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the presence of cerebral amyloid and tau
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Visual deficits are common in neurodegenerative diseases including Alzheimer’s disease. We sought to determine the association be-

tween visual contrast sensitivity and neuroimaging measures of Alzheimer’s disease-related pathophysiology, including cerebral

amyloid and tau deposition and neurodegeneration. A total of 74 participants (7 Alzheimer’s disease, 16 mild cognitive impair-

ment, 20 subjective cognitive decline, 31 cognitively normal older adults) underwent the frequency doubling technology 24-2 exam-

ination, a structural MRI scan and amyloid PET imaging for the assessment of visual contrast sensitivity. Of these participants, 46

participants (2 Alzheimer’s disease, 9 mild cognitive impairment, 12 subjective cognitive decline, 23 cognitively normal older

adults) also underwent tau PET imaging with [18F]flortaucipir. The relationships between visual contrast sensitivity and cerebral

amyloid and tau, as well as neurodegeneration, were assessed using partial Pearson correlations, covaried for age, sex and race and

ethnicity. Voxel-wise associations were also evaluated for amyloid and tau. The ability of visual contrast sensitivity to predict amyl-

oid and tau positivity were assessed using forward conditional logistic regression and receiver operating curve analysis. All analyses

first were done in the full sample and then in the non-demented at-risk individuals (subjective cognitive decline and mild cognitive

impairment) only. Significant associations between visual contrast sensitivity and regional amyloid and tau deposition were

observed across the full sample and within subjective cognitive decline and mild cognitive impairment only. Voxel-wise analysis

demonstrated strong associations of visual contrast sensitivity with amyloid and tau, primarily in temporal, parietal and occipital

brain regions. Finally, visual contrast sensitivity accurately predicted amyloid and tau positivity. Alterations in visual contrast sensi-

tivity were related to cerebral deposition of amyloid and tau, suggesting that this measure may be a good biomarker for detecting

Alzheimer’s disease-related pathophysiology. Future studies in larger patient samples are needed, but these findings support the

power of these measures of visual contrast sensitivity as a potential novel, inexpensive and easy-to-administer biomarker for

Alzheimer’s disease-related pathology in older adults at risk for cognitive decline.
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Introduction
Alzheimer’s disease is a serious health concern associated

with aging. The most common form of age-related demen-

tia, Alzheimer’s disease affects >5.7 million people in the

USA, a number expected to rise to �14 million in 2050

(Alzheimer’s Association, 2019). Currently, no disease-

modifying drugs are available to treat Alzheimer’s disease.

Many researchers believe that early intervention is key to

the success of any future treatment. Thus, a great deal of

investigation has been focused on identifying biological

markers, or biomarkers, of Alzheimer’s disease in early

prodromal or preclinical stages of disease. Neuroimaging

tools, including MRI to study brain structure and function,

as well as PET imaging to measure the accumulation of

the two pathological hallmarks of Alzheimer’s disease,

amyloid-beta plaques and tau neurofibrillary tangles, are

key tools that have been identified for the early detection

of Alzheimer’s disease-related changes (Sperling et al.,

2011; Teipel et al., 2015; Jack et al., 2018). However,

these neuroimaging methods have limited availability and

are expensive, restricting their use in widespread screening.

Thus, many researchers are actively engaged in studies to

identify peripheral biomarkers that are cost-effective, non-

invasive and easy to administer.

In addition to the well-known cognitive effects related

to Alzheimer’s disease, patients with Alzheimer’s disease

often show profound changes in sensory and perceptual

processing, including in vision, smell, auditory function

and motor function, among other changes (Albers et al.,

2015). In the visual domain, patients with Alzheimer’s

disease have been reported to show alterations in colour

vision and pupillary response, among other changes. In

addition, we and others have observed that visual con-

trast sensitivity, as measured using frequency doubling

technology (FDT), was impaired in prodromal and mild

clinical Alzheimer’s disease (Cronin-Golomb et al., 1991;

Cormack et al., 2000; Crow et al., 2003; Risacher et al.,
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2013; Valenti, 2013; Polo et al., 2017) and linked to fu-

ture risk to dementia (Fischer et al., 2016; Ward et al.,

2018). Patients with Alzheimer’s disease and those in pro-

dromal stages, such as mild cognitive impairment (MCI),

show thinning of retinal layers, including the retinal nerve

fibre layer, and loss of retinal ganglion cells (Coppola

et al., 2015). Previous studies have suggested an associ-

ation between retinal nerve fibre layer and other retinal

layer thinning, as well as vascular changes, and amyloid

deposition on PET (Snyder et al., 2016; Santos et al.,

2018; van de Kreeke et al., 2020), while others have not

(Haan et al., 2019; Jung et al., 2019; van de Kreeke

et al., 2019). Some animal models of Alzheimer’s disease

have shown the accumulation of amyloid-beta, and its

precursor, amyloid precursor protein, and hyperphos-

phorylated tau in the retina (Koronyo-Hamaoui et al.,

2011; Koronyo et al., 2012; Chiasseu et al., 2017;

Koronyo et al., 2017; Grimaldi et al., 2018). A study by

Koronyo-Hamaoui et al. (2011) demonstrated that amyl-

oid deposition on the retina occurred concurrently with

amyloid deposition in the brain. Post-mortem studies of

human patients have shown mixed results, with some

showing pathological amyloid and tau accumulation in

the retinas of patients with Alzheimer’s disease and others

not observing such changes (Koronyo-Hamaoui et al.,

2011; Williams et al., 2017; den Haan et al., 2018).

Recent attempts to visualize amyloid accumulation in the

retina of patients with MCI and Alzheimer’s disease have

demonstrated sensitivity for detecting plaques that were

later confirmed on autopsy (Koronyo et al., 2017).

