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Abstract

Purpose

To provide a quantitative clinical-regulatory insight into the status of FDA orphan drug desig-

nations for compounds intended to treat lysosomal storage disorders (LSDs).

Methods

Assessment of the drug pipeline through analysis of the FDA database for orphan drug des-

ignations with descriptive and comparative statistics.

Results

Between 1983 and 2019, 124 orphan drug designations were granted by the FDA for com-

pounds intended to treat 28 lysosomal storage diseases. Orphan drug designations focused

on Gaucher disease (N = 16), Pompe disease (N = 16), Fabry disease (N = 10), MPS II (N =

10), MPS I (N = 9), and MPS IIIA (N = 9), and included enzyme replacement therapies, gene

therapies, and small molecules, and others. Twenty-three orphan drugs were approved for

the treatment of 11 LSDs. Gaucher disease (N = 6), cystinosis (N = 5), Pompe disease (N =

3), and Fabry disease (N = 2) had multiple approvals, CLN2, LAL-D, MPS I, II, IVA, VI, and

VII one approval each. This is an increase of nine more approved drugs and four more treat-

able LSDs (CLN2, MPS VII, LAL-D, and MPS IVA) since 2013. Mean time between orphan

drug designation and FDA approval was 89.7 SD 55.00 (range 8–203, N = 23) months.

Conclusions

The drug development pipeline for LSDs is growing and evolving, with increased focus on

diverse small-molecule targets and gene therapy. CLN2 was the first and only LSD with an

approved therapy directly targeted to the brain. Newly approved products included “me-

too”–enzymes and innovative compounds such as the first pharmacological chaperone for

the treatment of Fabry disease.
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Introduction

Lysosomal storage disorders (LSDs) are a group of more than 50 inherited, multisystemic, pro-

gressive conditions caused by a genetic defect that results in the progressive accumulation of

complex non-metabolized substrates in the lysosomes of cells, tissues and organs, inducing dis-

tinct but heterogeneous somatic and neurological disease phenotypes [1–7]. In general, lyso-

somal storage disorders lead to significant morbidity and decreased life expectancy. Reported

prevalences of LSDs in industrialized countries range between 7.6 per 100,000 live births (= 1 in

13,158) and 25 per 100,000 live births (= 1 in 4000) [8–11]. Some LSDs are treatable and the drug

development in the field has traditionally been very active and dynamic after the successful devel-

opment of enzyme replacement therapy in Gaucher disease which seeded further innovation [1,

12, 13]. The development of new compounds and new concepts of treatment for lysosomal stor-

age disorders has been very dynamic. Therefore, the purpose of the present paper is to precisely

analyze the most recent advances and novel trends in orphan drug development for lysosomal

storage diseases as documented in the FDA Orphan Drug Product designation database.

Methods

The FDA orphan drug database was accessed over the internet at the following address http://

www.accessdata.fda.gov/scripts/opdlisting/oopd/. Search criteria were “all designations” from

1 January 1983 until 10 May 2019, i.e., all data entries until 10 May 2019 were taken into

account (N = 4979). The output format was an excel file which was downloaded on a local

computer. Orphan designations for lysosomal storage diseases were extracted with pertinent

keywords (N = 124) [1]. STROBE criteria (S1 Checklist) were respected [14].

Definitions

Pharmacological compounds were categorized based on their chemical structures into the follow-

ing classes, listed in alphabetical order: “enzyme”, “enzyme/small molecule combination”, “gene

therapy”, “polymer”, “protein (other than enzyme)”, and “small molecule” [1]. A small molecule

was defined as a compound with a molecular weight below 900 Da [15]. In addition, compounds

were further grouped into functionally meaningful subtypes based on their biochemical proper-

ties, molecular mechanisms of action, or gene therapy platforms, i.e., (in alphabetical order):

“AAV vector”, “adjunctive therapy”, “anaplerotic”, “anti-inflammatory/neuroprotective”, “anti-

inflammatory/pro-chondrogenic”, “anti-inflammatory/TPP1 enhancing”, “anti-inflammatory/

TPP1 enhancing/vitamin combination”, “pharmacological chaperone”, “cytochrome P450 res-

cue”, “enzyme replacement therapy”, “enzyme replacement therapy–pharmacological chaperone

co-administration”, “lentiviral vector”, “membrane stabilization”, “lysosomal cholesterol redistri-

butor”, “replacement therapy with a modified enzyme”, “nonviral vector directing transgene inte-

gration”, “receptor amplification”, “retroviral vector”, “small molecule facilitating intracellular

substrate transport”, “stem cells”, “stop-codon read-through”, and “substrate reduction”.

