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This article gives an overview of a normative theory of visual receptive fields. We describe how idealized 
functional models of early spatial, spatio-chromatic and spatio-temporal receptive fields can be derived in a 
principled way, based on a set of axioms that reflect structural properties of the environment in combination 
with assumptions about the internal structure of a vision system to guarantee consistent handling of image 
representations over multiple spatial and temporal scales. Interestingly, this theory leads to predictions about 
visual receptive field shapes with qualitatively very good similarities to biological receptive fields measured in 
the retina, the LGN and the primary visual cortex (V1) of mammals.
1. Introduction

The light distribution that reaches a visual sensor, such as the retina, 
carries information about the environment to a visual observer. The in-

formation necessary to infer properties about the surrounding world 
from this light distribution is, however, not contained in the measure-

ment of image intensity at any single image point in isolation. Instead, 
the relevant information is mediated by the relationships between image 
intensities over local neighbourhoods. An underlying reason for this 
is that the incoming light constitutes an indirect source of information 
that depends on the interaction between geometric and material prop-

erties of objects in the surrounding world and on external illumination 
sources. Another main reason why cues to the environment need to 
be collected over regions in image space as opposed to at single image 
points is that the measurement process by itself requires the accumu-

lation of energy over non-infinitesimal support regions over space and 
time. Such a region in the visual field, for which a neuron responds to 
visual stimuli, is traditionally referred to as a receptive field (Hubel and 
Wiesel [1, 2, 3]) (see Fig. 1).

In this work, we focus on a functional description of receptive fields, 
regarding how a neuron with a purely spatial receptive field responds 
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to visual stimuli over image space, and regarding how a neuron with 
a spatio-temporal receptive field responds to visual stimuli over space 
and time (DeAngelis et al. [4, 5]).

If we consider the theoretical and computational problem of design-

ing a vision system that is going to derive properties of the surrounding 
world from light reflected from it, we may ask what types of image op-

erations should be performed on the image data. Would it be possible 
to perform any type of image operation, or are there classes of image 
operations that are more natural or more effective? Specifically, with 
regard to the notion of receptive fields, we may ask what shapes of re-

ceptive field profiles would be reasonable or desirable. Is it possible to 
express a theory for how receptive fields “ought to” respond to visual 
data?

From a first inspection, such a problem could possibly be regarded 
as intractable, unless the prerequisites of the question could be fur-

ther specified. It does, however, turn out to be possible to address this 
question in a systematic manner, based on a framework known as scale-

space theory (Iijima [6]; Witkin [7]; Koenderink [8]; Koenderink and 
van Doorn [9, 10]; Lindeberg [11, 12, 13, 14]; Florack [15]; Sporring 
et al. [16]; Weickert et al. [17]; ter Haar Romeny [18]), which has been 
developed in the area of computer vision. This field has established a 
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Fig. 1. A traditional definition of the notion of a receptive field is as a region 
in the visual field for which a visual sensor/neuron/operator responds to visual 
stimuli. In this figure, we have illustrated a set of receptive fields over the spa-

tial domain that partially overlap, and where all the receptive fields have the 
same size. More generally, we could consider distributions of receptive fields 
over space or space-time that have varying sizes, shapes and orientations in im-

age space as well as having different directions in joint space-time. Adjacent 
receptive fields could also have substantially larger relative overlap than dis-

played here. In this work, we focus on a functional description of such linear 
receptive fields, concerning how a neuron responds to visual stimuli over im-

age space regarding spatial receptive fields or over joint space-time regarding 
spatio-temporal receptive fields.

paradigm of imposing a set of structural constraints on the first stages 
of visual processing that reflect symmetry properties of the environment. 
From an axiomatic treatment based on such assumptions, it turns out 
to be possible to restrict the class of permissible image operations sub-

stantially.

The subject of this article is to present a comprehensive overview 
of a theory for how structural requirements on the first stages of visual 
processing as formulated based on scale-space theory can be used for 
deriving idealized functional models of visual receptive fields, and to 
develop implications of how these theoretical results can be used when 
modelling receptive fields in the retina, the lateral geniculate nucleus 
and the primary visual cortex. A main message is that we derive ide-

alized functional models for linear receptive fields by necessity, starting 
from a small set of symmetry requirements that reflect properties of the 
visual world that one may naturally require an idealized vision system, 
or a biological organism subject to strong evolutionary pressure, to be 
adapted to, to enable a consistent handling of receptive field responses 
in terms of provable covariance or invariance properties under natural 
image transformations (see Fig. 2).

If the receptive field responses do not obey covariance under the 
basic classes of geometric image transformations, then it will not be 
possible to match the early image representations between e.g. differ-

ent views of the same scene, which implies that the vision system will 
perform systematic errors e.g. when deriving shape cues from a three-

dimensional scene, as illustrated in Fig. 3.

In this respect, the treatment has similarities to the way theories 
are formulated in theoretical physics, where symmetry properties of 
the environments constitute key components underlying the formula-

tion of physical theories of the world. The treatment that will follow 
will be general in the sense that it encompasses spatial, spatio-chromatic 
and spatio-temporal receptive fields within the same unified theory.

Early mathematical necessity results underlying this theory were 
presented in [13], and earlier versions of this theory in a format for a 
computational biology audience have been presented in [19, 20]. More 
recently, a very much improved model for the case of a time-causal 
spatio-temporal domain was presented in [21], where the future cannot 
be accessed and the receptive fields have to be solely based on informa-

tion from the present moment and a compact buffer of the past, written 
for an audience in the area of mathematical imaging.

That material may, however, be less easy to access for vision re-

searchers in biology, medicine or psychophysics. Specifically, the re-

placement of certain assumptions (axioms) in [19, 20] with new as-
2

Fig. 2. Basic factors that influence the formation of images for an eye with a 
two-dimensional retina that observes objects in the three-dimensional world. In 
addition to the position, the orientation and the motion of the object in 3-D, the 
perspective projection onto the retina is affected by the viewing distance, the 
viewing direction and the relative motion of the eye in relation to the object, the 
spatial and the temporal sampling characteristics of the neurons in the retina as 
well the usually unknown external illumination field in relation to the geometry 
of the scene and the observer.

Fig. 3. Illustration of the importance of covariance of the receptive field re-

sponses under natural image transformations. Consider a vision system that 
computes image features from image data based on image operations that are 
formulated over rotationally symmetric support regions in the spatial image 
domain. If such image measurements are performed for two different viewing 
directions relative to the same three-dimensional surface patch, then the back-

projections of the image operations onto the tangent plane surface of the object 
will, in general, correspond to different regions in physical space over which 
corresponding information will be weighted differently. If such image features 
are in turn to be used for deriving three-dimensional shape cues of the object 
from binocular cues, such as surface orientation, then there will be a system-

atic error caused by the mismatch between the backprojections of the receptive 
fields from the image domain onto the world. By requiring the family of recep-

tive fields to be covariant under local affine image deformations, it is possible 
to reduce this amount of mismatch, such that the backprojected receptive fields 
can be made equal, when projected onto the tangent plane of the surface by lo-

cal linearizations of the perspective mapping. In this way, the source to error 
caused by mismatch between the two different receptive fields is eliminated. 
Corresponding effects occur when analyzing spatio-temporal image data based 
on receptive fields that are restricted to being space-time separable only. If an 
object is observed over time from two observations having different relative mo-

tions between the viewing direction and the observer, then the corresponding 
receptive fields cannot be matched unless the family of receptive fields pos-

sesses sufficient covariance properties under local Galilean transformations.

sumptions (axioms) in [21] may require substantial efforts for readers 
not previously familiar with this type of theoretical modelling. This 
has motivated the need for an overview article of the improved the-

ory, intended to be more easy to access, and with a more direct focus 
on biological implications. Thus, this paper presents an improved ax-
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iomatic structure on a compact form more easy to access compared to 
the original publications and updated with respect to the better time-

causal model.

It will be shown that the presented framework leads to predictions 
of receptive field profiles in good agreement with receptive field measure-

ments reported in the literature (Hubel and Wiesel [1, 2, 3]; DeAngelis 
et al. [4, 5]; Conway and Livingstone [22]; Johnson et al. [23]). Specifi-

cally, explicit phenomenological models will be given of neurons in the 
LGN and simple cells in the primary visual cortex, with comparisons to 
related models in terms of Gabor functions (Marčelja [24]; Jones and 
Palmer [25, 26]; Ringach [27, 28]), differences of Gaussians (Rodieck 
[29]) and Gaussian derivatives (Koenderink and van Doorn [9]; Young 
[30]; Young et al. [31, 32]). An important consequence of the theory 
is that the evolution properties of the receptive field profiles can be 
described by diffusion equations. They are therefore suitable for imple-

mentation in a biological architecture, since the computations can be 
expressed in terms of communications between neighbouring compu-

tational units, where either a single computational unit or a group of 
computational units may be interpreted as corresponding to a neuron 
or a group of neurons.1 Such computational models based on diffusion 
equations do also arise in mean field theories that approximate the com-

putations that are performed by populations of neurons (Omurtag et al. 
[33]; Mattia and Guidic [34]; Faugeras et al. [35]).

1.1. Structure of this article

This paper is organized as follows: Section 2 gives an overview of 
and motivations to the assumptions that the theory is based on. A set 
of structural requirements is formulated to capture the effect of natu-

ral image transformations onto the illumination field that reaches the 
retina and to guarantee internal consistency between image represen-

tations that are computed from receptive field responses over multiple 
spatial and temporal scales.

This set of structural requirements partially overlaps with the struc-

tural requirements in [19, 20], while the axiomatic structure has been 
substantially changed regarding a time-causal temporal domain accord-

ing to the more recent theory in [21]. This is the most practically 
relevant case for realistic modelling of biological vision, since there is 
no way to access the future in a real-time situation, but which is not at 
all handled in the earlier spatio-temporal modeling work by e.g. Young 
et al. [31, 32].

Section 3 describes linear receptive families that arise as conse-

quences of these assumptions for the cases of either a purely spatial 
domain or a joint spatio-temporal domain. The issue of how to perform 
relative normalization between receptive field responses over multiple 
spatial and temporal scales is treated, so as to enable comparisons be-

tween receptive field responses at different spatial and temporal scales. 
We also show how the influence of illumination transformations and 
exposure control mechanisms on the receptive field responses can be 
handled, by describing invariance properties obtained by applying the 
derived linear receptive fields over a logarithmically transformed inten-

sity domain.

The consequences of these assumptions for spatial and spatio-

temporal domains, which are described in Sections 3.1 and 3.2, con-

stitute more explicit reformulations of results in [19, 20]. These re-

formulations have additionally been made so that they encompass a 
time-causal spatio-temporal domain based on results in [21]. The ma-

terial in Section 3.3 is a new statement of normalization results, partly 
based a theory for scale selection in [36], while extended from spatially 
isotropic Gaussian kernels to affine Gaussian kernels, and partially also 

1 Specifically, both the spatial and temporal smoothing and the computation 
of spatial and temporal derivatives, that constitute the computational primitives 
in the receptive field models that we will arrive at, can be performed by local 
connections between neighbouring neurons in our time-causal model.
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based on results in [21]. Section 3.4 describes an adaptation of theoret-

ical results in [19] and [37] to this specific domain.

Section 4 shows examples of how spatial, spatio-chromatic and 
spatio-temporal receptive fields in the retina, the LGN and the primary 
visual cortex can be well modelled by the derived receptive field fami-

lies.

Several of these figures are similar to figures in [19, 20] and in 
[21]. These results have, however, also been cleaned by replacing the 
previous time-causal models in [19, 20] with the much better time-

causal theory in [21], and updating the distribution parameter 𝑐 from 
the previous default value 𝑐 =

√
2 to the value 𝑐 = 2 found more suit-

able for computer vision algorithms that operate on these time-causal 
spatio-temporal receptive fields with real-time requirements of shorter 
temporal delays [38].

Section 5 gives relations to previous work, including conceptual and 
theoretical comparisons to previous use of Gabor models of receptive 
fields, approaches for learning receptive fields from image data and 
previous applications of a logarithmic transformation of the image in-

tensities. Finally, Section 6 summarizes some of the main results.

2. Assumptions underlying the theory: structural requirements

In the following, we shall describe a set of structural requirements 
that can be stated concerning: (i) spatial geometry, (ii) spatio-temporal 
geometry, (iii) the image measurement process with its close relation-

ship to the notion of scale, (iv) internal representations of image data 
that are to be computed by a general purpose vision system and (v) the 
parameterization of image intensity with regard to the influence of illu-

mination variations.

For modelling the image formation process, we will at any point in 
the retina approximate the spherical retina by a perspective projection 
onto the tangent plane of the retinal surface at that image point, be-

low represented as the image plane. Additionally, we will approximate 
the possibly non-linear geometric transformations regarding spatial and 
spatio-temporal geometry by local linearizations at every image point, 
and corresponding to the derivatives of the possibly non-linear trans-

formations. In these ways, the theoretical analysis can be substantially 
simplified, while still enabling accurate modelling of essential func-

tional properties of receptive fields in relation to the effects of natural 
image transformations as arising from interactions with the environ-

ment.