Overall, these findings suggest that the assessment of ret-

inal structure and function, as well as assessments of ret-

inal amyloid accumulation, might be promising peripheral

markers of central amyloid and tau pathology.

In the present report, we evaluated the relationship be-

tween FDT measures and cerebral amyloid and tau depos-

ition, measured using PET. We hypothesize that contrast

sensitivity will be associated with amyloid and tau depos-

ition on PET. First, we assessed the relationship of FDT

performance with amyloid and tau across the full cohort,

which includes cognitively normal older adults (CN), par-

ticipants with subjective cognitive decline (SCD) and

patients with MCI and Alzheimer’s disease. Then, to deter-

mine the sensitivity of this test to changes in participants

at high risk for Alzheimer’s disease, we evaluated the rela-

tionship of FDT with amyloid and tau in only SCD and

MCI participants. Finally, we determined the power of

FDT measures to predict amyloid or tau positivity.

Materials and methods

Participants

A total of 74 older adults (age 50þ years) were recruited

from the Indiana Memory and Aging Study cohort fol-

lowed by the Indiana Alzheimer Disease Center to

undergo advanced PET and MRI neuroimaging and vis-

ual testing. Participants included 7 patients diagnosed

with Alzheimer’s disease using standard criteria

(McKhann et al., 2011); 16 participants diagnosed with

MCI using previously established criteria (Petersen,

2004); 20 older adults characterized as SCD according to

the following criteria: elevated levels of subjective mem-

ory concerns on the 20-item Cognitive Change Index,

reflected as a score of �20 on the first 12 items, with or

without increased levels of informant-based concerns

(Jessen et al., 2014; Rattanabannakit et al., 2016), and

without a measurable cognitive deficit; and 31 CN with-

out significant memory concerns (12-item Cognitive

Change Index total<20) and without a significant per-

formance deficit on cognitive testing. The participants

underwent detailed neuropsychological testing, primarily

using the Uniform Dataset 3 (Weintraub et al., 2018),

along with the Rey Auditory Verbal Learning Test, Digit

Symbol Substitution and animal and vegetable fluency.

However, some individuals did not receive the Uniform

Dataset 3 but instead underwent a comprehensive neuro-

psychological battery (Saykin et al., 2006; Risacher et al.,

2013) with some overlapping tests (Craft Stories, animal

fluency, digit span and Trail Making A and B) and other

non-overlapping tests, including the California Verbal

Learning Test. We combined the Rey Auditory Verbal

Learning Test and California Verbal Learning Test results

into a ‘list learning z-score’ for both immediate total re-

call and delayed recall by creating a z-score relative to

CN participants from the larger Indiana Memory and

Aging study not included in this analysis, adjusted for

age, sex and years of education. Finally, all participants

received either a Mini-Mental State Examination or

Montreal Cognitive Assessment. The total scores from

the Mini-Mental State Examination were converted to

Montreal Cognitive Assessment total scores using the

method described in Trzepacz et al. (2015).

Due to the nature of the study, participants with macu-

lar degeneration, severe cataracts, primary open-angle

glaucoma, or diabetic retinopathy were excluded from

the study. In addition, one participant had glaucoma in

only one eye and, thus, only data from the non-glau-

comatous eye were used. All analyses were run with and

without those with suspected normal tension glaucoma,

and all results were consistent. Thus, those with sus-

pected normal tension glaucoma were included in the

analysis to be more representative of the at-risk

population.

All procedures were approved by the Indiana

University School of Medicine Institutional Review Board,

and informed consent was obtained according to the

Declaration of Helsinki and the Belmont Report.

Amyloid PET

Amyloid PET scans were done with either [18F]florbetapir

(Amyvid, Eli Lilly and Co.) or [18F]florbetaben
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(Neuraceq, Piramal Ltd.). For the [18F]florbetapir scans,

�10 mCi of [18F]florbetapir was injected intravenously

and, after a 50-min uptake period, participants were

imaged on a Siemens mCT for 20 min using continuous

listmode data acquisition. For the [18F]florbetaben scans,

�8 mCi of [18F]Florbetaben was injected intravenously

and, after a 90-min uptake period, data were acquired

for 20 min using continuous listmode acquisition on a

Siemens mCT. A computed tomography scan was

acquired for scatter and attenuation correction for both

types of amyloid tracers. Listmode data were subsequent-

ly rebinned into four 5-min frames for both tracers, and

reconstructions were conducted on the software platform

(Siemens, Knoxville, TN, USA). Ordered subset expect-

ation maximization was applied, using parameters from

the Alzheimer’s Disease Neuroimaging Initiative protocol

(http://adni.loni.usc.edu), with corrections for scatter and

random coincidence events, attenuation and radionuclide

decay. Using Statistical Parametric Mapping 8, the four

5-min frames were spatially aligned to each participant’s

individual magnetization-prepared rapid gradient-echo

scan, motion corrected, normalized to Montreal

Neurologic Institute space, and averaged to create a 50-

to 70-min static image for [18F]florbetapir scans or a 90-

to 110-min static image for [18F]florbetaben scans. Then,

standardized uptake value ratio (SUVR) images were cre-

ated by intensity normalizing to the whole cerebellum for

bother tracers. The whole cerebellum and cortical regions

of interest were taken from the Centiloid project (http://

www.gaain.org/centiloid-project/; Klunk et al., 2015). The

resulting SUVR images were converted to Centiloid units

as previously described (Klunk et al., 2015; Risacher

et al., 2017; Rowe et al., 2017; Navitsky et al., 2018).

Finally, the [18F]florbetapir and [18F]florbetaben Centiloid

scans were smoothed using an 8-mm full-width half max-

imum Gaussian kernel.

