger increase in dFC between the DMN and
frontoparietal network during task-state relative to RS was related to
better cognitive flexibility outside the scanner (i.e. Stroop task) (Douw
et al., 2016). Together with studies showing differences in dFC between
RS and task-state, the change in dFC of the DMN between RS and task-
state might reflect the ability of the brain to adapt as task demands
change, in order to optimally execute the task at hand (i.e. increased
information processing throughout the brain) (Cohen, 2017; Braun
et al., 2015; Lin et al., 2017; Xie et al., 2017).

To investigate whether dFC of the DMN is indeed a neural correlate
of IPS in MS, and relevant next to previously identified correlates, we
explored its incremental value when explaining IPS variance on top of
conventional measures of brain abnormalities (defined as: brain
atrophy, lesions, white matter integrity, and sFC of the DMN). We hy-
pothesized that dFC of the DMN, and especially the difference in dFC
between RS and task-state, that is, the ability of the brain to adapt upon
task demands, would explain unique variance in IPS.

2. Materials and methods

2.1. Subjects and study design

In this prospective observational study, all pwMS (N=33) and
healthy controls (HCs; N=19) met the following inclusion criteria: 1)
aged 18–65 years; 2) no contra-indications for MRI; 3) no psychiatric or
neurological disease (for pwMS: other than MS). For pwMS, additional
inclusion criteria were: 4) a diagnosis of relapsing-remitting MS, and; 5)
without relapse or steroid treatment for at least four weeks prior to
study measurements. Subjects performing below chance level (< 50%
correct, n=3 pwMS) on the fMRI paradigm were excluded from the
entire study, as well as subjects with many frame-to-frame head dis-
placements (> 0.5mm for> 20% of frames, n=1 pwMS and n=1
HC) during fMRI to minimize motion effects on dFC measures (Shine

et al., 2016). The study was approved by the local institutional ethics
review board and conducted in accordance with the ethical standards
laid down in the Declaration of Helsinki. All subjects gave written in-
formed consent.

This study is part of a study investigating the effect of fingolimod on
the brain and cognitive functions over a period of 1.5 years. Here, the
baseline data are presented (no prior publications on this dataset). The
final MS group consisted of pwMS switching from first-line treatment
(n=7) or natalizumab (n=6) to fingolimod treatment (from here on
referred to as switchers), and pwMS continuing first-line therapy
(n=16; from here on referred to as non-switchers). The MS group and
HCs were matched for age, sex, educational level, and disease duration
for pwMS only.

2.2. Clinical measures

All subjects underwent neuropsychological testing, including,
among others, the Letter Digit Substitution Task (LDST; oral version,
90 s), which is an equivalent of the Symbol Digit Modalities Test
(SDMT) (Jolles et al., 1995), and the Stroop Test (for all tests see Ap-
pendix) (De, 1973). Scores on all neuropsychological tests were con-
verted into a Z-score relative to HCs. Scores on the LDST and Stroop
Card 1 were averaged into one IPS composite Z-score. Anxiety and
depression levels were assessed with the Hospital Anxiety and De-
pression Scale (Zigmond and Snaith, 1983). Fatigue was measured
using the Checklist of Individual Strength (Vercoulen et al., 1994).
Additionally, physical disability was assessed by a trained physician
using the Expanded Disability Status Scale (EDSS) (Kurtzke, 1983).

2.3. MRI acquisition

All subjects were examined using a 3 T whole-body MRI scanner (GE
Signa-HDxt, Milwaukee, WI, USA) with a 32-channel head coil. The
protocol included the following sequences: three-dimensional (3D) T1-
weighted fast spoiled gradient echo for volume measurements (repeti-
tion time (TR): 8.22ms; echo time (TE): 3.22ms; inversion time (TI):
450ms; flip angle 12°; 1.0 mm sagittal slices; 0.94×0.94mm2 in-plane
resolution); 3D fluid-attenuated inversion recovery (FLAIR; TR:
8000ms; TE: 128ms; TI: 2343ms; 1.2mm sagittal slices;
0.98×0.98mm2 in-plane resolution) for white matter (WM) lesion
detection; and diffusion tensor imaging (DTI; TR: 7200ms; TE: 83ms;
flip angle 90°; 57 axial slices with an isotropic 2.0 mm resolution) with
5 volumes without directional weighting and 30 volumes with non-
collinear diffusion gradients (b-value: 1000 s/mm2) to assess WM in-
tegrity. To correct for echo planar imaging (EPI) induced artifacts, two
scans with reversed phase-encode blips were acquired for DTI.
Furthermore, RS fMRI (eyes closed; EPI, 202 volumes, TR: 2200ms; TE:
35ms; flip angle 80 degrees; 3 mm contiguous axial slices;
3.3× 3.3mm2 in-plane resolution) and task-related (i.e. task-state)
fMRI (IPS paradigm; EPI, 460 volumes, TR: 2000ms; TE: 30ms; flip
angle 80 degrees; 4 mm contiguous axial slices; 3.3× 3.3mm2 in-plane
resolution) were performed to measure sFC and dFC.