Time to FDA approval was defined as the time period from orphan drug designation until

approval by the FDA [1]. Drug approval rates were defined as the proportion of orphan drug desig-

nations approved out of overall orphan drug designations granted. Missing data were not imputed.

Statistical analysis

Standard techniques of descriptive statistics were applied: continuous variables were summa-

rized with mean, standard deviation, median, minimum and maximum values. Categorical

variables were summarized with frequencies and percentages.
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Comparative statistics were performed with the appropriate parametric test for data with

Gaussian distribution. Differences in mean times to approval (defined as time between orphan

drug designation and FDA approval) between drug compound subtypes were analyzed with

ANOVA. Differences between frequency counts for approval rates of lysosomal orphan drugs

versus approval rates for non-lysosomal orphan drugs were compared with the chi-square test.

A two-sided p-value < 0.05 was considered statistically significant.

The following groups were analyzed:

1. Orphan drug designations and approvals by the FDA (overall and for compounds intended

to treat lysosomal storage diseases) by year

2. Orphan drug designations by the FDA for compounds intended to treat lysosomal storage

diseases by year and

a. by disease

b. by pharmacological technology platform (as specified in the definitions section)

3. Withdrawn FDA orphan drug designations for compounds intended to treat lysosomal

storage diseases

4. FDA approved therapies for lysosomal storage disorders

a. by disease with time periods from orphan drug designation until approval and market

exclusivity

b. by year by pharmacological technology platform (as specified in the definitions

section)

All statistical analyses were performed using SAS Enterprise guide 7.13 HF4, SAS Institute

Inc., Cary, NC, USA. Graphs were generated with R [16] and GraphPad Prism 5.04, GraphPad

Software, Inc., San Diego, CA, USA.

Results

The drug development pipeline: Orphan drug designations granted by the

FDA

Between 1 January 1983 and 10 May 2019, 124 orphan drug designations were granted by the

FDA for compounds intended to treat 28 lysosomal storage diseases (Fig 1A). For comparison,

in the same time period, the FDA granted 4979 orphan drug designations overall, out of which

783 were approved (Fig 1B). Twenty lysosomal conditions had multiple orphan drug designa-

tions. Most orphan drug designations were granted for Gaucher disease (N = 16), Pompe dis-

ease (N = 16), Fabry disease (N = 10), MPS II (N = 10), MPS I (N = 9), and MPS IIIA (N = 9),

followed by 14 other diseases depicted in Fig 2A. Eight lysosomal conditions had one orphan

drug designation each. Enzyme replacement therapies, gene therapies, small molecules, and

other technology platform classes were designated as orphan drugs intended to treat lysosomal

storage diseases (Fig 2B). Nine granted orphan drug designations were subsequently with-

drawn (Table 1). The reason for withdrawal is not specified in the FDA orphan drug database.

The approval rates of lysosomal orphan drugs (18.5%) did not differ from approval rates for

non-lysosomal orphan drugs (15.7%, p = 0.38, chi-square)
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Lysosomal storage disorders with FDA approved therapies

Twenty-three orphan drugs were approved for the treatment of 11 lysosomal storage diseases.

Four diseases had multiple therapeutics approved, i.e. Gaucher disease (N = 6), cystinosis

(N = 5), Pompe disease (N = 3), and Fabry disease (N = 2), (Fig 3A). The remaining seven dis-

eases had one compound each approved by the FDA (i.e., CLN2, LAL-D, MPS I, II, IVA, VI,

VII). CLN2 was the only neuronopathic lysosomal storage disease with an FDA approved ther-

apy directly targeting the brain; all the other therapies address systemic non-neurological man-

ifestations. FDA approved therapies included enzyme replacement therapies (N = 15) and

small molecules (N = 8), but no other class of drugs (Fig 3B, Table 2). Approved treatments for