Regional [18F]florbetapir and [18F]florbetaben data in

Centiloid units were extracted from a global cortical

regions of interest from the Centiloid project (Klunk

et al., 2015; Risacher et al., 2017; Rowe et al., 2017;

Navitsky et al., 2018). Global cortical Centiloid units

�21.02 was considered as amyloid-beta positive, as this

cut-off best predicted the SUVR cut-offs produced by UC

Berkeley in the Alzheimer’s Disease Neuroimaging

Initiative (SUVR> 1.11 for [18F]Florbetapir and

SUVR> 1.08 for [18F]Florbetaben, data not shown).

[18F]Flortaucipir PET

Of the 74 individuals, 46 individuals also underwent

[18F]flortaucipir scans. Briefly, �10 mCi of

[18F]flortaucipir was injected intravenously; after a 75-

min uptake, participants were imaged for 30 min using

continuous listmode data acquisition on a Siemens mCT,

rebinned into six 5-min frames and reconstructed using

standard scanner software (Siemens), using ordered subset

expectation maximization, with correction for scatter and

random coincident events, attenuation and radionuclide

decay. Using Statistical Parametric Mapping 8, the middle

four 5-min frames (80–100 min) were motion corrected,

normalized to Montreal Neurologic Institute space, aver-

aged to create an 80- to 100-min static image, intensity

normalized to the cerebellar crus to create SUVR images

and smoothed with an 8-mm full-width half maximum

Gaussian kernel.

[18F]Flortaucipir SUVR was extracted from target

regions known to show tau binding in Alzheimer’s dis-

ease. Regions of interest were generated from participant-

specific parcellations for each individual from FreeSurfer

v5.1. Specifically, bilateral volume-weighted mean SUVR

values were extracted from the medial temporal lobe

(MTL, average of entorhinal cortex, fusiform and para-

hippocampal gyri), the lateral temporal lobe (LTL, aver-

age of banks of the superior temporal sulcus, inferior

temporal gyri, middle temporal gyri, superior temporal

gyri, transverse temporal pole) and the inferior parietal

lobe.

Structural MRI

Accelerated 3-dimensional magnetization-prepared rapid

gradient-echo scans were collected on a 3-T Siemens

Prisma scanner using the Alzheimer’s Disease

Neuroimaging Initiative-2 sequence (http://adni.loni.usc.

edu). Scans were coregistered to a Montreal Neurologic

Institute template and segmented using Statistical

Parametric Mapping 8 to create parameters for PET scan

processing described above. Scans were also processed

using FreeSurfer version 5.1 to create regions of interest

for extracting [18F]Flortaucipir SUVR and for the analysis

of selected regional atrophy measures, specifically lobar

(frontal, parietal, temporal and occipital) grey matter vol-

ume estimates.

Frequency doubling technology

Participants in this study underwent the FDT-2 24-2 vis-

ual field contrast sensitivity threshold examination (Welch

Allyn, Skaneateles Falls, NY, USA), which evaluates 55

visual field regions in the right eye, followed by 55

regions in the left eye with 24� coverage, a stimulus size

of 5�, a spatial frequency of 0.5 cycles per degree and a

temporal frequency of 18 Hz (Zeppieri and Johnson,

2008). The results of this test provide a single measure of

contrast sensitivity threshold (in decibels) at each of the

110 regions (55 right eye, 55 left eye) as previously

described (Turpin et al., 2003; McKendrick and Turpin,

2005). In addition to the threshold values for each re-

gion, a summary measure of general contrast sensitivity

across the visual field is reported for each eye, referred to

as the mean deviation in contrast sensitivity. A lower

mean deviation represents poorer contrast sensitivity per-

formance. In addition, because the 24-2 threshold visual

field test is iterative, examination duration (in seconds)
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represents a measure of contrast sensitivity performance,

as more iterations (longer examination time) are needed

in those with poorer contrast sensitivity. Thus, a longer

examination time represents poorer contrast sensitivity

performance. Finally, reliability tests are completed,

including estimations of fixation errors, false positive

errors and false negative errors, presented as previously

described (Anderson and Johnson, 2003; Zeppieri and

Johnson, 2008). Three participants had >50% errors in

a single eye, thus that data were excluded from further

analysis and only the eye without >50% errors was

included. All visual testing was done blinded to

diagnosis.

Statistical analysis

Differences between groups in demographic variables

were evaluated using an analysis of variance (ANOVA)

for continuous measures and chi-square for non-continu-

ous measures in the maximal sample for each modality.

Neuropsychological, clinical performance and basic imag-

ing variables were evaluated using an analysis of covari-

ance (ANCOVA) model, covaried for age, sex, race/

ethnicity, years of education (neuropsychological tests

only) and total intracranial volume (MRI variable only),

using Bonferroni correction for multiple comparisons.

The amyloid measures and examination duration were

transformed using a natural log to create normally dis-

tributed variables. Mean deviation in contrast sensitivity

was normally distributed without transformation. Tau

SUVR measures were non-normal regardless of trans-

formation type. Thus, regional tau SUVR measures were

transformed using a rank-based normal transformation

with Blom’s formula. The associations between FDT vari-

ables and the natural log of cortical amyloid, as well as

transformed MTL, LTL and inferior parietal gyri tau,

were evaluated using partial Pearson correlations, adjust-

ing for age, sex and race/ethnicity. The associations be-

tween FDT variables and lobar atrophy measures were

evaluated using a partial Pearson correlation, covaried for

age, sex and intracranial volume. Analyses were con-

ducted in both the full sample and SCD and MCI only.