By necessity, some parts of the presentation in this section will be 
somewhat technical, if we want to clearly mathematically define the 
assumptions that the theory rests upon. For the hasty reader, who may 
be more interested in the implications of the theory, we have made a 
schematic summary of most of the main assumptions in Fig. 4. After 
getting an overview of these assumptions from this figure, the hasty 
reader may then proceed to Section 3, where it is shown how these 
assumptions lead to idealized families of visual receptive fields, then 
backtracking to this section again if necessary.

2.1. Static image data over a spatial domain

In the following, we will describe a theoretical model for the com-

putational function of applying visual receptive fields to local image 
patterns.

For time-independent data 𝑓 over a two-dimensional spatial im-

age domain, we would like to define a family of image representations 
𝐿(⋅; 𝑠) over a possibly multi-dimensional scale parameter 𝑠, where the 
internal image representations 𝐿(⋅; 𝑠) are computed by applying some 
parameterized family of image operators 𝑠 to the image data 𝑓 :

𝐿(⋅; 𝑠) = 𝑠 𝑓 (⋅). (1)

Specifically, we will assume that the family of image operators 𝑠 should 
satisfy:
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Fig. 4. Schematic illustration of main assumptions underlying the proposed normative theory for visual receptive fields, regarding (i) transformation properties 
of the environment and (ii) internal consistency requirements to guarantee internally consistent image representations over multiple spatial and temporal scales. 
(a) Translational covariance means that visual representations of objects should be processed in a similar manner over the entire visual field. (b) Scale covariance

means that scaling transformations, as occur in the visual domain because of objects of different size and objects at different distances to the observer, should be 
processed in a similar manner such that the receptive field responses can be matched. (c) Affine covariance is a generalization of scale covariance to non-uniform 
scaling transformations, as occur when surface structures are foreshortened for surfaces with a non-frontal slant angle relative to the tangent plane of the surface. 
(d) Galilean covariance means that if we observe objects or events that move relative to a fixed viewing direction, then these visual patterns should be processed in 
a conceptually similar way as if we observe the same patterns with the gaze direction following the same objects or events, and in such a way that the two types of 
spatio-temporal image representations can be matched. (e) The assumption of a semi-group structure over spatial scales implies that with a spatial smoothing operation 
in terms of convolution operations, which follows from a combination of the assumptions of translational covariance and linearity, the composition of two spatial 
smoothing operations with scale parameters 𝑠1 and 𝑠2 should be a spatial smoothing operation of a similar form and with added values of scale parameters 𝑠1 + 𝑠2 . 
(f) The assumption of a transitivity structure over temporal scales implies that the composition of two temporal smoothing operations from temporal scales 𝜏1 to 𝜏2 and 
from temporal scales 𝜏2 to 𝜏3 should be a similar type of temporal smoothing operation from temporal scales 𝜏1 to 𝜏3 (while without imposing an additive structure 
of the temporal scale parameters). (g) The assumption of non-enhancement of local extrema means that the spatial smoothing operation that determines the shape of 
the spatial receptive fields should obey the property that the smoothed intensity value 𝐿 at a spatial maximum must not increase with increasing scale and that the 
intensity value at a spatial minimum must not decrease with increasing scale. (h) The assumption of non-creation of local extrema implies that the temporal smoothing 
operation that determines the temporal shape of the spatio-temporal receptive fields must not increase the number of local extrema in a purely temporal signal.
a) Linearity. For the earliest processing stages to have as low risk as 
possible of making irreversible decisions that may affect later process-

ing stages, we assume that the first layers of receptive fields should be 
linear

𝑠(𝑎1𝑓1 + 𝑎2𝑓2) = 𝑎1𝑠𝑓1 + 𝑏1𝑠𝑓2. (2)

Specifically, linearity implies that any particular scale-space properties 
(to be detailed below) that we derive for the zero-order image repre-

sentation 𝐿 will transfer to any spatial derivative 𝐿
𝑥

𝛼1
1 𝑥

𝛼2
2

of 𝐿, so that

𝐿
𝑥

𝛼1 𝑥
𝛼2 (⋅; 𝑠) = 𝜕

𝑥
𝛼1𝑥

𝛼2 (𝑠 𝑓 (⋅)) = 𝑠(𝜕𝑥
𝛼1𝑥

𝛼2 𝑓 (⋅)) (3)

1 2 1 2 1 2

4

where 𝛼1 and 𝛼2 are the derivative orders for the two spatial dimensions 
𝑥1 and 𝑥2.

This means that different types of image structures, irrespective of 
what order of spatial differentiation they respond mostly to, will be 
treated in a structurally similar manner. In this way, we reduce the 
risk that the first layers of visual receptive fields could make early deci-

sions dedicated to certain types of image structures that later processing 
stages could then not later recover from.

In this sense, the assumption of linearity reflects the requirement of 
a lack of bias to particular types of image structures, with the underlying 
aim that the processing performed in the first processing stages should 
be generic, to be used as input for a large variety of visual tasks. By 
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the assumption of linearity, local image structures that are captured by 
e.g. first- or second-order derivatives will be treated in a structurally 
similar manner, which would not necessarily be the case if the first 
local neighbourhood processing stage of the first layer of receptive fields 
would instead be allowed to be genuinely non-linear.2

This genericity property is closely related to the basic property of 
the mammalian vision system, that the computations performed in the 
retina3, the LGN4 and the primary visual cortex provide general purpose 
output that is used as input to higher-level visual areas.

b) Translational covariance. To ensure that the visual interpretation 
of an object should be the same irrespective of its position in the image 
plane, we assume that the first processing stages should be covariant un-

der translations, so that if an object is moved a distance Δ𝑥 = (Δ𝑥1, Δ𝑥2)
in the image plane, the receptive field response should remain on a 
similar form, while shifted with the same distance. Formally, this re-

quirement can be stated that the family of image operators 𝑠 should 
commute with the shift operator defined by 𝑆Δ𝑥(𝑓 )(𝑥) = 𝑓 (𝑥 −Δ𝑥):

𝑠

(
𝑆Δ𝑥𝑓

)
= 𝑆Δ𝑥

(
𝑠𝑓

)
. (4)

In other words, if we shift the input by a translation and then apply 
the receptive field operator 𝑠, the result should be similar as applying 
the receptive field operator to the original input and then shifting the 
result.

c) Convolution structure. Together, the assumptions about linearity 
and translational covariance imply that 𝑠 will correspond to a con-

volution operator [54]. This implies that the representation 𝐿 can be 
computed from the image data 𝑓 by convolution with some parameter-

ized family of convolution kernels 𝑇 (⋅; 𝑠):

2 While it is known that many receptive fields may have both linear and non-

linear components, we do here, as a conceptual simplification, focus on the 
regime where receptive fields in the LGN and the primary visual cortex can 
be well approximated by a linear model. Note, however, that this assumption 
about linearity of the first layers of visual receptive fields does not exclude the 
possibility of defining later stage non-linear receptive fields that operate on the 
output from the linear receptive fields, such as the computations performed by 
complex cells in the primary visual cortex [1, 2, 39, 40, 41, 42, 43, 44, 45, 46, 
47, 48, 49, 50, 51]. Specifically, in [51, Section 5] a functional energy model 
of complex cells is proposed, based on simple cell responses modelled by affine 
Gaussian derivatives as described in this work. Neither does the assumption of 
linearity exclude the possibility of transforming the raw image intensities by 
a pointwise non-linear mapping function prior to the application of linear re-

ceptive fields over local neighbourhoods. In Section 3.4, it will be specifically 
shown that a pointwise logarithmic transformation of the image intensities prior 
to the application of linear receptive fields has theoretical advantages of en-

abling invariance properties of derivative-based receptive field responses under 
local multiplicative illumination transformations.

3 Concerning the use of a linear model for the receptive fields in the retina 
used in this paper, it should be noted that there are also more sophisticated non-

linear computations known to be performed in the retina [52]. Light adaptation 
and gain control in the retina, we model by an initial logarithmic transforma-

tion prior to the receptive fields, which has the desirable property of leading 
to invariant receptive field responses under multiplicative illumination trans-

formations, as will be described in Section 3.4. Direction sensitive cells that 
respond to different directions of motion, to handle objects that move rapidly 
over the visual field and to decrease temporal delays in a time-causal context by 
the ability of performing motion extrapolation to perform temporal predictions, 
we capture some of the effects of by studying the influence of Galilean trans-

formations, Probably, the function of such non-linear mechanisms could also be 
constrained from structural properties of the world, in a similar way as we here 
constrain the shapes of visual receptive fields from theoretical assumptions. The 
use of a pure linear model in this treatment, should in this context be seen as a 
conceptual simplification and a way to simplify the theoretical analysis.

4 Concerning the use of a pure feed-forward model of the receptive fields 
used in this paper, it should be noted that there is a also a large number of 
top-down connections to the LGN from higher visual areas [53], which we do 
not explicitly model in this treatment.
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𝐿(⋅; 𝑠) = 𝑇 (⋅; 𝑠) ∗ 𝑓 (⋅). (5)

d) Semi-group structure over spatial scales. To ensure that the trans-

formation from any finer scale 𝑠1 to any coarser scale 𝑠1 + 𝑠2 should 
be of the same form for any 𝑠2 > 0 (a requirement of algebraic closed-

ness), we assume that the result of convolving two kernels 𝑇 (⋅; 𝑠1) and 
𝑇 (⋅; 𝑠2) from the family with each other should be a kernel within the 
same family of kernels and with added parameter values 𝑇 (⋅; 𝑠1 + 𝑠2):

𝑇 (⋅; 𝑠1) ∗ 𝑇 (⋅; 𝑠2) = 𝑇 (⋅; 𝑠1 + 𝑠2). (6)

This assumption specifically implies that the representation 𝐿(⋅; 𝑠2) at 
a coarse scale 𝑠2 can be computed from the representation 𝐿(⋅; 𝑠1) at 
a finer scale 𝑠1 < 𝑠2 by a convolution operation of the same form (5) 
as the transformation from the original image data 𝑓 , while using the 
difference in scale levels 𝑠2 − 𝑠1 as the parameter

𝐿(⋅; 𝑠2) = 𝑇 (⋅; 𝑠2 − 𝑠1) ∗ 𝐿(⋅; 𝑠1). (7)

This property does in turn imply that if we are able to derive specific 
properties of the family of transformations 𝑠 (to be detailed below), 
then these properties will not only hold for the transformation from the 
original image data 𝑓 to the representations 𝐿(⋅; 𝑠) at coarser scales, but 
also between any pair of scale levels 𝑠2 > 𝑠1, with the aim that image 
representations at coarser scales should be regarded as simplifications 
of corresponding image representations at finer scales.

In terms of mathematical concepts, this form of algebraic structure 
is referred to as a semi-group structure over spatial scales

𝑠1
𝑠2

= 𝑠1+𝑠2
. (8)

e) Scale covariance under spatial scaling transformations. If a visual ob-

server looks at the same object from different distances, we would like 
the internal scale-space representations derived from the receptive field 
responses to be sufficiently similar, so that the object can be recognized 
as the same object, while appearing with a different size on the retina. 
Specifically, it is thereby natural to require that the receptive field re-

sponses should be of a similar form, while resized in the image plane.

This corresponds to a requirement of spatial scale covariance under 
uniform scaling transformations of the spatial domain 𝑥′ = 𝑆𝑠 𝑥:

𝐿′(𝑥′; 𝑠′) = 𝐿(𝑥; 𝑠) ⇔ 𝑆𝑠(𝑠) 𝑠 𝑓 = 𝑠 𝑠 𝑓 (9)

to hold for some transformation 𝑠′ = 𝑆𝑠(𝑠) of the scale parameter 𝑠.

f) Affine covariance under spatial affine transformations. If a visual ob-

server looks at the same local surface patch from two different viewing 
directions, then the local surface patch may be deformed in different 
ways onto the different views and with different amounts of perspective 
foreshortening from the different viewing directions. If we approxi-

mate the local deformations caused by the perspective mapping by local 
affine transformations, then the transformation between the two differ-

ently deformed views of the local surface patch can in turn be described 
by a composed local affine transformation 𝑥′ = 𝐴 𝑥.

If we are to use receptive field responses as a basis for higher level 
visual operations, it is natural to require that the receptive field re-

sponse of an affine deformed image patch should remain on a similar 
form, while being reshaped by a corresponding affine transformation.