Fig 1. A: Number of orphan drug designations (open bars) and FDA approvals (full bars) for compounds intended to treat lysosomal storage diseases by year. �

indicates close of database: 10 May 2019. B: Overall number of orphan drug designations (open bars) and FDA approvals (full bars) by year. � indicates close of database:

10 May 2019.

https://doi.org/10.1371/journal.pone.0230898.g001

Fig 2. A: Orphan drug designations granted by the FDA for compounds intended to treat lysosomal storage disorders by year and specific disease. B: Orphan drug

designations granted by the FDA for compounds intended to treat lysosomal storage disorders by year and pharmacological technology platform.

https://doi.org/10.1371/journal.pone.0230898.g002
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cystinosis included three different formulations and three different age groups. Enzyme

replacement therapies with alglucosidase alfa for Pompe disease were manufactured in two dif-

ferent bioreactor systems and approved for pediatric and adult age groups.

Regulatory drug development timelines

Overall mean time to approval, defined as time between orphan drug designation and FDA

approval was 89.7 SD 55.00 (range 8–203, N = 23) months. Stratified by drug compound

Table 1. Withdrawn orphan drug designations. Reasons for and time of withdrawal were not specified in the FDA database.

Compound Pharmacological

subtype

Year of orphan drug

designation

Indication under development

Ataluren Stop-codon read-

through

2014 Treatment of mucopolysaccharidosis type I

Recombinant human alpha-N-

acetylglucosaminidase

Enzyme 2013 Treatment of mucopolysaccharidosis IIIB (Sanfilippo B

syndrome)

Recombinant human arylsulphatase A Enzyme 2008 Treatment of metachromatic leukodystrophy (MLD)

Miglustat Substrate reduction 2008 Treatment of the neurological manifestations of Niemann-Pick

disease, type C

Duvoglustat hydrochloride Substrate reduction 2007 Treatment of Pompe disease

Isofagomine tartrate Chaperone 2006 Treatment of Gaucher disease

Retroviral vector, R-GC and GC gene 1750 Retroviral vector 1997 Treatment of Gaucher disease

Human acid precursor alpha-glucosidase,

recombinant

Enzyme 1996 Treatment of glycogen storage disease type II

Phosphocysteamine Substrate reduction 1988 Treatment of cystinosis.

https://doi.org/10.1371/journal.pone.0230898.t001

Fig 3. FDA approved compounds for the treatment of lysosomal storage disorders (depicted as compound #disease), development times and market exclusivity.

A: Grey bars indicate drug development times, i.e. time from orphan drug designation to orphan drug approval by the FDA. Black bars indicate, if applicable, market

exclusivity periods. (1)–systemic administration, immediate release (IR). (2)—ophthalmic solution (OS). (3)–systemic administration, delayed release (DR), adults. (4)–

systemic administration, delayed release (DR), age 2 to 6 years. (5)—systemic administration, delayed release (DR), age 1 to less than 2 years. (6)—bioreactor 160 L. (7)

—bioreactor 4000 L, 8 years and older.(8)—bioreactor 4000 L, all ages. B: FDA approved therapies for the treatment of lysosomal storage disorders by year of approval

and pharmacological technology platform.

https://doi.org/10.1371/journal.pone.0230898.g003
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subtypes, mean time to approval for enzyme replacement therapies was 81.2 SD 56.42 (range

8–203, N = 15) months, mean time to approval for small molecules facilitating subcellular

transport was 107.8 SD 52,96 (range 40–181, N = 5) months, and mean time to approval for

substrate reduction therapies was 66.5 SD 6.36 (range 62 to 71, N = 2) months. Time to

Table 2. Mechanism of action of FDA approved small molecules (�) and small molecules in development, intended to treat a lysosomal storage disorder.

Mechanism of action Compound Disease with FDA orphan

drug designation

Targeting the affected gene: Stop-codon read through in missense

mutations [36]

6’-(R)-methyl-5-O-(5-amino-5,6-dideoxy-alpha-L-

talofuranosyl)-paromamine sulfate

MPS I Cystinosis

Targeting the affected enzyme: TPP1 enhancer, chaperone, enzyme/

chaperone co-administration [37–42]

Gemfibrozil CLN

N-t-butylhydroxylamine CLN1

Modified cholera toxin¶ Gaucher disease

Pyrimethamine GM2-gangiosidosis (Tay-Sachs

and Sandhoff disease)