Next, the strongest associated FDT variable for the

amyloid and tau analyses (duration and mean deviation,

respectively) were entered in voxel-wise regressions and

masked for grey and white matter regions, in Statistical

Parametric Mapping 8 to evaluate the whole brain associ-

ation pattern between these FDT measures and amyloid

and tau, covaried for age, sex and race/ethnicity. A

voxel-wise threshold of P-value <0.05 family-wise error-

corrected for multiple comparisons and minimum cluster

size (k)¼ 10 voxels was considered significant in the anal-

yses across all participants and in SCD and MCI only

for amyloid. The voxel-wise analyses of tau in patients

with SCD and MCI only were thresholded at a cluster-

wise P-value <0.05 family-wise error-corrected for mul-

tiple comparisons due to the reduced number of

participants in this analysis (n¼ 21). Finally, the ability

of the FDT variables most strongly associated to regional

amyloid and tau (duration and mean deviation, respect-

ively) to predict amyloid and tau positivity, defined as

global cortical Centiloid units �21.02 and Braak stage

�4 on either hemisphere (Schwarz et al., 2018), respect-

ively, was evaluated using a receiver operating character-

istc (ROC) and forward conditional logistic regression

models, covaried for age, sex and race/ethnicity. All anal-

yses were done across all participants and in non-demen-

ted at-risk (SCDþMCI) participants only. In addition, all

analyses were repeated after removing participants who

were 3 SD above or below the whole group mean in ei-

ther FDT or neuroimaging variables. Removal of these

outliers did not significantly alter the relationships

observed; thus, all participants are included in the analy-

ses described below (data not shown). All non-voxel-wise

statistical analyses were performed using Statistical

Package for Social Sciences version 25 (https://www.ibm.

com/products/spss-statistics).

Data availability

The data for this study were collected at Indiana

University School of Medicine. Deidentified data specific

to this analysis are available to researchers upon request

through the Indiana Alzheimer Disease Center.

Results

Demographics and performance

Demographic and other sample characteristics are

described in Table 1. Significant differences among

groups in age, sex and race/ethnicity were observed

(P< 0.05; Table 1). However, education and APOE

genotype were not significantly different among groups.

Expected impairments in cognition were observed in

patients with MCI and Alzheimer’s disease across cogni-

tive domains, as well as increased self and informant

complaints (most P< 0.001, Table 1). SCD participants,

by design, did not show any significant differences from

CN in cognitive performance but showed significantly ele-

vated cognitive concerns on the Cognitive Change Index

(all P< 0.001; Table 1). Significant or trend differences in

contrast sensitivity performance were found across

groups, with lower performance in patients with MCI

and Alzheimer’s disease (P< 0.05; Table 1). In addition,

amyloid and tau deposition was significantly higher in

patients with MCI and Alzheimer’s disease relative to

SCD and CN, while hippocampal volume was lower, as

expected (P< 0.001; Table 1).
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Table 1 Sample description [mean (standard deviation)]

CN

(n 5 31)

SCD

(n 5 20)

MCI

(n 5 16)

Alzheimer’s

disease (n 5 7)

P-value Pair comparisons

(P < 0.05 corrected*)

Age (years) 68.8 (4.8) 72.7 (6.4) 75.5 (8.5) 73.2 (10.6) 0.014 MCI>CN

Sex (M, F) 7, 24 9, 11 9, 7 4, 3 0.080 None

Years of education 16.9 (2.1) 17.0 (2.4) 15.4 (2.9) 17.0 (2.5) ns None

Race/ethnicity (% non-Hispanic

Caucasian) (%)

90.3 80.0 81.3 57.1 ns None

APOE e4 genotype (% e4þ)a (%) 51.7 45.0 40.0 85.7 ns None

MoCA total scoreb 26.6 (2.2) 26.2 (2.2) 22.4 (2.9) 15.8 (5.3) <0.001 CN, SCD>MCI>Alzheimer’s disease

CDR—memoryb 0.05 (0.12) 0.04 (0.15) 0.55 (0.25) 0.97 (0.00) <0.001 Alzheimer’s disease >MCI> SCD, CN

CDR—globalb 0.04 (0.12) 0.04 (0.15) 0.46 (0.13) 0.85 (0.24) <0.001 Alzheimer’s disease >MCI> SCD, CN

CDR—sum of boxesb 0.06 (0.23) 0.12 (0.28) 1.50 (1.25) 4.26 (1.19) <0.001 Alzheimer’s disease >MCI> SCD, CN

Digit span—forwardb,c 7.6 (2.1) 8.9 (2.4) 7.3 (2.1) 7.2 (1.8) ns None

Digit span—backwardb,c 6.7 (2.4) 7.5 (1.9) 5.3 (2.5) 5.1 (1.6) 0.040 None

Animal fluencyb,c 22.3 (4.8) 22.6 (4.8) 17.8 (3.7) 13.1 (4.7) <0.001 CN, SCD>MCI, Alzheimer’s disease

Vegetable fluencyb,d 16.6 (4.4) 14.9 (3.7) 10.6 (2.8) 6.4 (4.1) <0.001 CN, SCD>MCI, Alzheimer’s disease

Trail making A (s)b,c 33.7 (14.6) 28.5 (10.1) 39.8 (15.1) 61.5 (44.0) 0.002 Alzheimer’s disease > SCD, CN

Trail making B (s)b,e 83.2 (43.2) 76.6 (28.8) 144.9 (102.8) 244.0 (48.6) <0.001 Alzheimer’s disease >MCI> SCD, CN

Verbal list learning—

immediate (z-score)f,g
�0.05 (0.88) �0.06 (0.94) �1.26 (0.93) �2.83 (0.72) <0.001 CN, SCD>MCI>Alzheimer’s disease