This corresponds to a requirement of affine covariance under general 
affine transformations 𝑥′ = 𝐴 𝑥:

𝐿′(𝑥′; 𝑠′) = 𝐿(𝑥; 𝑠) ⇔ 𝐴(𝑠)𝑓 =𝑠 𝑓 (10)

to hold for some transformation 𝑠′ = 𝐴(𝑠) of the scale parameter.

g) Non-creation of new structure with increasing scale. If we apply the 
family of transformations 𝑠 for computing representations at coarser 
scales from representations at finer scales according to (1) and (7), 
there could be a potential risk that the family of transformations could 



T. Lindeberg Heliyon 7 (2021) e05897
Fig. 5. Illustration of the notion of non-enhancement of local extrema, which is 
a way to restrict the class of possible image operations by preventing new struc-

tures from being created from finer to coarser levels of scales. Non-enhancement 
of local extrema means that the value at a local maximum must not increase and 
that the value at a local minimum must not decrease with increasing scale 𝑠.

amplify spurious structures in the input to produce macroscopic am-

plifications in the representations at coarser scales that do not directly 
correspond to simplifications of corresponding structures in the original 
image data. To prevent such undesirable phenomena from occurring, 
we require that local spurious structures must not be amplified and ex-

press this condition in terms of the evolution properties over scales at 
local maxima and minima in the image intensities as smoothed by the 
family of convolution kernels 𝑇 (⋅; 𝑠): If a point 𝑥0 for some scale 𝑠0
is a local maximum point in the image plane, then the value at this 
maximum point 𝐿(𝑥0; 𝑠0) must not increase to coarser scales 𝑠 > 𝑠0. 
Similarly, if a point is a local minimum point in the image plane, then 
the value at this minimum point 𝐿(𝑥0; 𝑠0) must not decrease to coarser 
scales 𝑠 > 𝑠0.

Formally, this requirement that new structures should not be created 
from finer to coarser scales can be formalized into the requirement of 
non-enhancement of local extrema, which implies that if at some scale 𝑠0
a point 𝑥0 is a local maximum (minimum) for the mapping from 𝑥 to 
𝐿(𝑥; 𝑠0), then (see Fig. 5):

• (𝜕𝑠𝐿)(𝑥; 𝑠) ≤ 0 at any spatial maximum,

• (𝜕𝑠𝐿)(𝑥; 𝑠) ≥ 0 at any spatial minimum.

This condition implies a strong condition on the class of possible 
smoothing kernels 𝑇 (⋅; 𝑠).

2.2. Time-dependent image data over joint space-time

To model the computational function of spatio-temporal receptive 
fields in time-dependent image patterns, we do for a time-dependent 
spatio-temporal domain first inherit the structural requirements regard-

ing a spatial domain and complement the spatial scale parameter 𝑠 by 
a temporal scale parameter 𝜏 . In addition, we assume:

a) Scale covariance under temporal scaling transformations. If a similar 
type of spatio-temporal event 𝑓 (𝑥, 𝑡) occurs at different speeds, faster or 
slower, it is natural to require that the receptive field responses should 
be of a similar form, while occurring correspondingly faster or slower.

This corresponds to a requirement of temporal scale covariance un-

der a temporal scaling transformation of the temporal domain 𝑡′ = 𝑆𝜏𝑡:

𝐿′(𝑥′, 𝑡′; 𝑠′, 𝜏′) = 𝐿(𝑥, 𝑡; 𝑠, 𝜏) ⇔ 𝑆𝜏 (𝑠,𝜏) 𝜏 𝑓 = 𝜏 𝑠,𝜏 𝑓 (11)

to hold for some transformation (𝑠′, 𝜏′) = 𝑆𝜏 (𝑠, 𝜏) of the spatio-temporal 
scale parameters (𝑠, 𝜏).

b) Galilean covariance under Galilean transformations. If an observer 
looks at the same object in the world for different relative motions 
𝑣 = (𝑣1, 𝑣2) between the object and the observer, it is natural to require 
that the internal scale-space representations of the object should be suf-

ficiently similar, so as to enable a coherent perception of the object 
under different relative motions relative to the observer. Specifically, 
we may require that the receptive field responses under relative mo-

tions should remain on the same form, while being transformed in a 
corresponding way as the relative motion pattern.
6

If we at any point in space-time locally linearize the possibly non-

linear motion pattern 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) by a local Galilean transforma-

tion 𝑥′ = 𝑥 + 𝑣 𝑡 over space-time

𝑓 ′ = 𝑣 𝑓 ⇔ 𝑓 ′(𝑥′, 𝑡′) = 𝑓 (𝑥, 𝑡) with 𝑥′ = 𝑥+ 𝑣 𝑡, (12)

then the requirement of guaranteeing a consistent visual interpretation 
under different relative motions between the object and the observer 
can be stated as a requirement of Galilean covariance:

𝐿′(𝑥′, 𝑡′; 𝑠′, 𝜏′) = 𝐿(𝑥, 𝑡; 𝑠, 𝜏) ⇔ 𝐺𝑣(𝑠,𝜏) 𝑣 𝑓 = 𝑣 𝑠,𝜏 𝑓 (13)

to hold for some transformation 𝐺𝑣(𝑠, 𝜏) of the spatio-temporal scale 
parameters (𝑠, 𝜏).

c) Semi-group structure over temporal scales in the case of a non-causal 
temporal domain. To ensure that the image representations between 
different spatio-temporal scale levels (𝑠1, 𝜏1) and (𝑠2, 𝜏2) should be suf-

ficiently well-behaved internally, we will make use of different types 
of assumptions depending on whether the temporal domain is regarded 
as time-causal or non-causal. Over a time-causal temporal domain, the 
future cannot be accessed, which is the basic condition for real-time vi-

sual perception by a biological organism. Over a non-causal temporal 
domain, the temporal kernels may extend to the relative future in re-

lation to any pre-recorded time moment, which is sometimes used as a 
conceptual simplification when analysing pre-recorded time-dependent 
data, although not at all realistic in a real-world setting.

For the case of a non-causal temporal domain, we make use of a 
similar type of semi-group property (8) as formulated over a purely 
spatial domain, while extending the semi-group property over both the 
spatial scale parameter 𝑠 and the temporal scale parameter 𝜏 :

𝑠1 ,𝜏1
𝑠2 ,𝜏2

= 𝑠1+𝑠2 ,𝜏1+𝜏2
. (14)

In analogy with the case of a purely spatial domain, this requirement 
guarantees that the transformation from any finer spatio-temporal scale 
level (𝑠1, 𝜏1) to any coarser spatio-temporal scale level (𝑠2, 𝜏2) ≥ (𝑠1, 𝜏1)
will always be of the same form (algebraic closedness)

𝐿(⋅, ⋅; 𝑠2, 𝜏2) = 𝑠2−𝑠1 ,𝜏2−𝜏1
𝐿(⋅, ⋅; 𝑠1, 𝜏1). (15)

Specifically, this assumption implies that if we are able to establish de-

sirable properties of the family of transformations 𝑠,𝜏 (to be detailed 
below), then these relations hold between any pair of spatio-temporal 
scale levels (𝑠1, 𝜏1) and (𝑠2, 𝜏2) with (𝑠2, 𝜏2) ≥ (𝑠1, 𝜏1).

d) Cascade structure over temporal scales in the case of a time-causal 
temporal domain. Since it can be shown that the assumption of a semi-

group structure over temporal scales leads to undesirable temporal 
dynamics in terms of e.g. longer temporal delays for a time-causal 
temporal domain [55, Appendix A], we do for a time-causal tempo-

ral domain instead assume a weaker cascade smoothing property over 
temporal scales for the temporal smoothing kernel over temporal scales

𝐿(⋅; 𝜏2) = ℎ(⋅; 𝜏1 ↦ 𝜏2) ∗ 𝐿(⋅; 𝜏1), (16)

where the temporal kernels ℎ(𝑡; 𝜏) should for any triplets of temporal 
scale values and temporal delays 𝜏1, 𝜏2 and 𝜏3 obey the transitive prop-

erty

ℎ(⋅; 𝜏1 ↦ 𝜏2) ∗ ℎ(⋅; 𝜏2 ↦ 𝜏3) = ℎ(⋅; 𝜏1 ↦ 𝜏3). (17)

This weaker assumption of a cascade smoothing property (16) still en-

sures that an image representation at a coarser temporal scale 𝜏2 should 
with a corresponding requirement of an accompanying simplifying con-

dition on the family of kernels ℎ (to be detailed below) constitute a 
simplification of the representation at a finer temporal scale 𝜏1, while 
not implying as hard constraints as a semi-group structure.

e) Non-enhancement of local space-time extrema in the case of a non-

causal temporal domain. In the case of a non-causal temporal domain, 
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we again build on the notion of non-enhancement of local extrema 
to guarantee that the image representations at coarser spatio-temporal 
scales should constitute true simplifications of corresponding represen-

tations at finer scales. Over a spatio-temporal domain, we do, however, 
state the requirement in terms of local extrema over joint space-time 
instead of over local extrema over image space. If a point (𝑥0, 𝑡0) for 
some scale (𝑠0, 𝜏0) is a local maximum point over space-time, then 
the value at this maximum point 𝐿(𝑥0, 𝑡0; 𝑠0, 𝜏0) must not increase to 
coarser spatio-temporal scales (𝑠, 𝜏) ≥ (𝑠0, 𝜏0). Similarly, if a point is a 
local minimum point over space-time, then the value at this minimum 
point 𝐿(𝑥0, 𝑡0; 𝑠0, 𝜏0) must not decrease to coarser spatio-temporal scales 
(𝑠, 𝜏) ≥ (𝑠0, 𝜏0).

Formally, this requirement of non-creation of new structure from 
finer to coarser spatio-temporal scales can be stated as follows: If at 
some scale (𝑠0, 𝜏0) a point (𝑥0, 𝑡0) is a local maximum (minimum) for the 
mapping from (𝑥, 𝑡) to 𝐿(𝑥, 𝑡; 𝑠0, 𝜏0), then

• 𝛼 (𝜕𝑠𝐿)(𝑥, 𝑡; 𝑠, 𝜏) + 𝛽 (𝜕𝜏𝐿)(𝑥, 𝑡; 𝑠, 𝜏) ≤ 0 at any spatio-temporal maxi-

mum

• 𝛼 (𝜕𝑠𝐿)(𝑥, 𝑡; 𝑠, 𝜏) + 𝛽 (𝜕𝜏𝐿)(𝑥, 𝑡; 𝑠, 𝜏) ≥ 0 at any spatio-temporal mini-

mum

should hold in any positive spatio-temporal direction defined from any 
non-negative linear combinations of 𝛼 and 𝛽. This condition implies a 
strong condition on the class of possible smoothing kernels 𝑇 (⋅, ⋅; 𝑠, 𝜏).

f) Non-creation of new local extrema or zero-crossings for a purely tem-

poral signal in the case of a time-causal temporal domain. In the case of 
a time-causal temporal domain, we do instead state a requirement for 
purely temporal signals, based on the cascade smoothing property (16). 
We require that for a purely temporal signal 𝑓 (𝑡), the transformation 
from a finer temporal scale 𝜏1 to a coarser temporal scale 𝜏2 must not 
increase the number of local extrema or the number of zero-crossings 
in the signal.

3. Idealized receptive field families

3.1. Spatial image domain

Based on the above assumptions in Section 2.1, it can be shown [13] 
that when complemented with certain regularity assumptions in terms 
of Sobolev norms, they imply5 that a spatial scale-space representation 
𝐿 as determined by these assumptions must satisfy a diffusion equation 
of the form6

5 The formal derivation of this result concerning spatial receptive fields is 
based on two main conceptual steps: In a first stage, we establish that from 
the assumptions of linearity and translational covariance in combination with a 
semi-group structure over a continuous scale parameter and certain regularity 
assumptions in terms of Sobolev norms, the internal scale-space representations 
according to (1) must obey an evolution equation over scale of the form 𝜕𝑠𝐿 =
𝐿 for some linear and translation covariant operator , see [13, Lemma 2]. In 
a second stage, we show that by adding the requirement of non-enhancement of 
local extrema, the operator  may only correspond to second- and first-order 
derivatives at the central point, corresponding to a diffusion equation of the 
form (18), see [13, Theorem 5].

6 For the theoretical analysis in this treatment, we consider the affine diffu-

sion equation as defined over the entire infinite image plane, 𝑥 = (𝑥1, 𝑥2)𝑇 ∈ℝ2 , 
and normally with initial equation 𝐿(𝑥1, 𝑥2; 𝑠) = 𝑓 (𝑥1, 𝑥2) for 𝑠 = 0. When using 
this equation to model the effect of visual operations for simulation experiments 
on finite images, we solve this equation with adiabatic boundary conditions, 
corresponding to no heat flow across the image boundaries, and equivalent to 
reflections of the image data at the image boundaries, when implementing the 
spatial smoothing operation in terms of explicit Gaussian filtering. This turns 
out to be a good approximation for moderate fields of view. An alternative ap-

proach for handling large fields of view is by reformulating this equation on a 
sphere, corresponding to computations on the viewsphere.
7

𝜕𝑠𝐿 = 1
2
∇𝑇 (Σ∇𝐿) − 𝛿𝑇 ∇𝐿 (18)

for some symmetric positive definite covariance matrix Σ =
(

Σ11 Σ12
Σ12 Σ22

)
and some translation vector 𝛿 = (𝛿1, 𝛿2)𝑇 , where ∇ denotes the (vertical) 
spatial gradient operator and 𝑇 its transpose such that ∇𝑇 = (𝜕𝑥1

, 𝜕𝑥2
).