2.4. Structural MRI measures

2.4.1. Whole-brain and lesion volume
Lesions were automatically segmented on FLAIR images and filled on

the 3DT1 images using LEAP (Steenwijk et al., 2013; Chard et al., 2010).
WM and grey matter (GM) volumes were measured using SIENAX (Smith
et al., 2002). Volumes of deep GM structures were measured using FIRST
(FSL v5.0.9, fmrib.ox.ac.uk/fsl). Cortical GM volume was measured by
subtracting the FIRST segmentation from SIENAX's GM segmentation. All
volumes were normalized for head size using the v-scaling factor ob-
tained by SIENAX, resulting in normalized WM volume (NWMV), nor-
malized cortical GM volume (NCGMV), normalized deep GM volume
(NDGMV), and normalized lesion volume (NLV).
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2.4.2. Severity and extent of WM damage
The susceptibility-induced off-resonance field was estimated for the

diffusion weighted sequence using a method described previously, and
the two images were combined into a single corrected one (and used for
further processing) (Andersson et al., 2003). Motion- and eddy-current
correction was performed, followed by diffusion tensor fitting (FMRIB's
Diffusion Toolbox, FSL, http://www.fmrib.ox.ac.uk/fsl). Tract-based
spatial statistics with default settings was used to obtain skeletonized
fractional anisotropy (FA) maps (Smith et al., 2006). In order to obtain
individual measures of whole-brain WM integrity damage, we quanti-
fied the severity and extent of WM damage using a method that has been
described previously (Schoonheim et al., 2014). In short, each subject's
skeleton was voxelwise expressed as a Z-score relative to HCs. The se-
verity of WM damage in a subject was subsequently calculated by
computing average normalized FA score within the skeleton. The extent
of WM damage was calculated by counting the number of voxels ex-
ceeding the threshold of Z < −3.1 (p < 0.001) in each subject
(Schoonheim et al., 2014). Finally, the whole-brain average FA of the
white matter was obtained for each subject.

2.5. Functional MRI

2.5.1. Task-state fMRI paradigm
Task-state fMRI was obtained by examining IPS using the modified

version of the SDMT (mSDMT) inside the scanner (Genova et al., 2009).
Briefly, in the stimulus condition a panel of nine paired stimulus boxes
were presented. The boxes in the upper row contained a symbol, while
the boxes in the lower row contained a digit (1 to 9). Below this panel, a
symbol-digit pair was presented and the subject had to indicate via a
button box whether or not this symbol-digit pair matched one of the
pairs in the upper panel. The timing of the stimuli was pre-specified.
Accuracy was used for the analyses of behavioral task data. Reaction
time for correct trials was not included, as this can be influenced by
motor problems in pwMS. The paradigm lasted approximately 15min.

2.5.2. Preprocessing of fMRI data
Preprocessing of RS and task-state functional images was performed

separately with MELODIC (FSL), and consisted of: 1) discarding the first
five volumes; 2) high-pass filtering (1 s cutoff); 3) mcFlirt motion cor-
rection, and; 4) spatial smoothing (6mm full width-at-half-maximum
Gaussian kernel). Distortion correction on the functional images was
not performed. Motion parameters were obtained and the processed
functional images were subsequently nonlinearly registered to Montreal
Neurological Institute standard space by using the individuals 3D T1
weighted image. Quality control consisted of checking for excessive
head motion and visual inspection of all processed images and regis-
tration steps.