Verbal list learning—

delayed (z-score)f,g
0.09 (0.94) 0.10 (0.98) �1.61 (1.30) �3.48 (1.27) <0.001 CN, SCD>MCI>Alzheimer’s disease

Craft story recall—immediateb,h 21.4 (5.3) 22.8 (5.2) 14.3 (5.9) 8.0 (4.2) <0.001 CN, SCD>MCI, Alzheimer’s disease

Craft story recall—delayedb,i 19.0 (5.2) 20.0 (5.3) 11.3 (6.1) 3.7 (2.4) <0.001 CN, SCD, MCI>Alzheimer’s

disease; SCD>MCI

Benson figure copyb,j 15.6 (1.3) 15.1 (1.3) 15.7 (1.5) 10.5 (7.4) <0.001 CN, SCD, MCI>Alzheimer’s disease

Benson figure delayed recallb,k 11.9 (2.5) 12.8 (2.2) 8.1 (5.7) 0.8 (1.2) <0.001 CN, SCD, MCI>Alzheimer’s disease

MINT total score b,k 29.3 (2.2) 29.8 (2.4) 28.6 (3.6) 26.3 (5.7) ns None

Letter fluencyb,l 28.1 (6.0) 30.9 (8.4) 27.0 (7.4) 28.7 (14.3) ns None

CCI self—12-item totalb,m 16.0 (4.0) 26.6 (4.9) 34.5 (10.2) 36.3 (11.0) <0.001 Alzheimer’s disease, MCI, SCD>CN

CCI self—20-item totalb,m 25.1 (6.0) 39.8 (7.7) 53.8 (17.2) 56.0 (17.6) <0.001 MCI> SCD>CN; Alzheimer’s

disease >CN

CCI informant—12-item totalb,n 15.2 (5.7) 16.8 (5.4) 36.8 (11.6) 45.6 (9.7) <0.001 Alzheimer’s disease, MCI> SCD, CN

CCI informant—20-item totalb,n 24.4 (9.7) 26.3 (7.0) 58.5 (21.1) 76.7 (15.6) <0.001 Alzheimer’s disease, MCI> SCD, CN

Duration of FDT-2 examination (s)o 310.3 (9.5) 309.1 (7.9) 318.6 (13.7) 320.4 (16.3) 0.018 None

Mean deviation in

contrast sensitivityo

�0.9 (2.4) �0.9 (2.7) �2.3 (3.8) �4.3 (6.2) 0.088 None

Pattern standard deviation in

contrast sensitivityo

2.9 (0.5) 3.1 (0.5) 3.7 (1.0) 3.9 (1.1) 0.005 Alzheimer’s disease, MCI>CN

Cortical amyloid Centiloido 2.4 (20.2) 21.5 (40.9) 54.3 (52.9) 98.2 (20.8) <0.001 Alzheimer’s disease, MCI>CN;

Alzheimer’s disease > SCD

Lateral temporal tau SUVRo,p 1.12 (0.6) 1.13 (0.6) 1.30 (0.35) 2.11 (0.50) <0.001 CN, SCD, MCI>Alzheimer’s disease

Hippocampal volumeq 3770.4 (356.4) 3821.2 (532.2) 3518.3 (589.1) 3007.5 (521.0) <0.001 CN, SCD, MCI>Alzheimer’s disease

APOE: apolipoprotein E; CCI: Cognitive Change Index; CDR: Clinical Dementia Rating Scale; F: female; M: male; MoCA: Montreal Cognitive Assessment; ns: ���.
*Bonferroni corrected.
aThree participants missing (2 CN, 1 MCI).
bCovaried for age, sex, education and race/ethnicity.
cFive participants missing (1 CN, 2 SCD, 1 MCI, 1 Alzheimer’s disease).
dEleven participants missing (3 CN, 2 SCD, 4 MCI, 2 Alzheimer’s disease).
eSeven participants missing (1 CN, 2 SCD, 1 MCI, 3 Alzheimer’s disease).
fTen participants missing (5 CN, 2 SCD, 2 MCI, 1 Alzheimer’s disease).
gCovaried for race/ethnicity; pre-adjusted for age, sex and education.
hNine participants missing (2 CN, 3 SCD, 3 MCI, 1 Alzheimer’s disease).
iTen participants missing (2 CN, 3 SCD, 3 MCI, 2 Alzheimer’s disease).
jTwenty participants missing (5 CN, 5 SCD, 7 MCI, 3 Alzheimer’s disease).
kTwenty-one participants missing (5 CN, 5 SCD, 7 MCI, 4 Alzheimer’s disease).
lTwenty-two participants missing (5 CN, 5 SCD, 8 MCI, 4 Alzheimer’s disease).
mTwenty-two participants missing (6 CN, 4 SCD, 8 MCI, 4 Alzheimer’s disease).
nTwenty-six participants missing (8 CN, 7 SCD, 8 MCI, 3 Alzheimer’s disease).
oCovaried for age, sex and race/ethnicity.
pTwenty-eight participants missing (8 CN, 8 SCD, 7 MCI, 5 Alzheimer’s disease).
qCovaried for age, sex, race/ethnicity and total intracranial volume.
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Contrast sensitivity associations
with regional amyloid

Across all participants, significant associations be-

tween mean deviation in contrast sensitivity and cor-

tical amyloid deposition [rp¼�0.331, degrees of

freedom (df)¼ 69, P¼ 0.005; Fig. 1A] and between

examination duration and amyloid deposition in the

global cortex (rp¼ 0.452, df¼ 69, P< 0.001; Fig. 1B)

were observed. Within only individuals with either

SCD or MCI, significant associations between mean

deviation in contrast sensitivity and cortical amyloid

deposition (rp¼�0.363, df¼ 31, P¼ 0.038; Fig. 1C)

and between examination duration and global cortical

amyloid (rp¼ 0.656, df¼ 31, P< 0.001; Fig. 1D) were

observed.