Expanding the matrix and vector notation to elements, this equation 
can also be written

𝜕𝑠𝐿 =1
2
(Σ11𝐿𝑥1𝑥1

+ 2Σ12𝐿𝑥1𝑥2
+ Σ22𝐿𝑥2𝑥2

) − 𝛿1𝐿𝑥1
− 𝛿2𝐿𝑥2

, (19)

where the subscripts with respect to 𝑠, 𝑥1 and 𝑥2 denote derivatives 
with respect to these variables.

This expression is physically analogous to a diffusion equation that 
describes how a heat distribution corresponding to the image intensities 
𝐿 evolves as function of time in an inhomogeneous medium with spa-

tial scale 𝑠 here taking the role of time, with the intensities of the input 
image 𝑓 as initial condition 𝐿(𝑥1, 𝑥2; 𝑠) = 𝑓 (𝑥1, 𝑥2) for 𝑠 = 0. The first 
term, that depends upon Σ, describes how the image intensity 𝐿 dif-

fuses as the scale parameter 𝑠 increases, as function of the anisotropic 
heat conductivity Σ, which determines how the image intensities may 
diffuse differently in different spatial directions. The second term, that 
depends upon 𝛿, describes how the image intensities are translated to 
other spatial positions as function of a spatial drift velocity 𝛿.

The first effect results in a smoothing effect that may be different in 
different spatial directions as determined by the anisotropic covariance 
matrix Σ. With regard to spatial image transformations, variations of 
the scale parameter 𝑠 lead to solutions that obey the assumption of 
scale covariance, to handle objects of different sizes in the world and 
objects at different distances to the observer.

More general variations of the shape of the covariance matrix Σ do 
additionally allow for affine covariance, to enable matching of objects 
that are viewed from different viewing directions relative to the local 
tangent plane of a smooth surface.

The second translation effect, as determined by the translation vec-

tor 𝛿, is relevant for handling image disparities between binocular eyes 
or, for time-dependent images, image structures that move as function 
of time.

In terms of convolution kernels, the solution of (18) corresponds to 
convolution with Gaussian kernels of the form

𝑔(𝑥; Σ𝑠, 𝛿𝑠) =
1

2𝜋
√
det Σ𝑠

𝑒−(𝑥−𝛿𝑠)𝑇 Σ−1𝑠 (𝑥−𝛿𝑠)∕2, (20)

which for a given Σ𝑠 = 𝑠 Σ and a given 𝛿𝑠 = 𝑠 𝛿 satisfy (18) (see Ap-

pendix A in the supplement for an explicit proof of the property that 
the family of internal spatial scale-space representations 𝐿 generated by 
convolution with kernels of the form (20) satisfies the diffusion equa-

tion (18)).

If we additionally require these kernels to be mirror symmetric 
through the origin, then we obtain affine Gaussian kernels

𝑔(𝑥; Σ) = 1
2𝜋

√
det Σ

𝑒−𝑥𝑇 Σ−1𝑥∕2. (21)

Their spatial derivatives constitute a canonical family for expressing 
receptive fields over a spatial domain that can be summarized and repa-

rameterized on the form

𝑇 (𝑥; 𝑠,Σ) = 𝑔(𝑥; 𝑠Σ) = 1
2𝜋𝑠

√
det Σ

𝑒−𝑥𝑇 Σ−1𝑥∕2𝑠, (22)

where we have separated the parameters into two components; a scalar 
scale parameter 𝑠 that represents the size of the Gaussian, i.e., how large 
it is in the image domain, and a matrix Σ that determines its shape, i.e., 
how eccentric it is (the ratio between the sizes in the perpendicular 
principal directions for an anisotropic Gaussian) and the orientation of 
the main principal axis in the image domain.
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Fig. 6. Illustrations of spatial receptive fields formed by the 2-D rotationally symmetric Gaussian kernel (for 𝑠 = 16) and its partial derivatives up to order two. The 
resulting receptive fields are closed under translations, rotations and scaling transformations. This means that if an image is transformed in these ways, then it will 
always be possible to find some possibly other receptive field such that the receptive field responses of the original image and the transformed image can be perfectly 
matched.
The spatial scale-space representations that are obtained by convo-

lution with kernels of this form obey (i) spatial scale covariance as 
described in Appendix C in the supplement and illustrated in Fig. 21 
in the supplement and (ii) spatial affine covariance as described in Ap-

pendix D in the supplement and illustrated in Fig. 22 in the supplement.

Incorporating the fact that spatial derivatives of the kernels (22) are 
also compatible with the assumptions underlying this theory, this does 
specifically for the case of a two-dimensional spatial image domain lead 
to spatial receptive fields that can be compactly summarized on the 
form

𝑇𝜑𝑚1⊥𝜑𝑚2 (𝑥1, 𝑥2; 𝑠,Σ) = 𝜕
𝑚1
𝜑 𝜕

𝑚2
⊥𝜑

(
𝑔(𝑥1, 𝑥2; 𝑠Σ)

)
, (23)

where

• 𝑥 = (𝑥1, 𝑥2) denotes the spatial coordinates,

• 𝑠 denotes the spatial scale7 in units of 𝑠 = 𝜎2, where 𝜎 has di-

mension [length] and corresponds to the standard deviation of the 
Gaussian kernel for an isotropic covariance matrix with Σ = 𝐼 =(
1 0
0 1

)
,

7 Here, we parameterize the spatial scale parameter in units of 𝑠, where 𝑠 af-

ter the mathematical derivations turns out to have dimension [length]2 . With 
this parameterization, the scale values become additive under the convolution 
operation (5), because of the semi-group property in Equation (6). The scale 
values in units of 𝑠 also become additive under evolution according to the dif-

fusion equation (18). If two Gaussian convolutions with scale parameters 𝑠1 and 
𝑠2 are performed after each other, the composed smoothing effect is 𝑠3 = 𝑠1 + 𝑠2 . 
If the scale parameters would instead have been measured in units of 𝜎 =

√
𝑠, 

with 𝜎 having dimension [length], then the corresponding composed smoothing 
effect would instead be written 𝜎3 =

√
𝜎2 + 𝜎2 .
1 2

8

• Σ denotes a spatial covariance matrix determining the shape of 
a spatial affine Gaussian kernel (this covariance matrix is as-

sumed to be symmetric positive definite such that 𝑥𝑇Σ 𝑥 = Σ11 𝑥2
1 +

2Σ12 𝑥1 𝑥2 + Σ22 𝑥2
2 > 0 for any 𝑥 = (𝑥1, 𝑥2)𝑇 ≠ 0),

• 𝜕𝜑 = cos𝜑 𝜕𝑥1
+ sin𝜑 𝜕𝑥2

and 𝜕⊥𝜑 = sin𝜑 𝜕𝑥1
− cos𝜑 𝜕𝑥2

denote spa-

tial directional derivative operators in two orthogonal directions 𝜑
and ⊥𝜑 aligned with the eigenvectors of the covariance matrix Σ, 
where 𝜕𝑥1

and 𝜕𝑥2
denote differentiation with respect the spatial 

coordinates 𝑥1 and 𝑥2,

• 𝑚1 and 𝑚2 denote orders of spatial differentiation in the spatial 
direction 𝜑 and its orthogonal direction ⊥𝜑, respectively,

• 𝑔(𝑥; 𝑠 Σ) = 1
2𝜋𝑠

√
det Σ

𝑒−𝑥𝑇 Σ−1𝑥∕2𝑠 is an affine Gaussian kernel with its 
size determined by the spatial scale parameter 𝑠 and its shape by 
the spatial covariance matrix Σ.

Fig. 6 and Fig. 7 show examples of spatial receptive fields from this 
family up to second order of spatial differentiation. Fig. 6 shows par-

tial derivatives of the Gaussian kernel for the specific case when the 
covariance matrix Σ is restricted to a unit matrix and the Gaussian ker-

nel thereby becomes rotationally symmetric. The resulting family of 
receptive fields is closed under scaling transformations over the spatial 
domain, implying that if an object is seen from different distances to 
the observer, then it will always be possible to find a transformation of 
the scale parameter 𝑠 between the two image domains such that the re-

ceptive field responses computed from the two image domains can be 
matched. Fig. 7 shows examples of affine Gaussian receptive fields for 
covariance matrices Σ that do not correspond to rescaled copies of the 
unit matrix. The resulting full family of affine Gaussian derivative ker-

nels is closed under general affine transformations, implying that for 
two different perspective views of a local smooth surface patch, it will 
always be possible to find a transformation of the covariance matrices 
Σ between the two domains so that the receptive field responses can 
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Fig. 7. Illustrations of spatial receptive fields formed by affine Gaussian kernels and directional derivatives of these up to order two of, here visualized for three dif-

ferent covariance matrices Σ1 , Σ2 and Σ3 that correspond to the major eigendirections 𝜃1 = 𝜋∕6, 𝜃2 = 𝜋∕3 and 𝜃3 = 2𝜋∕3 of the covariance matrix and with directional 
derivatives computed in the corresponding orthogonal directions 𝜑1 , 𝜑2 and 𝜑3 . The resulting family of receptive fields is closed under general affine transforma-

tions of the spatial domain, including translations, rotations, scaling transformations and perspective foreshortening. In this figure, however, only variabilities in the 
orientation of the filter are illustrated, thereby disregarding variabilities in both the size and the degree of elongation. This closedness property implies that recep-

tive field responses computed from different views of a smooth local surface patch can be perfectly matched, if the transformation between the two views can be 
modelled as a local affine transformation. (Scale parameters 𝑠1 = 16 and 𝑠2 = 4 in the orthogonal eigendirections of the spatial covariance matrices Σ𝑖 .)

Fig. 8. Illustration of the variability of zero-order affine Gaussian receptive 
fields for a uniform distribution on a hemisphere. In the most idealized version 
of the theory, one can think of all affine receptive fields with their directional 
derivatives in preferred directions aligned to the eigendirections of the covari-

ance matrix Σ as being present at any position in the image domain. This 
variability makes it possible to perfectly match the first-order variability of 
receptive field responses under variations of the slant and tilt directions of a 
smooth surface patch.

be matched, if the transformation between the two image domains is 
approximated by a local affine transformation.

In the most idealized version of the theory, one should think of re-

ceptive fields for all combinations of filter parameters as being present 
at every image point, as illustrated in Fig. 8 concerning affine Gaussian 
receptive fields over different orientations in image space and different 
eccentricities.

3.2. Spatio-temporal image domain

Over a non-causal spatio-temporal domain, corresponding argu-

ments as in Section 3.1 lead to a similar form of diffusion equation 
as in Equation (18), while expressed over the joint space-time domain 
𝑝 = (𝑥, 𝑡). After splitting the composed affine Gaussian spatio-temporal 
smoothing kernel corresponding to (20), while expressed over the joint 
space-time domain, into separate smoothing operations over space and 
time, this leads to zero-order spatio-temporal receptive fields of the 
form [13, 19] (see Appendix B.1 in the supplement for an overview 
of the logical steps in the derivation that lead to this result):

𝑇 (𝑥1, 𝑥2, 𝑡; 𝑠, 𝜏; 𝑣,Σ) = 𝑔(𝑥1 − 𝑣1𝑡, 𝑥2 − 𝑣2𝑡; 𝑠Σ)ℎ(𝑡; 𝜏), (24)

where the temporal smoothing kernel ℎ(𝑡; 𝜏) is a one-dimensional Gaus-

sian kernel. After combining that result with the results from corre-

sponding theoretical analysis for a time-causal spatio-temporal domain 
in [13, 21] (see Appendix B.2 in the supplement for an overview of the 
logical steps behind this construction), we are lead to a similar form 

of spatio-temporal smoothing operation, while then using a temporal 
9
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smoothing kernel ℎ(𝑡; 𝜏) that corresponds to a set of truncated expo-

nential kernels coupled in cascade.

The resulting spatio-temporal scale-space representation obeys 
(i) spatial scale covariance as described in Appendix E in the supple-

ment and illustrated in Fig. 23 in the supplement, (ii) spatial affine 
covariance as described in Appendix F in the supplement and illustrated 
in Fig. 24 in the supplement, (iii) Galilean covariance as described in 
Appendix G in the supplement and illustrated in Fig. 25 in the supple-

ment and (iv) temporal scale covariance as described in Appendix H in 
the supplement and illustrated in Fig. 26 in the supplement.