Ambroxol Gaucher disease

N-acetyl-glucosamine thiazoline Adult Tay-Sachs disease

Migalastat hydrochloride� Fabry disease

Recombinant human acid a-glucosidase/miglustat Pompe disease

Targeting storage: Substrate reduction and subcellular storage

redistribution [43–45]

Odiparcil MPS VI

Lucerastat Fabry disease

Venglustat Fabry disease

(3S)-1-azabicyclo[2.2.2]oct-3-yl {2-[2-

(4-fluorophenyl)-1,3-thiazol-4-yl]propan-2-yl}

carbamate

Gaucher disease

2-hydroxypropyl-B-cyclodextrin§ Niemann-Pick disease type C

Hydroxy-Propyl-Beta-Cyclodextrin§ Niemann-Pick disease type C

Miglustat� Gaucher disease�

Eliglustat� Gaucher disease type I�

Cysteamine� Cystinosis� NCL (Batten

disease)

1,5-(Butylimino)-1,5 dideoxy,D-glucitol Fabry disease

L-cycloserine Gaucher disease

Targeting cellular uptake of therapeutic enzymes: Receptor amplification

[46]

Clenbuterol Pompe disease

Mitigation of cellular damage (Antiinflammatory, pro chondrogenic,

neuroprotective cytochrome P450 rescue) or anaplerotic [20, 37, 47–49]

Ursodeoxycholic acid Niemann-Pick C

Gemfibrozil and vitamin A CLN

Ibudilast Krabbe disease

Pentosan polysulfate sodium MPS VI

Triheptanoin Pompe disease

¶protein acting as a chaperone
§polymer

https://doi.org/10.1371/journal.pone.0230898.t002
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approval for the pharmacological chaperone therapy was 173 months. Differences between the

above groups were not statistically significant (p = 0.33, ANOVA). The drug development

timelines and market exclusivity periods, an incentive granted by the FDA to stimulate orphan

drug development [13], are illustrated in Fig 3A.

Discussion

By 10 May 2019, 23 orphan drugs were approved by the FDA for the treatment of 11 lysosomal

storage disorders. This is an increase of nine more approved orphan drugs and four more

treatable lysosomal disease (i.e. CLN2, MPS VII, LAL-D, and MPS IVA) compared to 2013 [1].

While alglucerase for Gaucher disease was the first orphan drug approved for a lysosomal

storage disease in 1991, intrathecally administered cerliponase alfa for CLN2, FDA approved

in 2017, is the first orphan drug for a lysosomal storage disorder to directly treat the brain,

which is a significant therapeutic innovation [17, 18]. Since 2013, 54 more orphan drug desig-

nations were granted. In addition, diseases such as CLN1, CLN3, CLN4, Farber disease, and

GM1-gangliosidosis did not have orphan drug designations in 2013. This indicates that drug

development in lysosomal storage disorders is now being driven into mainly neuronopathic

conditions (Fig 2A). The overall growth curve of orphan drug designations appears to acceler-

ate over time and may become exponential (Fig 1A), possibly following a global trend (Fig 1B).

Interestingly, the drug approval rate in lysosomal orphan drug development and non-lyso-

somal orphan drug development did not differ. Technology is evolving: while enzyme replace-

ment therapies had initially set the trend, more modified enzymes, including fusion proteins,

and an enzyme-chaperone co-administration entered the development pipeline. This may be a

reaction to the increasing recognition in the field that, in general, systemically administered

enzyme replacement therapy with conventional enzymes can easily access organs such as liver

and spleen but have little impact on bone and CNS manifestations. Four small molecules have

been approved by the FDA for the treatment of a lysosomal storage disease. Their mechanisms

of action target the facilitation of subcellular transport (e.g., cysteamine for cystinosis,

approved in 1994) and the reduction of storage (miglustat, approved in 2003, and eligustat,

approved in 2014, both for the treatment of Gaucher disease) [1]. In 2018, migalastat, which

stabilizes the misfolded enzyme alpha-galactosidase A, was approved as a first-of-its kind phar-

macological chaperone by the FDA for the treatment of Fabry disease [19], (Table 2). Mecha-

nisms of action for small molecules, either approved or in drug development, encompassed

the broad spectrum of underlying pathophysiology and aimed at 1) targeting the affected gene,

2) targeting the affected enzyme, 3) targeting storage, 4) targeting cellular uptake of therapeutic

enzymes, and 4) mitigating the cellular damage or anaplerotic (Table 2). It is possible and

likely that not all mechanistically meaningful approaches lead to clinical benefit in patients

[20]. The plethora of innovative ideas for pharmacological approaches is laudable but should

not lead a treating physician to engage in off-label use but rather encourage international col-

laboration aimed to generate the highest standard of evidence-based knowledge by respecting

excellence clinical research [21].