Contrast sensitivity associations
with regional tau

Significant associations between mean deviation in con-

trast sensitivity and transformed MTL tau (rp¼�0.499,

df¼ 46, P¼ 0.001; Fig. 2A), LTL tau (rp¼�0.596,

df¼ 46, P< 0.001; Fig. 2B) and inferior parietal lobule

tau (rp¼�0.559, df¼ 46, P< 0.001; Fig. 2C) were

observed. In addition, examination duration was associ-

ated with all tau of these regions, including the MTL

(rp¼ 0.422, df¼ 46, P¼ 0.006; Fig. 2D), LTL (rp¼ 0.417,

df¼ 46, P¼ 0.007; Fig. 2E) and inferior parietal lobule

(rp¼ 0.444, df¼ 46, P¼ 0.004; Fig. 2F). In SCD and

MCI participants only, even stronger associations were

observed between mean deviation in contrast sensitivity

and transformed tau deposition in the MTL (rp¼�0.728,

Figure 1 Visual contrast sensitivity is associated with regional cerebral amyloid deposition. Significant associations between visual

contrast sensitivity, measured as mean deviation in contrast sensitivity (A, P¼ 0.005) and examination duration (B, P< 0.001), and cortical

amyloid deposition were observed across all participants (n¼ 74). In SCD and MCI individuals only (n¼ 36), significant associations were

observed between cortical amyloid and mean deviation in contrast sensitivity (C, P¼ 0.038), as well as examination duration (D, P< 0.001).

Note that examination duration (indicated as the natural log of seconds needed to complete the examination) is a measure of contrast sensitivity

performance as the test is iterative and those with poorer contrast sensitivity take longer on the examination, while lower mean deviation scores

represent poorer contrast sensitivity performance. A and B include 31 CN (blue circles), 20 SCD (green triangles), 16 MCI (yellow squares), and

7 AD (red diamonds); C and D include 20 SCD (green triangles) and 16 MCI (yellow squares).
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df¼ 21, P¼ 0.001; Fig. 3A), LTL (rp¼�0.775, df¼ 21,

P< 0.001; Fig. 3B) and inferior parietal lobule

(rp¼�0.641, df¼ 21, P¼ 0.007; Fig. 3C). Finally, in

SCDþMCI participants only, examination duration

showed significant association with tau in the MTL

(rp¼ 0.616, df¼ 21, P¼ 0.011; Fig. 3D) and a trend for

an association with tau in the LTL (rp¼ 0.446, df¼ 21,

P¼ 0.084; Fig. 3E) and inferior parietal lobule

(rp¼ 0.429, df¼ 21, P¼ 0.097; Fig. 3F).

Contrast sensitivity associations

with regional atrophy

Temporal lobe grey matter volume was significantly asso-

ciated with both mean deviation in contrast sensitivity

(rp¼ 0.277, P¼ 0.020; Fig. 4A) and examination duration

(rp¼�0.349, P¼ 0.003; Fig. 4B) in the full sample of

participants. Similarly, an association between temporal

lobe grey matter volume and mean deviation in contrast

sensitivity (rp¼ 0.418, P¼ 0.017; Fig. 4C) and examin-

ation duration (rp¼�0.446, P¼ 0.011; Fig. 4D) was

observed in the at-risk cohort of SCDþMCI participants

only.

Voxel-wise associations of contrast
sensitivity with amyloid

Amyloid in widespread regions showed association with

examination duration, including in the lateral parietal

and temporal lobes, the occipital lobe and the frontal

lobe (Fig. 5A). When the analyses were limited to only

SCD and MCI participants, more focal associations were

observed between amyloid and examination duration,

including in the medial and lateral parietal lobes, the

temporal lobes and the occipital lobe (Fig. 5B).

Voxel-wise associations of contrast
sensitivity with tau

Significant associations between mean deviation in con-

trast sensitivity and tau deposition in widespread regions

of the posterior cortex, including the temporal and par-

ietal lobes, the occipital lobe and a few regions in the

frontal lobe (Fig. 6A), were observed. In SCD and MCI

participants only, a very similar pattern of regions was

significantly associated with mean deviation in contrast

sensitivity, albeit at a less stringent but still significant

threshold (cluster-wise versus voxel-wise P< 0.05 family-

wise error). Specifically, mean deviation in contrast

Figure 2 Visual contrast sensitivity is associated with regional cerebral tau deposition. Mean deviation in visual contrast sensitivity is

significantly associated with normal transformed [18F]flortaucipir SUVR in the MTL (A, P¼ 0.001), LTL (B, P< 0.001) and inferior parietal lobe

(C, P< 0.001) across all participants (n¼ 46). In addition, examination duration is associated with normal transformed [18F]flortaucipir SUVR in

the MTL (D, P¼ 0.006), LTL (E, P¼ 0.007) and inferior parietal lobe (F, P¼ 0.004) across all participants. Note that examination duration

(indicated as the natural log of seconds needed to complete the examination) is a measure of contrast sensitivity performance as the test is

iterative and those with poorer contrast sensitivity take longer on the examination, while lower mean deviation scores represent poorer

contrast sensitivity performance. Analysis includes 23 CN (blue circles), 12 SCD (green triangles), 9 MCI (yellow squares), and 2 AD (red

diamonds).
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sensitivity was associated with tau deposition in wide-

spread regions of the lateral temporal and parietal lobes

and the occipital lobe (Fig. 6B).