After noting that spatial, temporal and spatio-temporal derivatives 
of the spatio-temporal smoothing kernels (24) are also compatible 
with the assumptions because of the linearity assumption, the result-

ing spatio-temporal derivative kernels constituting the spatio-temporal 
extension of the spatial receptive field model (23) can be reparameter-

ized and summarized on the following form (see [13, 19, 20, 21]):

𝑇𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛 (𝑥1, 𝑥2, 𝑡; 𝑠, 𝜏; 𝑣,Σ) =

𝜕
𝑚1
𝜑 𝜕

𝑚2
⊥𝜑

𝜕𝑛

𝑡

(
𝑔(𝑥1 − 𝑣1𝑡, 𝑥2 − 𝑣2𝑡; 𝑠Σ)ℎ(𝑡; 𝜏)

)
, (25)

where

• 𝑥 = (𝑥1, 𝑥2) denotes the spatial coordinates,

• 𝑡 denotes time,

• 𝑠 denotes the spatial scale (in dimension of [length]2),
• 𝜏 denotes the temporal scale (in dimension of [time]2),
• 𝑣 = (𝑣1, 𝑣2)𝑇 denotes a local image velocity,

• Σ denotes a spatial covariance matrix determining the shape of a 
spatial affine Gaussian kernel,

• 𝜕𝜑 = cos𝜑 𝜕𝑥1
+ sin𝜑 𝜕𝑥2

and 𝜕⊥𝜑 = sin𝜑 𝜕𝑥1
− cos𝜑 𝜕𝑥2

denote spatial 
directional derivative operators in two orthogonal directions 𝜑 and 
⊥𝜑 aligned with the eigenvectors of the covariance matrix Σ,

• 𝜕𝑡 = 𝑣1𝜕𝑥1
+𝑣2𝜕𝑥2

+𝜕𝑡 is a velocity-adapted temporal derivative oper-

ator aligned to the direction of the local image velocity 𝑣 = (𝑣1, 𝑣2)𝑇 ,

• 𝑚1 and 𝑚2 denote orders of spatial differentiation,

• 𝑛 denotes the order of temporal differentiation,

• 𝑔(𝑥; 𝑠 Σ) = 1
2𝜋𝑠

√
det Σ

𝑒−𝑥𝑇 Σ−1𝑥∕2𝑠 is an affine Gaussian kernel with its 
size determined by the spatial scale parameter 𝑠 and its shape de-

termined by the spatial covariance matrix Σ,

• 𝑔(𝑥1 −𝑣1𝑡, 𝑥2 −𝑣2𝑡; 𝑠 Σ) denotes a spatial affine Gaussian kernel that 
moves with image velocity 𝑣 = (𝑣1, 𝑣2) in space-time and

• ℎ(𝑡; 𝜏) is a temporal smoothing kernel over time corresponding 
to a Gaussian kernel ℎ(𝑡; 𝜏) = 𝑔(𝑡; 𝜏) = 1∕

√
2𝜋𝜏 exp(−𝑡2∕2𝜏) in the 

case of non-causal time or a cascade of first-order integrators 
or equivalently truncated exponential kernels coupled in cascade 
ℎ(𝑡; 𝜏) = ℎ𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 (⋅; 𝜇) according to (27) over a time-causal tempo-

ral domain.

This family of spatio-temporal scale-space kernels can be seen as a 
canonical family of linear receptive fields over a spatio-temporal do-

main.

For the case of a time-causal temporal domain, the result states that 
truncated exponential kernels of the form

ℎ𝑒𝑥𝑝(𝑡; 𝜇𝑘) =

{ 1
𝜇𝑘

𝑒−𝑡∕𝜇𝑘 𝑡 ≥ 0
0 𝑡 > 0

(26)

coupled in cascade constitute the natural temporal smoothing kernels. 
These do in turn lead to a composed temporal smoothing kernel of the 
form

ℎ𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 (⋅; 𝜇) =∗𝐾
𝑘=1 ℎ𝑒𝑥𝑝(⋅; 𝜇𝑘) (27)

and corresponding to a set of first-order integrators coupled in cascade 
(see Fig. 9).
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Fig. 9. Illustration of the time-causal receptive field model in terms of an 
electric wiring diagram composed of a set of resistors and capacitors that 
emulate a series of first-order integrators coupled in cascade. In this model, 
the time-varying voltage 𝑓𝑖𝑛 represents the time varying input signal, whereas 
the time-varying voltage 𝑓𝑜𝑢𝑡 represents the time-varying output signal at a 
coarser temporal scale. From the theory for temporal scale-space kernels for 
one-dimensional signals (Lindeberg [21, 56]; Lindeberg and Fagerström [57]), 
it holds that the corresponding equivalent truncated exponential kernels are 
the only primitive temporal smoothing kernels that guarantee both temporal 
causality and non-creation of local extrema (or zero-crossings) with increasing 
temporal scale.

Two natural ways of distributing the discrete time constants 𝜇𝑘 over 
temporal scales are studied in detail in [21, 55] corresponding to ei-

ther a uniform or a logarithmic distribution in terms of the composed 
variance

𝜏𝐾 =
𝐾∑

𝑘=1
𝜇2

𝑘
. (28)

Specifically, it is shown in [21, Section 5] that in the case of a loga-

rithmic distribution of the discrete temporal scale levels, it is possible 
to consider an infinite number of temporal scale levels that cluster in-

finitely dense near zero temporal scale

…
𝜏0

𝑐6
,
𝜏0

𝑐4
,
𝜏0

𝑐2
, 𝜏0, 𝑐

2𝜏0, 𝑐
4𝜏0, 𝑐

6𝜏0,… (29)

so that a scale-covariant time-causal limit kernel Ψ(𝑡; 𝜏, 𝑐) can be defined 
obeying self-similarity and scale covariance over temporal scales and 
with a Fourier transform of the form

Ψ̂(𝜔; 𝜏, 𝑐) =
∞∏

𝑘=1

1

1 + 𝑖 𝑐−𝑘
√

𝑐2 − 1
√

𝜏 𝜔

. (30)

Fig. 10 and Fig. 11 show spatio-temporal kernels over a 1+1-

dimensional spatio-temporal domain using approximations of the time-

causal limit kernel for temporal smoothing over the temporal domain 
and the Gaussian kernel for spatial smoothing over the spatial domain. 
Fig. 10 shows space-time separable receptive fields corresponding to im-

age velocity 𝑣 = 0, whereas Fig. 11 shows unseparable velocity-adapted 
receptive fields corresponding to a non-zero image velocity 𝑣 ≠ 0.

The family of space-time separable receptive fields for zero image 
velocities is closed under spatial scaling transformations for arbitrary 
spatial scaling factors as well as for temporal scaling transformations 
with temporal scaling factors that are integer powers of the distribu-

tion parameter 𝑐 of the time-causal limit kernel. The full family of 
velocity-adapted receptive fields for general non-zero image velocities 
is additionally closed under Galilean transformations, corresponding to 
variations in the relative motion between the objects in the world and 
the observer. Given that the full families of receptive fields are explic-

itly represented in the vision system, this means that it will be possible 
to perfectly match receptive field responses computed under the follow-

ing types of natural image transformations: (i) objects of different size 
in the image domain as arising from e.g. viewing the same object from 
different distances, (ii) spatio-temporal events that occur with different 
speed, faster or slower, and (iii) objects and spatio-temporal events that 
are viewed with different relative motions between the objects/event 
and the visual observer.

If additionally the spatial smoothing is performed over the full fam-

ily of spatial covariance matrices Σ, then receptive field responses can 
also be matched (iv) between different views of the same smooth local 
surface patch.
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Fig. 10. Illustrations of space-time separable receptive fields 𝑇𝑥𝑚𝑡𝑛 (𝑥, 𝑡; 𝑠, 𝜏) = 𝜕𝑥𝑚𝑡𝑛 (𝑔(𝑥; 𝑠) ℎ(𝑡; 𝜏)) up to order two, formed from by the composition of Gaussian kernels 
over the spatial domain 𝑥 for spatial scale parameter 𝑠 = 1 and a set of truncated exponential kernels coupled in cascade over the temporal domain 𝑡 according to 
Equation (27), with a logarithmic distribution of the intermediate temporal scale levels that approximates the time-causal limit kernel in Equation (30) with the 
following parameters: 𝜏 = 1, 𝐾 = 7, 𝑐 = 2, 𝑣 = 0. The corresponding family of spatio-temporal receptive fields is closed under spatial scaling transformations as well 
as under temporal scaling transformations for temporal scaling factors that are integer powers of the distribution parameter 𝑐 of the temporal smoothing kernel. 
(Horizontal axis: space 𝑥. Vertical axis: time 𝑡.)
3.3. Scale normalisation of spatial and spatio-temporal receptive fields

When computing receptive field responses over multiple spatial and 
temporal scales, there is an issue about how the receptive field re-

sponses should be normalized so as to enable appropriate comparisons 
between receptive field responses at different scales. Issues of scale nor-

malisation of the derivative based receptive fields defined from scale-

space operations are treated in [36, 58, 59] regarding spatial receptive 
fields and in [21, 38, 55] regarding spatio-temporal receptive fields.

a) Scale-normalized spatial receptive fields. Let 𝑠𝜑 and 𝑠⊥𝜑 denote the 
eigenvalues of the composed affine covariance matrix 𝑠 Σ in the spa-

tial receptive field model (23) and let 𝜕𝜑 and 𝜕⊥𝜑 denote directional 
derivative operators along the corresponding eigendirections. Then, the 
scale-normalized spatial derivative kernel corresponding to the recep-

tive field model (23) is given by

𝑇𝜑𝑚1⊥𝜑𝑚2 ,𝑛𝑜𝑟𝑚(𝑥1, 𝑥2; 𝑠,Σ) = 𝑠
𝑚1𝛾𝑠∕2
𝜑 𝑠

𝑚2𝛾𝑠∕2
⊥𝜑

𝜕
𝑚1
𝜑 𝜕

𝑚2
⊥𝜑

(
𝑔(𝑥1, 𝑥2; 𝑠Σ)

)
, (31)

where 𝛾𝑠 denotes the spatial scale normalization parameter of 𝛾-

normalized derivatives and specifically the choice 𝛾𝑠 = 1 leads to max-

imum scale invariance in the sense that the magnitude response of the 
spatial receptive field will be preserved under uniform spatial scaling 
transformations (𝑥′

1, 𝑥
′
2) = (𝑆𝑠 𝑥1, 𝑆𝑠 𝑥2), provided that the spatial scale 

levels are appropriately matched (𝑠′
𝜑
, 𝑠′

⊥𝜑
) = (𝑆2

𝑠
𝑠𝜑, 𝑆2

𝑠
𝑠⊥𝜑).

b) Scale-normalized spatial receptive fields in the case of a non-causal 
spatio-temporal domain. For the case of a non-causal spatio-temporal do-

main, where the temporal smoothing operation in the spatio-temporal 
receptive field model is performed by a non-causal Gaussian tempo-

ral kernel ℎ(𝑡; 𝜏) = 𝑔(𝑡; 𝜏) = 1∕
√
2𝜋𝜏 exp(−𝑡2∕2𝜏), the scale-normalized 
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spatio-temporal derivative kernel corresponding to the spatio-temporal 
receptive field model (25) is with corresponding notation regarding the 
spatial domain as in (31) given by

𝑇𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛,𝑛𝑜𝑟𝑚(𝑥1, 𝑥2, 𝑡; 𝑠, 𝜏; 𝑣,Σ)

= 𝑠
𝑚1𝛾𝑠∕2
𝜑 𝑠

𝑚2𝛾𝑠∕2
⊥𝜑

𝜏𝑛𝛾𝜏∕2

𝜕
𝑚1
𝜑 𝜕

𝑚2
⊥𝜑

𝜕𝑛

𝑡

(
𝑔(𝑥1 − 𝑣1𝑡, 𝑥2 − 𝑣2𝑡; 𝑠Σ)ℎ(𝑡; 𝜏)

)
, (32)

where 𝛾𝑠 and 𝛾𝜏 denote the spatial and temporal scale normaliza-

tion parameters of 𝛾-normalized derivatives and specifically the choice 
𝛾𝑠 = 1 and 𝛾𝜏 = 1 leads to maximum scale invariance in the sense 
that the magnitude response of the spatio-temporal receptive field will 
be preserved under independent scaling transformations of the spatial 
and the temporal domains (𝑥′

1, 𝑥
′
2, 𝑡

′) = (𝑆𝑠 𝑥1, 𝑆𝑠 𝑥2, 𝑆𝜏 𝑡), provided that 
both the spatial and temporal scale levels are appropriately matched 
(𝑠′

𝜑
, 𝑠′

⊥𝜑
, 𝜏′) = (𝑆2

𝑠
𝑠𝜑, 𝑆2

𝑠
𝑠⊥𝜑, 𝑆2

𝜏
𝜏).

c) Scale-normalized spatial receptive fields in the case of a time-causal 
spatio-temporal domain. For the case of a time-causal spatio-temporal do-

main, where the temporal smoothing operation in the spatio-temporal 
receptive field model is performed by truncated exponential kernels 
coupled in cascade ℎ(𝑡; 𝜏) = ℎ𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑 (⋅; 𝜇) (27), the corresponding 
scale-normalized spatio-temporal derivative kernel corresponding to 
the spatio-temporal receptive field model (25) is given by

𝑇𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛,𝑛𝑜𝑟𝑚(𝑥1, 𝑥2, 𝑡; 𝑠, 𝜏; 𝑣,Σ)

= 𝑠
𝑚1𝛾𝑠∕2
𝜑 𝑠

𝑚2𝛾𝑠∕2
⊥𝜑

𝛼𝑛,𝛾𝜏
(𝜏)

𝜕
𝑚1
𝜑 𝜕

𝑚2
⊥𝜑

𝜕𝑛

𝑡

(
𝑔(𝑥1 − 𝑣1𝑡, 𝑥2 − 𝑣2𝑡; 𝑠Σ)ℎ(𝑡; 𝜏)