Gene therapy now plays a larger role in the drug development pipeline compared to the sit-

uation in our last analysis [22]. This may again be a reaction to the increased recognition of

enzyme replacement therapies’ substantial limitations, as described in detail above. The techni-

cal approach towards gene therapy is evolving as illustrated in Fig 2B. Gene therapies rely, at

least in principle, on the assumption that a single treatment may result in a sustained, poten-

tially curative clinical benefit for the patients. The first molecular tools enabling efficient non-

toxic gene transfer into human somatic cells were recombinant replication-deficient vectors

[23]. Among those, retroviral and adeno-associated viral (AAV) vectors have been the most
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widely used in particular for ex vivo T cell engineering or genetically engineered hematopoietic

stem cells (HSCs) for the treatment of primarily hematologic or oncologic conditions such as

pediatric ALL, β-thalassemia or adenosine deaminase deficiency [24–26]. In contrast, while

the first two orphan drug designations for gene therapy for lysosomal storage diseases in 1993

and 1997 (both for Gaucher disease) relied on retroviral vectors, this platform was subse-

quently abandoned. This is likely due to the emergence of serious toxicities related to high

gene transfer including insertional genotoxicity, immune destruction of genetically modified

cells, and immune reactions related to the application of certain vectors [27, 28]. The next step

in gene technology was the introduction of AAV (designated for Pompe disease in 2007), fol-

lowed by stop-codon read-through (designated in 2014 and 2016 for MPS I, and in 2018 for

cystinosis). Moreover, lentiviral vector (designated in 2018 for Fabry disease and MLD), and

nonviral vector directing transgene integration (designated in 2018 for MPS I) technologies

are being considered, all of which have to prove their safety and efficacy in the future. More

sophisticated genome editing technologies that enable a variety of therapeutic genome modifi-

cations (gene addition, gene ablation or “gene correction”) consist of the administration of

transcription activator-like effector nucleases (TALENs) and or CRISPR-Cas 9 system to effi-

ciently cleave and modify DNA at sites of interest [29–33]. Those approaches are currently

limited to applications in basic research, but transfer into clinical trials can be expected in the

near future [34, 35]. Until close of database no gene therapy was approved for the treatment of

lysosomal storage disorders (Fig 3B). If proven successful in registration trials—which would

in all likelihood be small clinical trials of a limited duration—it is of particular interest, how

long the therapeutic effect of gene therapy can be sustained during a patients’ lifetime, and, if

this time is limited, whether it would be safe and feasible to repeat the administration of a gene

therapy multiple times in a single patient. It is anticipated that novel therapies will be costly.

Important topics for future investigations will include patient selection, starting and stopping

criteria.

For the correct contextual interpretation it is important to be aware of important limita-

tions of the present work as pointed out previously [1]. Orphan drug designation was consid-

ered as the expressed intent to develop a drug. This may be influenced by strategic and patent

related considerations. Not all manufacturers may choose such a publicly visible pathway at an

early stage. Therefore, time to approval as presented here may be biased by the intellectual

property strategy of the respective drug development program. Orphan drug development out-

puts in jurisdictions other than the FDA were, as in our previous analysis, not taken into

account because this analysis was by definition focused on the impact of the US orphan drug

act [1, 13]. As drug development in lysosomal storage disorders is, in general, a global enter-

prise we consider the present findings generalizable within the context of their limitations.

Conclusions

Activities in orphan drug development for lysosomal storage disorders are steadily increasing,

which follows a global trend in orphan drug development overall. Newly approved products

included “me-too”–enzymes, and also innovative compounds such as the first ERT targeting

the brain in CLN2 and the first-of-its-kind pharmacological chaperone for the treatment of

Fabry disease. The drug development pipeline for LSDs is growing and evolving, with

increased focus on diverse small-molecule targets and gene therapy.
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