Predictive modelling

Using a logistic regression model, duration of examin-

ation alone significantly predicted cerebral amyloid posi-

tivity, with an overall accuracy of 75.7% (91.7%

specificity, 46.2% sensitivity; P< 0.001). The ROC ana-

lysis showed significant prediction of amyloid positivity

by examination duration with an area under the curve of

0.731 (Fig. 7A; P¼ 0.001). In SCD and MCI participants

only, examination duration, along with race/ethnicity,

predicted amyloid positivity with an overall accuracy of

86.1% (95.5% specificity, 71.4% sensitivity; P< 0.001).

In addition, the ROC analysis showed a significant pre-

diction of amyloid positivity by examination duration

with an area under the curve of 0.865 (Fig. 7C;

P< 0.001).

Mean deviation in contrast sensitivity significantly pre-

dicted tau positivity across all participants, with an over-

all accuracy of 82.6% (97.1% specificity, 36.4%

sensitivity; P¼ 0.003). The ROC analysis demonstrated a

significant prediction of tau positivity by mean deviation

in contrast sensitivity with an area under the curve of

0.735 (Fig. 7B; P¼ 0.020). The analyses in SCD and

MCI participants only showed a stronger prediction of

tau positivity with the combination of mean deviation in

contrast sensitivity and race/ethnicity showing an overall

accuracy of 90.5% (93.8% specificity, 80.0% sensitivity;

P< 0.001) in these at-risk individuals. Finally, the ROC

analysis also demonstrated a significant prediction of tau

positivity by mean deviation in contrast sensitivity with

an area under the curve of 0.863 (Fig. 7D; P¼ 0.017).

Discussion
In this study, we demonstrated that visual contrast sensi-

tivity, as measured via FDT, is associated with cerebral

deposition of amyloid and tau, as well as neurodegenera-

tion, across the spectrum of Alzheimer’s disease progres-

sion, as well as in at-risk groups only. Specifically, we

saw strong regional and global associations of amyloid

and tau, as well as temporal lobe atrophy, with visual

contrast sensitivity metrics, as well as a strong predictive

ability of contrast sensitivity measures to predict amyloid

and tau positivity. Overall, our findings suggest that vis-

ual contrast sensitivity may be a novel, inexpensive and

Figure 3 Visual contrast sensitivity is associated with regional cerebral tau deposition in SCD and MCI participants only. In

SCD and MCI participants only (n¼ 21), the mean deviation in visual contrast sensitivity is significantly associated with normal transformed

[18F]flortaucipir SUVR in the MTL (A, P¼ 0.001), LTL (B, P< 0.001) and inferior parietal lobe (C, P¼ 0.007). In addition, examination duration is

associated with normal transformed [18F]flortaucipir SUVR in the MTL (D, P¼ 0.011), LTL (E, P¼ 0.084) and inferior parietal lobe (F, P¼ 0.097).

Note that examination duration (indicated as the natural log of seconds needed to complete the examination) is a measure of contrast sensitivity

performance as the test is iterative and those with poorer contrast sensitivity take longer on the examination, while lower mean deviation scores

represent poorer contrast sensitivity performance. Analysis includes12 SCD (green triangles) and 9 MCI (yellow squares).
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easy-to-administer biomarker for Alzheimer’s disease-

related pathological changes.

Numerous studies have shown visual system dysfunc-

tion in patients with Alzheimer’s disease and MCI

(Albers et al., 2015). The most consistent findings are a

reduced retinal nerve fibre layer thickness in MCI and

Alzheimer’s disease (Coppola et al., 2015). Fewer studies

have addressed changes in retinal function, but deficits in

visual evoked potential, colour vision and other changes

have been observed (Frost et al., 2010; Albers et al.,

2015). The findings in this study add to the long litera-

ture on contrast sensitivity deficits in Alzheimer’s disease

(Cronin-Golomb et al., 1991; Cormack et al., 2000;

Crow et al., 2003; Risacher et al., 2013; Valenti, 2013;

Fischer et al., 2016; Polo et al., 2017; Ward et al.,

2018), by linking visual dysfunction not only with

clinical status but also with the underlying proteinopa-

thies thought to cause Alzheimer’s disease, thereby sug-

gesting that these relationships may be potential

underlying biological causes for previously observed defi-

cits in contrast sensitivity in those with or at risk for

Alzheimer’s disease.

The underlying cause of deficits observed in visual sys-

tem function and structure in MCI and Alzheimer’s dis-

ease is unknown. However, changes in both the retina

and brain could underlie some of these deficits. Recently,

a number of studies have suggested local accumulation of

amyloid-beta and tau deposits in the retina, both in ani-

mal models and post-mortem tissue (Koronyo-Hamaoui

et al., 2011; Chiasseu et al., 2017; Koronyo et al., 2017;

den Haan et al., 2018; Grimaldi et al., 2018). A previous

study in an Alzheimer’s disease animal model suggested

Figure 4 Visual contrast sensitivity is associated with temporal lobe volume. Significant associations between temporal lobe grey

matter volume and mean deviation in visual contrast sensitivity (A, P¼ 0.020) and examination duration (B, P¼ 0.003) were observed across all

participants (n¼ 74). Similar associations were observed when the analysis was limited to only the at-risk individuals (SCD and MCI participants;

n¼ 36), including significant associations between temporal lobe volume and mean deviation (C, P¼ 0.017) and examination duration (D,

P¼ 0.011). Note that examination duration (indicated as the natural log of seconds needed to complete the examination) is a measure of

contrast sensitivity performance as the test is iterative and those with poorer contrast sensitivity take longer on the examination, while lower

mean deviation scores represent poorer contrast sensitivity performance. A and B include 31 CN (blue circles), 20 SCD (green triangles), 16

MCI (yellow squares), and 7 AD (red diamonds); C and D include 20 SCD (green triangles) and 16 MCI (yellow squares).
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that amyloid accumulation in the retina occurs simultan-

eously with amyloid accumulation in the brain (Koronyo-

Hamaoui et al., 2011). In fact, a recent protocol to detect

these deposits in vivo has been recently reported and

reflects an exciting potential area for the biomarker de-

tection of Alzheimer’s disease (Klunk et al., 2015).