)
, (33)
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Fig. 11. Illustrations of velocity-adapted spatio-temporal receptive fields 𝑇𝑥𝑚𝑡𝑛 (𝑥, 𝑡; 𝑠, 𝜏, 𝑣) = 𝜕𝑥𝑚𝑡𝑛 (𝑔(𝑥 − 𝑣𝑡; 𝑠) ℎ(𝑡; 𝜏)) up to order two, formed from the composition of 
Gaussian kernels over the spatial domain 𝑥 for spatial scale parameter 𝑠 = 1 and a set of truncated exponential kernels coupled in cascade over the temporal domain 𝑡
according to Equation (27), with a logarithmic distribution of the intermediate temporal scale levels that approximates the time-causal limit kernel in Equation (30) 
with the following parameters: 𝜏 = 1, 𝐾 = 7, 𝑐 = 2, 𝑣 = 1. In addition to spatial and temporal scaling transformations, the corresponding family of receptive fields is 
also closed under Galilean transformations. (Horizontal axis: space 𝑥. Vertical axis: time 𝑡.)
where 𝛾𝑠 and 𝛾𝜏 denote the spatial and temporal scale normalization pa-

rameters of 𝛾-normalized derivatives and 𝛼𝑛,𝛾𝜏
(𝜏) is the temporal scale 

normalization factor, which for the case of variance-based normaliza-

tion is given by

𝛼𝑛,𝛾𝜏
(𝜏) = 𝜏𝑛𝛾𝜏∕2 (34)

in agreement with (32), while for the case of 𝐿𝑝-normalization it is 
given by [21, Equation (76)]

𝛼𝑛,𝛾𝜏
(𝜏) =

𝐺𝑛,𝛾𝜏‖ℎ𝑡𝑛 (⋅; 𝜏)‖𝑝

, (35)

with 𝐺𝑛,𝛾𝜏
denoting the 𝐿𝑝-norm of the 𝑛:th order scale-normalized 

derivative of a non-causal Gaussian temporal kernel with scale normal-

ization parameter 𝛾𝜏 . In the specific case when the temporal smoothing 
is performed using the scale-invariant limit kernel (30), the magni-

tude response will for the maximally scale invariant choice of scale 
normalization parameters 𝛾𝑠 = 1 and 𝛾𝜏 = 1 be preserved under indepen-

dent scaling transformations of the spatial and the temporal domains 
(𝑥′

1, 𝑥
′
2, 𝑡

′) = (𝑆𝑠 𝑥1, 𝑆𝑠 𝑥2, 𝑆𝜏 𝑡) for general spatial scaling factors 𝑆𝑠 and 
for temporal scaling factors 𝑆𝜏 = 𝑐𝑗 that are integer powers of the dis-

tribution parameter 𝑐 of the scale-invariant limit kernel, provided that 
both the spatial and temporal scale levels are appropriately matched 
(𝑠′

𝜑
, 𝑠′

⊥𝜑
, 𝜏′) = (𝑆2

𝑠
𝑠𝜑, 𝑆2

𝑠
𝑠⊥𝜑, 𝑆2

𝜏
𝜏).

3.4. Invariance to local multiplicative illumination variations or variations 
in exposure parameters

The treatment so far has been concerned with modelling receptive 
fields under natural geometric image transformations, modelled as local 
12
scaling transformations, local affine transformations and local Galilean 
transformations representing the essential dimensions in the variability 
of a local linearization of the perspective mapping from a local surface 
patch in the world to the tangent plane of the retina. A complementary 
issue concerns how to model receptive field responses under variations 
in the external illumination and under variations in the internal expo-

sure mechanisms of the eye that adapts the diameter of the pupil and 
the sensitivity of the photoreceptors to the external illumination. In this 
section, we will present a solution for this problem regarding the subset 
of intensity transformations that can be modelled as local multiplicative 
intensity transformations.

To handle image data under illumination variations in a theoreti-

cally well-founded manner, it is natural to represent the image data on 
a logarithmic luminosity scale

𝑓 (𝑥1, 𝑥2, 𝑡) ∼ log𝐼(𝑥1, 𝑥2, 𝑡). (36)

Then, it can be shown that receptive field responses computed from 
such logarithmic luminosities can be interpreted physically as a superpo-

sition of relative variations of surface structure and relative variations 
of illumination variations. To demonstrate why this follows, let us as-

sume: (i) a perspective camera model extended with (ii) a thin circular 
lens that gathers incoming light from different directions and (iii) a 
Lambertian illumination model that is complemented with (iv) a spa-

tially varying albedo factor for modelling the light that is reflected from 
surface patterns in the world. Then, it can be shown [19, Section 2.3] 
that a spatio-temporal receptive field response

𝐿𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛 (⋅, ⋅; 𝑠, 𝜏) = 𝜕𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛 𝑠,𝜏 𝑓 (⋅, ⋅) (37)
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of the image data 𝑓 , where 𝑠,𝜏 represents the spatio-temporal smooth-

ing operator (here corresponding to a spatio-temporal smoothing kernel 
of the form (24)) can be expressed as

𝐿𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛 (𝑥1, 𝑥2, 𝑡; 𝑠, 𝜏) =

= 𝜕𝜑𝑚1⊥𝜑𝑚2 𝑡𝑛 𝑠,𝜏

(
log𝜌(𝑥1, 𝑥2, 𝑡) + log 𝑖(𝑥1, 𝑥2, 𝑡)

+ log𝐶𝑐𝑎𝑚(𝑓 (𝑡)) + 𝑉 (𝑥1, 𝑥2)
)
, (38)

where

(i) 𝜌(𝑥1, 𝑥2, 𝑡) is a spatially dependent albedo factor that reflects prop-

erties of surfaces of objects in the environment (note that this entity 
may in general refer to points on different surfaces in the world 
depending on the viewing direction),

(ii) 𝑖(𝑥1, 𝑥2, 𝑡) represents a spatially dependent illumination field (note 
that the amount of incoming light may be different for different sur-

faces world as mapped to corresponding image coordinates (𝑥1, 𝑥2)
over time 𝑡),

(iii) 𝐶𝑐𝑎𝑚(𝑓 (𝑡)) =
𝜋

4
𝑑

𝑓
represents the possibly time-dependent internal 

camera parameters with the ratio 𝑓 = 𝑓∕𝑑 referred to as the effec-

tive 𝑓 -number, where 𝑑 denotes the diameter of the lens and 𝑓 the 
focal distance, and

(iv) 𝑉 (𝑥1, 𝑥2) = −2 log(1 + 𝑥2
1 + 𝑥2

2) represents a geometric natural vi-

gnetting effect corresponding to the factor log cos4(𝜙) for a planar 
image plane, with 𝜙 denoting the angle between the viewing direc-

tion (𝑥1, 𝑥2, 𝑓 ) and the surface normal (0, 0, 1) of the image plane. 
This vignetting term disappears for a spherical camera model.

From the way Equation (38) is structured, we can observe that if we 
have a non-zero order of spatial differentiation with at least some of 
𝑚1 > 0 or 𝑚2 > 0, then the influence of the internal camera param-

eters in 𝐶𝑐𝑎𝑚(𝑓 (𝑡)) will vanish because of the spatial differentiation 
with respect to 𝑥1 or 𝑥2. In a corresponding manner, the effects of 
any other multiplicative exposure control mechanism will also van-

ish. Moreover, for any multiplicative transformation of the illumination 
field 𝑖′(𝑥1, 𝑥2) = 𝐶 𝑖(𝑥1, 𝑥2), where 𝐶 is a constant, the logarithmic lu-

minosity will be transformed as log 𝑖′(𝑥1, 𝑥2) = log𝐶 + log 𝑖(𝑥1, 𝑥2). This 
implies that the dependence on 𝐶 will disappear after any spatial or 
temporal differentiation.

Thus, given that the image measurements are performed on a log-

arithmic brightness scale, the spatio-temporal receptive field responses 
will be automatically invariant under local multiplicative illumination 
variations as well as under local multiplicative variations in the expo-

sure parameters of the retina and the eye.

4. Modelling the computational function of biological receptive 
fields using idealized receptive field profiles

An established methodology to characterize the spatial and tempo-

ral response properties of receptive fields in the central visual pathways 
consists of performing neurophysiological cell recordings of the re-

sponses of visual neurons to white noise stimuli. DeAngelis et al. [4, 5] 
have presented comprehensive surveys of advances made in this way. 
In these works, the authors emphasize that it is necessary to character-

ize receptive fields over the joint space-time domain, and that it is thus 
not sufficient to study receptive fields over the spatial domain only. 
Then, the authors describe basic classes of spatial and spatio-temporal 
receptive fields in the LGN and the primary visual cortex. Conway and 
Livingstone [22] and Johnson et al. [23] show results of corresponding 
investigations concerning spatio-chromatic receptive fields.

In the following, we will outline how the above derived theory for 
idealized functional models of linear receptive fields can be used for 
modelling such spatial, spatio-chromatic and spatio-temporal response 
properties of biological neurons. Indeed, we will show that the derived 
theory for idealized functional models of linear receptive fields leads to 
13
Fig. 12. Spatio-temporal modelling of LGN neurons. Regarding space-time separa-

ble receptive fields in the lateral geniculate nucleus (LGN), there are two main 
types: For a “non-lagged cell”, the first temporal lobe is strongest, whereas for 
a “lagged cell”, the second temporal lobe is the strongest one. The top row 
shows examples of such neurons reported by DeAngelis et al. [4]. In the bot-

tom row, we have modelled these receptive fields by idealized spatio-temporal 
receptive fields of the form 𝑇 (𝑥, 𝑡; 𝑠, 𝜏) = 𝜕𝑥𝑚 𝜕𝑡𝑛 (𝑔(; 𝑠) ℎ(𝑡; 𝜏)) according to Equa-

tion (25), for 𝑚 = 2 corresponding to a Laplacian of Gaussian over the spatial 
domain, and with the temporal smoothing function ℎ(𝑡; 𝜏) expressed as a cas-

cade of first-order integrators or equivalently truncated exponential kernels of 
the form (27) and using a logarithmic distribution of the intermediate temporal 
scale levels. Specifically, in the (left) we model a “non-lagged cell” by first-order 
temporal derivatives, whereas we model (right) a “lagged cell” using second-

order temporal derivatives. Parameter values with 𝜎𝑥 =
√

𝑠 and 𝜎𝑡 =
√

𝜏: (a) 
ℎ𝑥𝑥𝑡 : 𝜎𝑥 = 0.5 degrees, 𝜎𝑡 = 60 ms, 𝑐 = 2. (b) ℎ𝑥𝑥𝑡𝑡 : 𝜎𝑥 = 0.6 degrees, 𝜎𝑡 = 140 ms, 
𝑐 = 2. (Horizontal dimension: space 𝑥. Vertical dimension: time 𝑡.) (The figures 
in the top row are reprinted with permission.)

predictions of receptive field profiles that are qualitatively very similar 
to all the linear spatial and spatio-temporal receptive field types pre-

sented in (DeAngelis et al. [4, 5]) and also to schematic simplifications 
of most of the spatio-chromatic receptive fields shown in (Conway and 
Livingstone [22]) and (Johnson et al. [23]).

4.1. Spatial and spatio-temporal receptive fields in the LGN

Neurophysiological studies by DeAngelis et al. [4, 5] and others re-

port that most neurons in the lateral geniculate nucleus (LGN), have 
receptive fields (i) with approximately circular center-surround organi-

zation over image space (ii) and that they are separable over space-

time. Furthermore, they are two main types of temporal responses: 
(i) for a “non-lagged cell” the first temporal lobe is the strongest one 
(Fig. 12(left)), whereas (ii) for “lagged cell” the second temporal lobe 
is strongest (Fig. 12(right)), see also Ghodrati et al. [53] for a more 
extensive overview of properties of LGN neurons

When using a time-causal temporal smoothing kernel, the first peak 
of a first-order temporal derivative will be strongest, whereas the sec-

ond peak of a second-order temporal derivative will be strongest (see 
[21, Fig. 2]). Thus, according to this theory, non-lagged LGN cells can 
be seen as corresponding to first-order time-causal temporal derivatives, 
whereas lagged LGN cells can be seen as corresponding to second-order 
time-causal temporal derivatives.