2.5.3. Atlas construction
In this study, we used the Brainnetome atlas (Fan et al., 2016) (210

regions) to parcellate the brain. By overlaying the Yeo7 RS network
atlas (Yeo et al., 2011) on the Brainnetome atlas, we were able to
identify which Brainnetome regions belonged to the DMN based on two
criteria: 1)> 50% of voxels of a Brainnetome region had to overlap
with the DMN from the Yeo7 atlas, and 2) the overlap with the DMN
should be the highest and the differences in overlap with the second
highest RS network should be>15%. In total, 38 regions of the
Brainnetome atlas were considered part of the DMN. After preproces-
sing of RS and task-state images, the Brainnetome atlas in standard
space was non-linearly registered to each subject's 3DT1 image, and
subsequently masked for GM (binarized SIENAX segmentation). Next,
the subcortical regions derived by FIRST were added, resulting in an
atlas containing 224 regions. This novel atlas was then linearly regis-
tered to RS and task-state fMRI space, where areas known to be prone to
artifacts were removed (e.g. orbitofrontal cortex), by excluding voxels
with a signal intensity in the lowest quartile of the robust intensity

range (i.e. the minimum and maximum if the outer tails of the intensity
distribution are ignored). Finally, the average time series for each brain
region was obtained during RS and task-state fMRI, and imported into
Matlab R2012a (Natick, Massachusetts, USA) for further analysis.

2.5.4. Stationary FC
To obtain sFC, Pearson correlation coefficients between all brain

regions (i.e. region of interest-wise analysis) over the entire time series
(absolute values) were calculated for RS and task-state fMRI separately
(see Fig. 1A).

2.5.5. Dynamic FC
For dFC, a sliding-window approach was used with settings that

were selected based on previous studies (see Fig. 1A), resulting in 35
and 86 sliding windows for RS and task-state time series, respectively
(van Geest et al., 2018; Leonardi and Van De Ville, 2015). For RS time
series the window length was 27 volumes (59.4 s) with a shift of 5
volumes (11 s). For task-state time series, the window length was 30
volumes (60 s) with a shift of 5 volumes (10 s). Note that the differences
in window length and shift were caused by differences in TR. Then,
absolute Pearson correlation coefficient was calculated between all 224
regions for each window. Next, the absolute difference in FC was cal-
culated between each consecutive window and subsequently summed
per matrix cell, resulting in a 224 by 224 dFC matrix.

2.5.6. DMN connections
For RS and task-state, sFC and dFC was averaged over all DMN re-

gions. Concretely, this resulted in an average of both within-DMN and
DMN-to-whole-brain connectivity. To correct for the difference in the
number of fMRI volumes between both conditions, and to be more
specific to detect regional changes, each sFC and dFC measure was
divided by its corresponding whole-brain average sFC and dFC.
Furthermore, we calculated the difference in sFC of the DMN (ΔsFC-
DMN) between RS and task-state as follows: task-state sFC DMN – RS
sFC DMN. The differences in dFC of the DMN (ΔdFC-DMN) was cal-
culated similarly: task-state dFC DMN – RS dFC DMN. Positive values
indicate an increase in sFC or dFC in task-state relative to RS. See Fig. 1B
and C for a schematic overview of functional measures.

2.6. Statistical analysis

Statistical analyses were performed in SPSS version 22 (Armonk,
NY, USA). Normality of variables was investigated using the
Kolmogorov-Smirnov test and visual inspection of histograms. NLV and
the extent of WM damage were log-transformed to obtain normally
distributed data. EDSS, educational level, questionnaires for anxiety
and depression, and mSDMT accuracy were not transformed and tested
with Mann-Whitney U tests. Univariate and multivariate general linear
models were constructed to assess group differences in behavioral
measures (IPS, questionnaires, task performance), structural MRI
(atrophy, extent and severity of white matter damage), sFC, and dFC
(with average head motion as covariate to further limit its effect on the
analyses). We performed a two-tailed one-sample t-test in each group to
test whether ΔsFC-DMN and ΔdFC-DMN differed from zero (indicating
a change). The differences in ΔsFC-DMN and ΔdFC-DMN between groups
were analyzed with a univariate general linear model. Additionally, we
explored the relationship between dFC and conventional brain mea-
sures using Pearson correlation coefficients. Because of multiple testing
regarding brain measures and the correlation analyses, Benjamini-
Hochberg false discovery rate corrected p-values (corr. p) are reported
for these analyses (Benjamini and Hochberg, 1995).