Furthermore, previous studies have suggested local dys-

function, neuroinflammation and loss of retinal ganglion

cells associated with tau aggregation in an animal model

(Chiasseu et al., 2017; Grimaldi et al., 2018). Thus, the

visual contrast sensitivity deficits that we observed in

the present study could be due to local degeneration of

Figure 5 Visual contrast sensitivity is associated with voxel-wise cerebral amyloid deposition. On the voxel-wise analysis, significant

associations between visual contrast sensitivity (examination duration) and amyloid deposition in the medial and lateral temporal and parietal

lobes, as well as focal regions of the occipital and frontal lobes, were observed both (A) across all participants (n¼ 74; 31 CN, 20 SCD, 16 MCI,

7 AD) or (B) SCD and MCI individuals only (n¼ 36). Note that examination duration (indicated as the natural log of seconds needed to

complete the examination) is a measure of contrast sensitivity performance as the test is iterative and those with poorer contrast sensitivity take

longer on the examination, while lower mean deviation scores represent poorer contrast sensitivity performance. Both analyses are displayed at

a voxel-wise threshold of P-value <0.05 (family-wise error correction for multiple comparisons) and minimum cluster size (k)¼ 10 voxels.

Figure 6 Visual contrast sensitivity is associated with voxel-wise cerebral tau deposition. Significant associations between mean

deviation in visual contrast sensitivity and tau deposition in the lateral and medial temporal and parietal lobes, as well as focal regions of the

occipital and frontal lobes, were observed both (A) across all participants (n¼ 46; 23 CN, 12 SCD, 9 MCI, 2 AD) or (B) SCD and MCI

individuals only (n¼ 21). The full sample analysis (A) is displayed at a voxel-wise threshold of P< 0.05 [family-wise error (FWE) correction for

multiple comparisons] and minimum cluster size (k)¼ 10 voxels. Note that lower mean deviation scores represent poorer contrast sensitivity

performance. *The SCD and MCI participants only sample (B) is displayed at a cluster-wise threshold of P-value <0.05 (FWE correction for

multiple comparisons), which is equivalent to P-value <0.001 (uncorrected) and minimum cluster size (k)¼ 400 voxels.
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retinal neuronal cells, including the retinal ganglion

cells, due to the accumulation of amyloid and tau

pathology.

Alternatively, amyloid and tau accumulation in the

brain may also potentially underlie the observed changes

in contrast sensitivity. The associations of contrast sensi-

tivity dysfunction with amyloid were strongest in poster-

ior regions of the brain, most especially the occipital

lobe. Although this area is not considered to be highly

impacted early in Alzheimer’s disease, amyloid accumula-

tion does occur in the occipital lobe (Thal et al., 2002).

These findings may suggest that at least part of the

contrast sensitivity deficits could be due to central amyl-

oid accumulation. Furthermore, the stereotypical progres-

sion of tau deposition beyond Braak stage 3 highly

overlaps with the ventral visual stream and other visual

association areas (Braak et al., 2006). Again, tau depos-

ition and associated neurodegeneration in these regions

may underlie at least part of the observed changes in vis-

ual contrast sensitivity performance. Future studies with

longitudinal FDT and neuroimaging, as well as visual

studies in animal models of Alzheimer’s disease, may help

us to better understand the underlying pathology causing

the observed changes in visual contrast sensitivity.

Figure 7 Receiver operating characteristic (ROC) curves for predicting amyloid and tau positivity by visual contrast

sensitivity. Visual contrast sensitivity (examination duration) significantly predicted amyloid positivity (defined as cortical Centiloid value

�21.02) in the full sample (A; n¼ 74; AUC¼ 0.731, P¼ 0.001). In addition, visual contrast sensitivity (mean deviation) predicted tau positivity,

defined as assignment to Braak stage �4 (Schwarz et al., 2018), in the full sample (B; n¼ 46; AUC¼ 0.735, P¼ 0.020). In SCD and MCI

participants only, similar patterns were seen with examination duration predicting amyloid positivity (C; n¼ 36; AUC¼ 0.865, P< 0.001) and

mean deviation-predicted tau positivity (D; n¼ 21; AUC¼ 0.863, P¼ 0.017). AUC: area under the curve.

12 | BRAIN COMMUNICATIONS 2020: Page 12 of 14 S. L. Risacher et al.



This study has a few limitations. Although by far the

largest sample in a study of this type, the sample size is

relatively modest. In addition, the study is cross-sectional.

Future studies in a larger sample with longitudinal visual

examinations, neuroimaging and clinical follow-up are

warranted. The sample used in this analysis excludes

individuals with primary open-angle glaucoma, macular

degeneration and diabetic retinopathy, which are relative-

ly common in aging populations. Future studies testing

this tool in mixed samples of those with and without

concurrent eye disease would be needed to demonstrate

validity across a more clinically diverse set of individuals.

However, the current data suggest that, in this popula-

tion, visual contrast sensitivity on FDT is a good screen-

ing biomarker for the presence of Alzheimer’s disease

pathophysiology.

In sum, visual contrast sensitivity measures were

strongly associated with the presence of cerebral amyloid

and tau deposition. The findings suggest that visual con-

trast sensitivity should be explored further as an inexpen-

sive, non-invasive and easy-to-administer tool for

screening older adults for the presence of Alzheimer’s dis-

ease pathology, especially when combined with other risk

factors.
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