Comparing to the proposed framework for idealized receptive fields, 
the spatial response of such a neuron is highly similar to a Laplacian of 
a Gaussian, which leads to a composed idealized receptive field model 
of the form [19, Equation (108)]
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Fig. 13. Spatial modelling of LGN neurons. (left) DeAngelis et al. [4] report that LGN neurons have approximately circular center-surround responses over the 
spatial domain. (right) In terms of our idealized receptive field models, such a spatial dependency can be modelled by the Laplacian of the Gaussian ∇2𝑔(𝑥, 𝑦; 𝑠) =
(𝑥2 + 𝑦2 − 2𝑠)∕(2𝜋𝑠3) exp(−(𝑥2 + 𝑦2)∕2𝑠), here with 𝜎𝑠 =

√
𝑠 = 0.6 in units of degrees of visual angle. (Left and middle figures reprinted with permission.)
Fig. 14. Receptive field responses of a spatio-chromatic double-opponent neuron

according to Conway and Livingstone [22, Fig. 2, Page 10831]. Here, the 
colour channels L, M and S basically correspond to red, green and blue colour 
channels, respectively, from which corresponding red/green and yellow/blue 
colour-opponent channels can be computed from the difference between L to M 
and the difference between L+M to S, respectively. © 2006 Society for Neuro-

science with permission

ℎ𝐿𝐺𝑁 (𝑥, 𝑦, 𝑡; 𝑠, 𝜏) = ±(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑔(𝑥, 𝑦; 𝑠)𝜕𝑡𝑛 ℎ(𝑡; 𝜏). (39)

In Fig. 13, we show the result of modelling the spatial component of 
a receptive field in the LGN with a Laplacian of the Gaussian. Such a 
Laplacian of the Gaussian is also applicable for spatial modelling of on-

center/off-surround and off-center/on-surround receptive fields in the 
retina. In Fig. 12, we show results of joint spatio-temporal modelling 
of space-time separable receptive fields in the LGN, with the temporal 
smoothing over the temporal domain expressed as a cascade of trun-

cated exponential kernels of the form (27) and complemented by first-

or second-order derivatives.

In previous work by (Rodieck [29]), differences of Gaussians have 
been shown to constitute a very good approximation of the spatial com-

ponent of receptive fields in the retina and the LGN. The Laplacian of 
Gaussian model (𝜕𝑥𝑥 + 𝜕𝑦𝑦) 𝑔(𝑥, 𝑦; 𝑠) over the spatial domain is closely 
related to such differences of Gaussians. This relationship can be shown 
from fact that the rotationally symmetric Gaussian satisfies the isotropic 
diffusion equation [37]:

1
2
∇2𝐿(𝑥, 𝑦; 𝑠) = 𝜕𝑠𝐿(𝑥, 𝑦; 𝑠)

≈ 𝐿(𝑥, 𝑦; 𝑠+Δ𝑠) −𝐿(𝑥, 𝑦; 𝑠)

Δ𝑠

14
Fig. 15. Modelling of double-opponent neurons using idealized spatio-chromatic re-
ceptive fields over the spatial domain. Here, we have applied the spatial Laplacian 
operator to positive and negative red/green and yellow/blue colour opponent 
channels, respectively. These receptive fields can be seen as idealized models of 
the spatial component of double-opponent spatio-chromatic receptive fields in 
the LGN.

= 𝐷𝑂𝐺(𝑥, 𝑦; 𝑠,Δ𝑠)
Δ𝑠

. (40)

This relationship means that differences of Gaussians approximate 
derivatives over scale, which in turn correspond to Laplacian responses. 
Conceptually, this implies very good agreement with the spatial compo-

nent of the LGN model (39) based on Laplacians of Gaussians. In more 
recent work, Bonin et al. [60] has also found that LGN responses in cats 
can be well modelled by differences of Gaussians in combination with 
temporal smoothing, also complemented by a non-linear contrast gain 
control mechanism (which we do not model specifically here, although 
the logarithmic brightness scale considered in this treatment will han-

dle variabilities in illumination that could also be handled by non-linear 
gain control).

4.2. Double-opponent spatio-chromatic receptive fields in the LGN

Conway and Livingstone [22] have presented a study of spatio-

chromatic response properties of V1 neurons in the alert Macaque 
monkey. They report the finding of double-opponent cells, that simul-

taneously compute both spatial and chromatic opponency. These cells 
have receptive fields with approximately circular red/green and yel-

low/blue colour-opponent response properties, see Fig. 14, and which 
are claimed to constitute the first layer of spatially opponent colour 
computations.

If we in analogy with the previous modelling of rotationally symmet-

ric on-center/off-surround and off-center/on-surround receptive fields 
in the LGN by Laplacian of Gaussians (39), apply the Laplacian of the 
Gaussian operator to red/green and yellow/blue colour-opponent chan-

nels,
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Fig. 16. Computational modelling of a receptive field profile over the spatial domain in the primary visual cortex (V1) as reported by DeAngelis et al. [4, 5] using 
affine Gaussian derivatives: (middle) Receptive field profile of a simple cell over image intensities as reconstructed from cell recordings, with positive weights 
represented as green and negative weights by red. (left) Stylized simplification of the receptive field shape. (right) Idealized model of the receptive field from a 
first-order directional derivative of an affine Gaussian kernel 𝜕𝑥𝑔(𝑥, 𝑦; Σ) = 𝜕𝑥𝑔(𝑥, 𝑦; 𝜆𝑥, 𝜆𝑦) according to (21), here with 𝜎𝑥 =

√
𝜆𝑥 = 0.5 and 𝜎𝑦 =

√
𝜆𝑦 = 1.5 in units 

of degrees of visual angle, and with positive weights with respect to image intensities represented by white and negative values by violet. (Left and middle figures 
reprinted with permission.)
Fig. 17. Modelling of double-opponent simple cells in the primary visual cor-

tex (V1) in terms of affine Gaussian derivatives over colour-opponent channels, 
based on neurophysiological cell recordings by Johnson et al. [23]: (left) Re-

sponses to L-cones corresponding to long wavelength red cones, with positive 
weights represented by red and negative weights by blue. (middle) Responses 
to M-cones corresponding to medium wavelength green cones, with positive 
weights represented by red and negative weights by blue. (right) Idealized 
model of the receptive field from a first-order directional derivative of an 
affine Gaussian kernel 𝜕⊥𝜑𝑔(𝑥, 𝑦; Σ) according to (21) over a red-green colour-

opponent channel for 𝜎1 =
√

𝜆1 = 0.6 and 𝜎2 =
√

𝜆2 = 0.2 in units of degrees of 
visual angle, 𝛼 = 67 degrees and with positive weights for the red-green colour-

opponent channel represented by red and negative values by green. (Left and 
middle figures: Copyright 2008 of Society for Neuroscience with permission.)
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respectively, we get equivalent spatio-chromatic receptive fields that 
correspond to red-center/green-surround, green-center/red-surround, 
yellow-center/blue-surround or blue-center/yellow-surround, respec-

tively, see Fig. 15. This corresponds to applying the following spatio-

chromatic receptive field model to the RGB channels

ℎ𝑑𝑜𝑢𝑏𝑙𝑒−𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡(𝑥, 𝑦; 𝑠) = ±(𝜕𝑥𝑥 + 𝜕𝑦𝑦)𝑔(𝑥, 𝑦; 𝑠)

(
1
2 − 1

2 0
1
2

1
2 −1

)
, (42)

and which constitutes an idealized model for the spatio-chromatic re-

sponse properties of double-opponent cells.

4.3. Spatial, spatio-chromatic and spatio-temporal receptive fields in V1

In their study of neurons in the primary visual cortex (V1), DeAn-

gelis et al. [4, 5] report that the receptive fields of V1 neurons, in 
general, have different response properties compared to LGN neurons 
in the following ways: (i) they are oriented in the spatial domain and 
(ii) they are sensitive to specific ranges of stimulus velocities. According 
to the pioneering work by Hubel and Wiesel [1, 2, 3]), simple cells are 
additionally characterized by the following properties: (iii) they have 
precisely localized “on” and “off” subregions, (iv) spatial summation 
takes place over each subregion, (v) there is spatial antagonism be-
15
tween on- and off-subregions, and (vi) visual responses to stationary or 
moving spots can be predicted from the spatial subregions.

Fig. 16 shows an example of the spatial dependency of a simple cell, 
that can be well modelled by a first-order affine Gaussian derivative 
over image intensities. Fig. 17 shows corresponding results for a colour-

opponent receptive field of a simple cell in V1, that can be modelled as 
a first-order affine Gaussian spatio-chromatic derivative over an R-G 
colour-opponent channel.

Biological support for using multiple affine receptive fields, over an 
expansion of the shapes of the affine covariance matrices Σ, can be ob-

tained from neurophysiological measurements by Goris et al. [50], who 
show that there is a large variability in the orientation selectivity of 
simple and complex cells (see Fig. 19). With regard to the presented 
theoretical model for simple cells in Equation (23), possibly extended 
with a colour-opponent representation (41) for spatio-chromatic recep-

tive fields, this means that we could think of all affine receptive fields, 
with their directional derivatives in preferred directions aligned to the 
eigendirections of the covariance matrix Σ, as being present at any po-

sition in the image domain (see Fig. 8). Such a variability makes it 
possible to perfectly match the first-order variability of receptive field 
responses under variations of the slant and tilt directions of a smooth 
surface patch.

In Fig. 18, we show spatio-temporal dependencies of a set of sep-

arable and inseparable simple cells in V1 that can be modelled using 
the general idealized model of spatio-temporal receptive fields in Equa-

tion (25), based on Gaussian derivatives over image space and temporal 
derivatives of a set of truncated exponential kernels coupled in cas-

cade (27). The results in the upper part show space-time separable 
spatio-temporal receptive fields corresponding to zero image veloc-

ity 𝑣 = 0, and corresponding to either first- or second-order spatial 
derivatives over image space in combination with first-order temporal 
derivatives over time. The results in the lower part show inseparable 
spatio-temporal receptive fields corresponding to non-zero image ve-

locities and based on either second- or third-order spatial derivatives 
over image space.

To conclude, from these figures we can see that the qualitative 
shape of biological receptive fields, as recorded by neurophysiological 
measurements, can be quite well modelled by the proposed idealized 
receptive field models that result from the presented normative theory 
of visual receptive fields.

5. Relations to previous work

In earlier work, Young [30] has also proposed to model spatial 
visual receptive fields by Gaussian derivatives and shown that visual 
receptive fields in cats and monkeys can be well modelled by Gaussian 
derivatives up to order four. Young et al. [31, 32] have also proposed 
to model spatio-temporal receptive fields by Gaussian derivatives over 
the spatio-temporal domain. This corresponds to the non-causal purely 
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Fig. 18. Modelling of space-time separable and inseparable simple cells in the primary visual cortex (V1) based on neural cell recordings reported by DeAngelis et 
al. [4]. The idealized spatio-temporal receptive fields are of the form 𝑇 (𝑥, 𝑡; 𝑠, 𝜏, 𝑣) = 𝜕𝑥𝑚 𝜕𝑡𝑛 (𝑔(𝑥 − 𝑣𝑡; 𝑠) ℎ(𝑡; 𝜏)) according to Equation (25), where 𝑣 = 0 corresponds 
to space-time separable receptive fields and 𝑣 ≠ 0 to inseparable receptive fields. The temporal smoothing function ℎ(𝑡; 𝜏) is modelled as a set of first-order 
integrators/truncated exponential kernels of the form (27) coupled in cascade and using a logarithmic distribution of the intermediate temporal scale levels. (upper 
left) Separable receptive fields corresponding to first-order derivatives with respect to space and time. (upper right) Separable receptive fields corresponding to 
second-order derivatives with respect to space and first-order derivatives with respect to time. (lower left) Inseparable velocity-adapted receptive fields corresponding 
to second-order derivatives over space. (lower right) Inseparable velocity-adapted receptive fields corresponding to third-order derivatives over space. Parameter 
values with 𝜎𝑥 =

√
𝑠 and 𝜎𝑡 =

√
𝜏: (a) ℎ𝑥𝑡 : 𝜎𝑥 = 0.6 degrees, 𝜎𝑡 = 80 ms, 𝑐 = 2. (b) ℎ𝑥𝑥𝑡 : 𝜎𝑥 = 0.6 degrees, 𝜎𝑡 = 120 ms, 𝑐 = 2. (c) ℎ𝑥𝑥 : 𝜎𝑥 = 0.7 degrees, 𝜎𝑡 = 70 ms, 

𝑣 = 0.007 degrees/ms, 𝑐 = 2. (d) ℎ𝑥𝑥𝑥 : 𝜎𝑥 = 0.5 degrees, 𝜎𝑡 = 100 ms, 𝑣 = 0.004 degrees/ms, 𝑐 = 2. (Horizontal axis: Space 𝑥 in degrees of visual angle. Vertical axis: 
Time 𝑡 in ms.) (The figures in the top and third rows reprinted with permission.)
Gaussian spatio-temporal concept presented in this article, as well as in 
our closely related earlier work [61, 62]. Young does, however, use a 
different type of parameterization.

The normative theory for visual receptive fields presented in [13, 19, 
20, 21] and here does first of all provide additional theoretical foun-

dation for Young’s spatial modelling work based on Koenderink and 
van Doorn’s theory [8, 9]. It does additionally extend that model from 
regular (isotropic) Gaussian derivatives to affine Gaussian derivatives, 
and does also provide a conceptual extension to a time-causal spatio-

temporal domain that takes into explicit account the fact that the future 
cannot be accessed. Furthermore, our model provides a better parame-

terization of the spatio-temporal receptive field model over a non-causal 
spatio-temporal domain based on the Gaussian spatio-temporal scale-

space concept.
16
This model, or earlier versions of it, has in turn been exploited for 
modelling of biological receptive fields by Lowe [63], May and George-

son [64], Hesse and Georgeson [65], Georgeson et al. [66], Wallis and 
Georgeson [67], Hansen and Neumann [68], Wang and Spratling [69], 
Mahmoodi [70, 71] and Pei et al. [72].