Hierarchical regression analysis with a forward feature selection
scheme was performed to investigate the incremental value of dFC of
the DMN over conventional brain measures in explaining mSDMT ac-
curacy and IPS outside the scanner. The following blocks were in-
cluded: block 1 (confounders): age, sex, education; block 2: NWMV,
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NCGMV, NDGMV, NLV; block 3: FA extent, FA severity; block 4: RS sFC
DMN, task-state sFC DMN, ΔsFC-DMN; block 5: RS dFC DMN, task-state
dFC DMN, ΔdFC-DMN. Post hoc, we explored the effect of switching
medication on IPS and its possible moderating effects on the significant
predictors for IPS. In order to do so, we performed regression analyses
with mSDMT accuracy or IPS composite Z-score as dependent variable,
and included the significant predictors obtained by the main regression
analysis as independent variables together with a variable coding for
switchers/non-switchers in block 1 (enter method). In block 2, we en-
tered the interaction effects between switchers/non-switchers and
predictors defined in block 1. p-values lower than 0.05 were considered
as statistically significant.

2.6.1. Post hoc specificity analysis
To investigate the specificity of the relationship between dynamic

brain measures that were significantly related to IPS, we performed a
correlation analysis (Spearman's rank correlation) with other outcome
variables, including EDSS score, fatigue, depression, and all neu-
ropsychological tests.

3. Results

3.1. Demographics and clinical measures

The final sample size included 29 pwMS (18 women; mean age:
41.3 ± 9.3 years; mean disease duration 11.1 ± 7.1 years) and 18
HCs (11 women; mean age: 40.7 ± 13.3 years; see Table 1). No dif-
ferences between groups were found for age, sex, and educational level.
Anxiety and depression scores were similar between groups, but pwMS
reported more fatigue than controls (pwMS: 72.0 ± 33.6; HCs:
47.1 ± 18.3; p=0.007). Compared to HCs, pwMS performed worse on

the LDST (Z-score: −1.1 ± 1.4; p=0.005), but not on the Stroop Card
1 (Z-score: −0.5 ± 1.4; p=0.186). The IPS composite Z-score was
lower in pwMS (Z-score: −0.8 ± 1.3) compared to HCs (Z-score:
0.0 ± 0.8; p=0.022). Furthermore, compared to HCs, pwMS per-
formed worse on tests for visuospatial memory, executive functioning,

Table 1
Demographics and clinical measures.

pwMS (n=29) HCs (n=18) p

Age 41.25 (9.34) 40.68 (13.29) 0.863
Sex (female/male) 18/11 11/7 0.948
Educational levela 6.00 (5.00–7.00) 6.00 (5.00–7.00) 0.098
Disease duration 11.05 (7.11) – –
EDSSa 3.00 (1.00–6.00) – –
HADS-Aa 5.50 (0.00–12.00)b 4.00 (2.00–13.00) 0.170
HADS-Da 3.00 (0.00–14.00)b 1.50 (0.00–6.00) 0.229
CIS20r 71.97 (33.58)b 47.06 (18.29) 0.007
Z-score LDST −1.11 (1.38) 0.00 (1.00) 0.005
Z-score Stroop Card 1 −0.51 (1.41) 0.00 (1.00) 0.186
IPS composite Z-score −0.81 (1.31) 0.00 (0.78) 0.022
mSDMT performance

(inside scanner)
Accuracy (%)a 95.45

(77.27–100.00)
96.36
(86.36–100.00)

0.307

Displayed data are mean (standard deviation).
CIS20r=Checklist of Individual Strength – revised; EDSS=Expanded
Disability Status Scale; HCs= healthy controls; HADS=Hospital Anxiety and
Depression Scale; A=Anxiety; D=Depression; IPS= information processing
speed; LDST=Letter Digit Substitution Test; mSDMT=modified Symbol Digit
Modalities Test; pwMS=people with multiple sclerosis.

a Displayed data are median (minimum – maximum).
b n=28.

Fig. 1. Schematic overview of functional
measures
Stationary (s) functional connectivity (FC) was
calculated with Pearson correlation coeffi-
cients over the entire time series, whereas for
dynamic (d) FC the time series were divided
into sliding windows (A). For each sliding
window, FC was calculated and subsequently
the absolute difference between each con-
secutive window was calculated and summed
as a measure of dFC. For both resting-state
(RS) and task-state fMRI, sFC and dFC of the
default mode network was obtained (B).
Additionally, the difference in sFC and dFC
between task-state and RS was calculated (C).
dFC=dynamic functional connectivity;
FC= functional connectivity; IPS=
information processing speed; RS=resting-
state; sFC=stationary functional con-
nectivity; ΔdFC-DMN=difference in dynamic
functional connectivity between task-state and
resting-state (task-state minus resting-state);
ΔdFC-DMN=difference in stationary func-
tional connectivity between task-state and
resting-state (task-state minus resting-state).
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working memory, and verbal fluency (see Table A.1). In total, 6 pwMS
met the criteria for cognitive impairment (scoring at least 2 SD below
that of HCs on at least 2 tests). Accuracy on the IPS task inside the
scanner did not differ between groups.

3.2. Structural brain changes

NWMV was similar between groups (see Table 2), while pwMS
displayed lower NCGMV (corr. p=0.009) and NDGMV (corr.
p=0.002). The severity and extent of WM damage was worse in pwMS
compared to HCs (corr. p < 0.001 for both). Furthermore, whole brain
FA was lower in pwMS than in HCs (corr. p < 0.001).

3.3. Static and dynamic FC

No group differences were observed for RS and task-state sFC and
dFC of the DMN (see Table 3). Additionally, in both groups ΔsFC-DMN
did not differ significantly from zero (mean ΔsFC-DMN pwMS:
−0.02 ± 0.06, t(28)=1.70, corr. p=0.133; mean ΔsFC-DMN HCs:
−0.02 ± 0.07, t(17)=1.06, corr. p=0.304), suggesting no difference
in sFC between RS and task-state. Furthermore, ΔsFC-DMN did not
differ between pwMS and HCs.

In pwMS and HCs, ΔdFC-DMN differed significantly from zero
(mean ΔdFC-DMN pwMS: 0.02 ± 0.02, t(28)=3.63, corr. p=0.004;
mean ΔdFC-DMN HCs: 0.03 ± 0.01, t(17)=2.81, corr. p=0.024),
suggesting an increase in dFC of the DMN during task-state relative to
RS. No group differences in ΔdFC-DMN were observed.

3.4. Relationship between dFC and conventional brain measures

After correction for multiple testing, none of the correlation coef-
ficients between dynamic and conventional brain measures were sta-
tistically significant in pwMS or HCs (corr. p > 0.251).

3.5. Predicting IPS

3.5.1. mSDMT accuracy
In pwMS, mSDMT accuracy inside the scanner could not be pre-

dicted by conventional brain measures (block 1–4; Table 4). However,
when adding block 5, the model predicted 23% of the variance in
mSDMT accuracy, effectively by ΔdFC-DMN only (β=0.51,
p=0.006). In HCs, 23% of variance in mSDMT accuracy could be ex-
plained by RS dFC of the DMN only (β=0.53, p=0.025). For both
pwMS and HCs, Fig. 2A displays the relationship between the final
model and the outcome measure.

3.5.2. IPS composite Z-score
In pwMS, confounders and conventional brain measures could ex-

plain 26% of variance in IPS composite Z-score (block 1–4) with
NCGMV (β=0.47, p=0.050) as predictor (Table 4). When adding dFC
of the DMN, the amount of explained variance increased to 52% (R2

change=0.25, p=0.001). The predictors now included NCGMV
(β=0.49, p=0.013) and ΔdFC-DMN (β=0.52, p=0.001). In HCs,
none of the predictors were significantly related to IPS outside the
scanner. Fig. 2B displays the relationship between the final model and
the outcome measure.

Table 2
Brain volumes and white matter damage.

pwMS (n=29) HCs (n=18) Effect size (η2) p p corr.

NWMV, ml 682.55 (46.91) 699.07 (39.36) 0.033 0.219 0.219
NCGMV, ml 780.47 (76.20) 839.46 (59.41) 0.148 0.008 0.009
NDGMV, ml 58.80 (6.88) 65.08 (4.59) 0.207 0.001 0.002
NLV, ml 22.46 (15.99) – – – –
WM damage
Whole brain average FA 0.33 (0.03)a 0.36 (0.02) 0.335 < 0.001 < 0.001

Severity score
Average Z-score skeleton −0.61 (0.50)a 0.00 (0.34) 0.321 < 0.001 < 0.001

Extent score
Number of affected voxels 3430.30 (5115.74)a 21.90 (55.86) 0.822 < 0.001 < 0.001
(%) (2.87%) (0.02%)

Displayed data are mean (standard deviation).
HCs= healthy controls; NCGMV=normalized cortical grey matter volume; NDGMV=normalized deep grey matter volume; NLV=normalized lesion volume;
NWMV=normalized white matter volume; WM=white matter; p corr.= false discovery rate corrected p-values; pwMS=people with multiple sclerosis.

a n=27.