5.1. Relations to modelling by Gabor functions

Motivated by the property of Gabor functions [73]

𝐺(𝑥; 𝑠,𝜔) = 𝑒−𝑖𝜔𝑥 𝑔(𝑥; 𝑠), (43)

that they minimize the uncertainty relation, Marčelja [24], Jones and 
Palmer [25, 26], Ringach [27, 28] and others have proposed to use Ga-

bor functions to model spatial dependencies of visual receptive fields. 
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Fig. 19. Measurements of the orientation selectivity of simple cells and complex 
cells in the primary visual cortex of the Macaque monkey as reported by Goris 
et al. [50]. Interpreted with regard to the affine Gaussian derivative model 
for the receptive fields of simple cells (23), this large variability in orientation 
selectivity implies that we should consider covariance matrices Σ for a large 
range of eccentricities, as can be quantified by ratio between their eigenvalues 
𝜆1 and 𝜆2. (The orientation selectivity of an affine Gaussian derivative kernel 
increases with the eccentricity.)

There are, however, reasons to question this motivation, both on the-

oretical and empirical grounds: Following the arguments by Stork and 
Wilson [74]: (i) only the full complex-valued Gabor functions (treated 
as pairs) minimize the uncertainty relation, the single real or imagi-

nary components do not, (ii) the real-valued functions that minimize 
the uncertainty relation are Gaussian kernels and Gaussian derivatives, 
not Gabor functions, (iii) quantitative comparisons between Gabor func-

tions and other functions to physiological and psychophysical data have 
demonstrated that other functions, such as Gaussian derivatives, may 
enable better fits between the model and the data than for Gabor func-

tions.

There are conceptual similarities between Gabor functions and Gaus-

sian derivatives in terms of the ripples they have. For Gabor functions, 
the ripples are given by the zero-crossings of complex sine waves. For 
Gaussian derivatives, the ripples are given by the zero-crossings of Her-

mite functions of different orders. To specify a Gabor function, does, 
however, require two parameters; a scale parameter representing the 
spatial extent and a frequency. To specify a Gaussian derivative requires 
a scale parameter and the order of (spatial or temporal) differentiation, 
The Gaussian derivative model has the theoretically attractive prop-

erties that the receptive fields satisfy the diffusion equation and that 
derivatives of different orders can be mutually related by derivative op-

erators, and can be computed from local nearest-neighbour operations 
over image space, implying that they can be implemented in biologi-

cal wetware by connections between neighbouring computational units 
(neurons).

Regarding invariance properties to natural image transformations, it 
holds that the family of affine Gaussian kernels is closed under the full 
group affine image deformations. The family of Gabor functions based 
on multiplications of rotationally symmetric Gaussians with sine and co-

sine waves is not closed under general affine image deformations. This 
implies that we cannot compute truly affine invariant image representa-

tions from such families of traditional Gabor functions. If we have a pair 
of images that are related by a non-uniform scaling transformation, then 
the lack of affine covariance means that there will be systematic errors 
if we attempt to match image representations that are computed from 
such Gabor functions. If we compute receptive field responses based on 
directional derivatives of affine Gaussian kernels, it will on the other 
hand be possible to compute fully affine invariant features [20], in turn 
providing better internal consistency between receptive field responses 
computed from different views of objects in the world.

Concerning invariance to multiplicative illumination variations, it 
holds that the integral of the even cosine component of a Gabor function 
will, in general, not be equal to zero. This implies that the illumination 
invariant properties under local multiplicative illumination transforma-
17
Fig. 20. Two structurally different ways of deriving receptive field shapes for a 
vision system intended to infer properties of the world by either biological or 
artificial visual perception. (top row) A traditional model for learning receptive 
fields shapes consists of collecting real-world image data from the environment, 
and then applying learning algorithms possibly in combination with evolution 
over multiple generations of the organism that the vision system is a part of. 
(bottom row) With the normative theory for receptive fields presented in this 
paper, a short-cut is made in the sense that the derivation of receptive field 
shapes starts from structural properties of the world (corresponding to sym-

metry properties in theoretical physics) from which receptive field shapes are 
constrained by theoretical mathematical inference.

tions or multiplicative exposure control mechanisms outlined in Sec-

tion 3.4 will not hold for receptive field responses that are computed 
from such Gabor functions.

In these respects, the proposed Gaussian derivative model is concep-

tually simpler, the image measurements can be theoretically modelled 
using tools in differential geometry, it can be derived by necessity 
from symmetry principles in an axiomatic manner, its receptive field 
responses can be computed from local connections, and it enables prov-

able invariance properties under local linearized image deformations 
(affine transformations) as well as to local multiplicative illumination 
variations and multiplicative exposure control mechanisms.

5.2. Relations to approaches for learning receptive fields from natural 
image statistics

A more data-driven approach to defining receptive field models that 
has been explored in the field consists of learning them from the statis-

tics of natural image data (Field [75]; van der Schaaf and van Hateren 
[76]; Olshausen and Field [77]; Rao and Ballard [78]; Simoncelli and 
Olshausen [79]; Geisler [80]; Hyvärinen et al. [81]; Lörincz [82]). This 
approach also leads to visual receptive fields with similar shapes as 
those found in biological vision. The presented theory of visual recep-

tive fields can in this context be seen as constituting a meta theory that 
describes the fundamental physical constraints under which different 
learning based method will operate. The physical structure of the world 
will determine what types of natural images can be generated. Field 
[75] and Doi and Lewicki [83] have described how “natural images are 
not random, instead they exhibit statistical regularities”. If a learning 
system is assumed to be optimally adapted, we could expect that the 
receptive field shapes it learns should agree with the theoretical pre-

dictions, provided that the data sets for learning are sufficiently large 
and sufficiently representative with regard to the properties of natural 
image data (see Fig. 20).

The theory proposed in this paper can thus be interpreted as a the-

ory at a higher level of abstraction, formulated based on basic principles 
that reflect properties of the environment, which in turn determine 
properties of the natural image data, and with no need for explicit sta-

tistical modelling of the image data. Specifically, the presented theory 
explains why statistical approaches for learning receptive fields can be 
expected to lead to qualitatively similar models for receptive fields as 
the idealized functional models of receptive fields.

From the observation that the receptive field profiles in the retina, 
the LGN and the primary visual cortex of higher mammals are very close 
to ideal, in the sense that the biologically measured receptive fields 
are very similar to the predictions from the idealized theory, we can 
regard biological vision as having adapted very well to the transfor-

mation properties of the outside world, specifically the transformations 
corresponding to the mapping of the three-dimensional world to two-
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dimensional images. This property may be regarded as highly desirable 
for a biological organism, if there is or has been sufficient evolutionary 
pressure on its vision system.

5.3. Logarithmic brightness scale

Concerning the concept of a logarithmic brightness scale, already the

Greek astronomer Hipparchus implicitly made use of this notion, when 
he defined a subjective scale for the brightness of stars. In his brightness 
scale, divided into six levels, the brightest stars were referred to as of 
the first magnitude, whereas the faintest stars, near to what can be 
perceived by a human observer without additional lenses, were said to 
be of the sixth magnitude. Later, when it became possible to accurately 
measure the physical intensities of stars, it was noted that Hipparchus 
subjective scale corresponded to logarithmic intensity values. Today, in 
astronomy, the apparent brightness of stars is still quantified in terms of 
logarithmic intensities, although over a much wider range of brightness. 
The retinex theory of early vision (Land [84, 85]) does also make use 
of a logarithmic brightness scale.

A logarithmic relationship between the perceived intensity and the 
physical magnitude of stimuli does more generally occur in the Weber-

Fechner law in psychophysics. Consider a background intensity 𝐼 that is 
subject to an increment threshold Δ𝐼 corresponding to a just noticeable 
difference. Then, the Weber-Fechner law states that the Weber ratio 
intensity 𝐼

Δ𝐼

𝐼
= 𝑘, (44)

is constant over large ranges of magnitude variations [86, Pages 671–

672]. The theoretical analysis in Section 3.4, regarding invariance prop-

erties of a logarithmic brightness scale under multiplicative intensity 
transformations and multiplicative exposure control mechanisms, is in 
excellent agreement with these psychophysical findings. If one consid-

ers an adaptive image exposure mechanism in the retina that adapts the 
diameter of the pupil and the sensitivity of the photopigments, such that 
relative range variability in the signal divided by the mean illumination 
is held constant (44) (see e.g. Peli [87]), then such an adaptation mech-

anism can be seen as implementing an approximation of the derivative 
of a logarithmic transformation

𝑑(log𝑧) = 𝑑𝑧

𝑧
. (45)

This result is also closely related to information theoretic arguments 
by (Jaynes [88]) to use log𝑧 as a default parameterization of a strictly 
positive entity, in the absence of further information. Then, the ratio 
𝑑𝑧∕𝑧 becomes a dimensionless integration measure.

The physical model in Section 3.4 provides a formal justification for 
transforming brightness values in a logarithmic way in connection to 
receptive field measurements, and how such a transformation relates to 
inherent physical properties of object surfaces in the environment.

6. Summary

From neurophysiological cell recordings we know that mammalian 
vision has developed receptive fields with characteristic properties: The 
first layers of visual receptive fields are tuned to different sizes and 
orientations over the spatial domain, and to different image velocities 
over joint space-time. In this article, we have presented an overview of a 
normative theory that shows how it is possible to derive such receptive 
field profiles by necessity, starting from a set of structural requirements 
of an idealized vision system, and whose functionality is determined by 
set of mathematical and physical assumptions (see Fig. 20).

These structural requirements reflect structural properties of the world

for the receptive fields to be compatible with natural image transfor-

mations including: (i) variations in the sizes of objects in the world, 
(ii) variations in the viewing distance, (iii) variations in the viewing 
direction, (iv) variations in the relative motion between objects in the 
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world and the observer, (v) variations in the speed by which tempo-

ral events occur and (vi) local multiplicative illumination variations or 
multiplicative exposure control mechanisms.

We argue that it is natural for vision system, that is to interact with 
the world in a successful manner, to adapt to these structural require-

ments. If there is sufficient evolutionary pressure on an organism, in 
competition between different individuals of the same species or be-

tween individuals of different species, adaptation to the principles that 
determine structural properties of the environment may constitute an 
evolutionary advantage.

The proposed normative theory provides a way to derive functional 
models of linear receptive fields from first principles, leading to receptive 
field shapes in terms of affine Gaussian derivatives and closely related 
operators. Specifically, the presented theory can explain the different 
shapes of receptive field profiles that are found in biological vision 
from a requirement that the visual system should be able to compute 
covariant receptive field responses under the natural types of image 
transformations that occur in the environment, to enable the compu-

tation of invariant representations for perception at higher levels in 
the visual hierarchy [20] (see Appendix I in the supplement for a de-

scription about how covariant receptive fields at lower layers in the 
visual hierarchy enable invariances to geometric image transformations 
at higher levels in the visual hierarchy).

Such a view, that V1 performs an expansion of image data over 
the parameters of natural image transformations, is consistent with the 
substantial expansion of measurement data that is performed from the 
LGN8 with about 1 M neurons and 1 M output channels to V1 with 
190 M neurons and 37 M output channels [89, Fig. 3].

We have shown that the predictions from the presented theory are in 
good qualitative agreement with receptive fields found by neurophys-

iological cell recordings in mammalian vision. Specifically, we have 
presented idealized functional models (i) for space-time separable re-

ceptive fields in the retina and the LGN and (ii) for both space-time 
separable and non-separable simple cells in the primary visual cortex 
(V1).

The qualitatively very good agreement between the predicted re-

ceptive field profiles from the normative axiomatic theory with the 
receptive field profiles found by neurophysiological measurements in-

dicates that the earliest receptive fields in higher mammal vision can be 
interpreted as having reached a state that can be seen as very close to 
ideal in view of the stated structural requirements/symmetry properties. 
From this viewpoint, mammalian vision can be interpreted as having 
adapted very well to the transformation properties of the outside world 
and to the transformations that occur when a three-dimensional world 
is projected onto a two-dimensional image domain.

In relation to other approaches of learning receptive field profiles 
from natural image statistics, the presented theory determines recep-

tive field shapes without any need for training data. The presented 
theoretical approach also adds explanatory value in terms of under-

lying covariance and invariance properties, in the sense that requiring 
the first layers of receptive fields to be provably covariant under scal-

ing transformations, rotations, perspective transformations and Galilean 
transformations makes it possible to define invariant properties with re-

spect to these essential transformation groups at higher levels in the 
visual hierarchy. If the underlying first layers of visual receptive fields 
would not obey such covariance properties, then there would be a sys-

tematic bias in the visual operations, corresponding to the amount of 
mismatch between the backprojected receptive fields.

Corresponding types of arguments applied to the area of hearing, 
lead to the formulation of a normative theory of auditory receptive 
fields (Lindeberg and Friberg [90, 91]).

8 In the retina, there are about 100 M photoreceptors with about 1 M output 
channels to the LGN.
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