Table 3
Task-state and resting-state stationary and dynamic functional connectivity.

pwMS (n=29) HCs (n=18) Effect size (η2) p p corr.

Average head motion
Resting-state (mm) 0.068 (0.035) 0.068 (0.028) < 0.001 0.989 0.989
Task-state (mm) 0.091 (0.042) 0.068 (0.036) 0.075 0.063 0.167

Resting-state
sFC DMN 0.959 (0.051) 0.952 (0.052) 0.005 0.647 0.989
dFC DMN 1.018 (0.030) 1.019 (0.024) < 0.001 0.8933 0.989

Task-state
sFC DMN 0.940 (0.048) 0.935 (0.040) < 0.001 0.957 0.989
dFC DMN 1.034 (0.024) 1.049 (0.027) 0.035 0.213 0.167

Difference
Task-state minus resting-state

ΔsFC-DMN −0.019 (0.060) −0.017 (0.068) < 0.001 0.917 0.989
ΔdFC-DMN 0.016 (0.023) 0.029 (0.044) 0.042 0.168 0.167

Displayed data are mean (standard deviation).
dFC=dynamic functional connectivity; DMN=default mode network; HCs= healthy controls; p corr.= false discovery rate corrected p-values; pwMS=people
with multiple sclerosis; sFC= stationary functional connectivity.
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3.6. Post hoc specificity analysis

Within both groups, no significant relationship was found between
ΔdFC-DMN and EDSS score (MS: corr. p=0.860), fatigue (MS: corr.
p=0.768; HC: corr. p=0.712), depression (MS and HCs: corr.
p=0.712) or any neuropsychological test (MS and HCs corr.
p > 0.712).

3.7. Post hoc exploration: Effect of switching medication

No differences were found between switchers (n=13) and non-

switchers (n=19) with respect to demographics, disease character-
istics, IPS composite Z-score, or mSDMT accuracy (Table A.2).
Furthermore, no significant group differences were found regarding
structural MRI, sFC and dFC of the DMN.

No effect of switching was found on mSDMT accuracy (β=−0.14,
p=0.395). Furthermore, adding the interaction between switching
with ΔdFC-DMN to the model did not increase the amount of explained
variance (R2 change=0.02, p=0.463), resulting in a final model ex-
plaining 23% of variance in mSDMT by ΔdFC-DMN (β=0.52,
p=0.005). Similar findings were obtained for IPS composite Z-score:
no effect of switchers/non-switchers was found on this dependent

Table 4
Hierarchical regression models for predicting mSDMT performance and IPS composite Z-score.

Adjusted R2 Standardized β Test statistic p

mSDMT accuracy pwMS Full model: block 1–4 N/A N/A N/A
Full model: block 1–5 0.23 8.83a 0.006
ΔdFC-DMN 0.51 2.97b 0.006

HCs Full model: block 1–4 N/A N/A N/A
Full model: block 1–5 0.23 6.10a 0.025
RS dFC-DMN −0.53 −2.47b 0.025

IPS composite Z-score pwMS Full model: block 1–4 0.26 5.65a 0.010
Age −0.14 −0.60b 0.554
NCGMV 0.47 2.07b 0.050
Full model: block 1–5 0.52 10.20a < 0.001
Age < 0.01 < 0.01b 0.998
NCGMV 0.49 2.69b 0.013
ΔdFC-DMN 0.52 3.67b 0.001

HCs Full model: block 1–4 N/A N/A N/A
Full model: block 1–5 N/A N/A N/A

dFC=dynamic functional connectivity; DMN=default mode network; HCs= healthy controls; IPS= information processing speed; mSDMT=modified Symbol
Digit Modalities Test; N/A=not applicable; pwMS=people with multiple sclerosis; RS= resting-state; sFC= stationary functional connectivity.

a F-value.
b t-value.
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Fig. 2. Relationship between the regression model
and outcome measures
For both accuracy on the modified symbol digit
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plotted against performance for people with MS and
healthy controls separately.
IPS= information processing speed; mSDMT=
modified Symbol Digit Modalities Test.
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variable (β=−0.16, p=0.263). Additionally, adding the interaction
terms between switchers/non-switchers with ΔdFC-DMN and NCGMV
did not improve the model in terms of explained variance (R2

change= 0.04, p=0.358). In total, 54% of variance could be ex-
plained by NCGMV (β=0.44, p=0.004) and ΔdFC-DMN (β=0.53,
p < 0.001).

4. Discussion

In the present study, we investigated the incremental value of dFC
of the DMN over conventional measures of brain abnormalities in ex-
plaining IPS in MS. In pwMS, an increase in dFC of the DMN from RS to
task-state (i.e. ΔdFC-DMN) was a relevant predictor for better IPS inside
the scanner (i.e. task accuracy) and outside the scanner (IPS composite
Z-score). In the latter case, adding dFC of the DMN to the regression
model, on top of conventional brain measures, doubled the amount of
explained variance to a total of 52% (with NCGMV as another sig-
nificant predictor). These results suggest that the DMN might alter its
dFC pattern upon task demands, which we refer to as “DMN re-
sponsivity”. Furthermore, our results suggest that in MS, individual
differences in DMN responsivity can be related to individual differences
in IPS.

4.1. Conventional MRI and IPS

Problems with IPS in MS have typically been explained as a con-
sequence of WM damage, such as lesions and decreased integrity, but
also of cortical and deep GM atrophy (Randolph et al., 2005; Mazerolle
et al., 2013; Batista et al., 2012). Although WM damage or deep GM
atrophy were not identified as the most important predictors for IPS in
our sample, we did observe that NCGMV could explain up to 26% of
variance in IPS outside the scanner. With respect to sFC, we did not
observe differences between pwMS and controls, whereas previous
studies did show differences in DMN effective and stationary FC at rest
and during an IPS task, both related to IPS (Dobryakova et al., 2016;
Wojtowicz et al., 2014). These contradictory findings might be ex-
plained by methodological differences, such as sample size and oper-
ationalization of FC. With respect to the latter, a previous study used a
seed-based approach instead of an atlas-based approach on RS data only
(Wojtowicz et al., 2014). The other study investigated the directionality
of FC (i.e. effective FC) during IPS, which provides differential in-
formation than sFC, and is therefore difficult to compare (Dobryakova
et al., 2016). Furthermore, we normalized FC measures for whole-brain
average FC, as this average FC can vary greatly between subjects and
potentially drive differences between groups, which is not always per-
formed in other studies. Applying this normalization step allowed us to
deal with individual differences in FC, and can thereby more accurately
reflect possible changes in FC between groups.

4.2. Dynamics and IPS

Although no differences between pwMS and HCs were observed
between dFC of the DMN, adding dFC to the regression model, next to
confounding variables and conventional MRI measures, increased the
explained variance by the model for IPS inside and outside the scanner.
Furthermore, we did not observe a significant relationship between
ΔdFC-DMN and EDSS score, fatigue, depression or any other neu-
ropsychological test score, suggesting that our findings are specific for
IPS. Changes in RS DMN dynamics have been observed in other neu-
rological disorders, including schizophrenia, autism, attention deficit
hyperactivity disorder, depression, and epilepsy. Often, these changes
were related to the severity of symptoms (Zhang et al., 2016; Sambataro
et al., 2017; Douw et al., 2015; Liu et al., 2017). A large challenge to
directly compare between study results is differences in oper-
ationalization of DMN dynamics (e.g. standard deviation of FC, non-
overlapping windows, or spectrum analysis) but also variation in types

of pathology. Nevertheless, the present measure of dFC was able to pick
up individual differences in pwMS and HCs regarding dFC of the DMN
and IPS. This is in line with a recent study that was able to identify
individuals based on spatial patterns of dynamic characteristics of FC
(i.e. ‘fingerprinting’), which was a significant predictor for higher order
cognitive functions (i.e. fluid intelligence and executive functions) (Liu
et al., 2018).

4.3. DMN responsivity

In both pwMS and HCs, an increase in dFC of the DMN was observed
from RS to task-state, suggesting that this might be a response upon in-
creasing cognitive demands. Interestingly, a larger increase in dFC from
RS to task-state in pwMS was the only significant predictor for IPS inside
the scanner, as well as a significant predictor for IPS outside the scanner
(next to NCGMV). These findings suggest that during IPS, the DMN seems
to change its FC pattern more often than during RS, possibly reflecting
increased information flow throughout the network (Vatansever et al.,
2015b). In HCs, however, lower RS dFC of the DMN was related to better
IPS inside the scanner, whereas no predictors were found for IPS outside
the scanner (probably explained by limited variation in performance and
obtained brain measures). Previous studies in healthy subjects have
linked both lower and higher brain dynamics during RS to better cog-
nitive functioning (Jia et al., 2014; Douw et al., 2016; Nomi et al., 2017).
These varying results illustrate the complexity of both brain dynamics
and human cognition, their relationship in health and neurological dis-
orders, and the relative infancy of this field of research.

The behavioral relevance of increasing DMN dynamics during task-
state relative to RS is in line with a previous study in healthy subjects on
cognitive flexibility (i.e. Stroop task) and dFC of the DMN with the
frontoparietal network (Douw et al., 2016). That is, higher dFC of the
DMN with frontoparietal network during task-state and lower dFC
during RS in isolation were related to better cognitive flexibility outside
the scanner (Douw et al., 2016). However, a larger increase in task-state
relative to RS dFC explained even more variance in cognitive flexibility
(Douw et al., 2016). Another study found that the frontoparietal net-
work was more dynamic during working memory compared to a control
condition, which could be related to better working memory and ex-
ecutive functions (Braun et al., 2015). For sFC, the increase in DMN
connectivity with respect to increasing task-load has been described
previously in healthy subjects (Elton and Gao, 2015; Vatansever et al.,
2015a). In turn, this DMN responsivity could be related to maintained
task performance (Elton and Gao, 2015; Vatansever et al., 2015a).
Metaphorically, this task-evoked responsivity of the brain might be si-
milar as performing a challenging physical exercise that exposes certain
cardiac conditions (Gonzalez-Castillo and Bandettini, 2017). Hence,
one could speculate that combining RS with task-state functional
measures might (partly) capture the ability of a patient's functional
network to adapt upon task demands, which might explain a patient's
cognitive abilities (Gonzalez-Castillo and Bandettini, 2017).

4.4. Switching medication

The present MS sample consisted of pwMS switching to fingolimod
treatment and non-switchers continuing with first-line therapy. The
status of pwMS (switchers/non-switchers) did not relate to IPS or
mediated the relationship between ΔdFC-DMN and NCGMV with IPS.
These findings suggest that switchers were statistically similar to non-
switchers. However, one should keep in mind that more than half of the
switchers used first-line therapy prior to fingolimod and changed
therapy because of disease activity (n=7), whereas positivity for John
Cunningham virus, and therefore at risk for developing progressive
multifocal leukoencephalopathy, was the main reason for pwMS to
switch from natalizumab to fingolimod (n=6) and not so much disease
activity. Future studies should explore possible changes in brain dy-
namics under MS treatment over time in relationship to disease activity
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and cognitive functioning.
The first limitation of the present study is the small sample size that

limits the statistical power. This might explain why we did not observe
group differences in sFC and dFC, which could be a Type II error.
Furthermore, although we included various explanatory variables in the
regression analysis, we made a preselection of predictors and focused
on the most relevant variables by using a forward selection procedure.
Secondly, unfortunately we did not measure premorbid IQ, which
might more accurately reflect premorbid cognitive functioning than
educational level. Thirdly, as negative correlation coefficients for sFC
and dFC could make correction for whole-brain sFC/dFC and compar-
isons between RS and task-state conditions challenging (i.e. dividing by
a negative value), we decided to calculate absolute connectivity values.
Finally, the difference measure between task-state and RS sFC/dFC
should be interpreted with some caution, as both fMRI sequences were
slightly different in terms of scanning parameters (e.g. TR). This re-
sulted in subtle differences in window length for dFC (0.6 s) and shift
(1 s). However, these differences are marginal, and by normalizing for
whole-brain sFC/dFC we believe the effects of different scanning
parameters on our results is minimal.

4.5. Future perspective

In the present study, we specifically focused on dFC of the DMN,
based on previous studies showing changes in the DMN in MS, its re-
levance for cognition, and to limit the number of statistical tests with
respect to sample size (Raichle, 2015; Rocca et al., 2010). Hence, one
should keep in mind that we only investigated part of the story re-
garding the link between brain dynamics and IPS. As a next step in MS,
future studies in larger samples should investigate dynamics of all brain
networks during RS and task-state (and the responsivity), and link this
to other cognitive domains. Furthermore, future studies should increase
their sample size and the duration of fMRI sequences in order to test the
reliability of findings (e.g. with a split-half analysis).

4.6. Conclusions

In conclusion, on top of conventional brain measures, higher dFC of
the DMN during task-state relative to RS was an important predictor for
IPS in MS in this study. These findings could reflect the ability of the
DMN to adapt its dFC pattern upon task demands, in order to maintain
optimal IPS. Future studies should investigate brain dynamics and IPS
over time, as well as the generalizability of our findings to dynamics of
other brain networks and cognitive domains.
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