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Emerging viruses have become increasingly important with recurrent epidemics. 
Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contrib-
utes significantly to global morbidity and mortality, especially in young children, immuno-
compromised, and elderly people. IAV infection is typically confined to the airways and 
the virus replicates in respiratory epithelial cells but can also infect resident immune cells. 
Clearance of infection requires virus-specific adaptive immune responses that depend 
on early and efficient innate immune responses against IAV. Mononuclear phagocytes 
(MNPs), comprising monocytes, dendritic cells, and macrophages, have common but 
also unique features. In addition to being professional antigen-presenting cells, MNPs 
mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflamma-
tion, and shape immune responses. The immune protection mediated by MNPs can 
be compromised during IAV infection when the cells are also targeted by the virus, 
leading to impaired cytokine responses and altered interactions with other immune cells. 
Furthermore, it is becoming increasingly clear that immune cells differ depending on their 
anatomical location and that it is important to study them where they are expected to 
exert their function. Defining tissue-resident MNP distribution, phenotype, and function 
during acute and convalescent human IAV infection can offer valuable insights into 
understanding how MNPs maintain the fine balance required to protect against infections 
that the cells are themselves susceptible to. In this review, we delineate the role of MNPs 
in the human respiratory tract during IAV infection both in mediating immune protection 
and as targets of the virus.
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Abbreviations: AMϕ, alveolar macrophage; ARDS, acute respiratory distress syndrome; BAL, bronchoalveolar lavage; CM, 
classical monocyte; DC, dendritic cell; IAV, influenza A virus; IFN, interferon; IM, intermediate monocyte; IMϕ, interstitial 
macrophage; ISG, interferon-stimulated gene; LRT, lower respiratory tract; MDC, myeloid dendritic cell; MNP, mononuclear 
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inTRODUCTiOn

Emerging viruses including influenza viruses, contribute sig-
nificantly to human morbidity and mortality. Influenza is one of 
the oldest diseases known to mankind, with historical reports of 
influenza outbreaks dating as far back as 1173 (1). Still, influenza 
viruses are considered emerging/re-emerging viruses due to their 
capacity to dramatically change and cause epidemics with high 
mortality rate (2–5).

There are two forms of influenza: seasonal and pandemic. 
Seasonal influenza epidemics are caused by influenza A and B 
viruses and seasonal strains undergo mutations referred to as 
antigenic drift. For influenza A viruses (IAVs) antigenic drift is 
typically more pronounced each season, while it is more gradual 
for influenza B (6–9). Seasonal influenza epidemics contribute 
heavily to global disease burden and to deaths associated with 
lower respiratory tract (LRT) infections. 3–5 million cases of 
severe illness and 290–650,000 deaths annually are estimated, 
especially in young children, immunocompromised, and elderly 
people (10–13). The clinical picture of IAV infection is broad, 
ranging from mild/no symptoms, to viral pneumonia, severe 
respiratory failure, or acute respiratory distress syndrome. IAV 
infection results in increased susceptibility to secondary bacterial 
infections, which also contribute to mortality (14–16). In addi-
tion, circulating IAV strains can, at unpredictable intervals, cause 
influenza pandemics when the virus undergoes more dramatic 
genetic changes known as antigenic shift. Four pandemics have 
occurred in the past century: the 1918 Spanish flu, the 1957 Asian 
flu, the 1968 Hong Kong flu, and the 2009 Swine flu. Influenza 
pandemics are usually characterized by higher mortality than 
seasonal epidemics, often in age groups that are not typically at 
risk for influenza infections (17–23).

The nature and severity of influenza disease are influenced by the 
properties of the virus, host genetics, pre-existing immunity, and 
the immune response generated to varying extents—their relative 
contributions remaining incompletely understood (24–30). Highly 
pathogenic strains, like the Spanish flu, induce massive immune 
responses, suggesting that too potent antiviral immune responses 
are pathogenic rather than protective and that immunopathology 
is central in influenza (19, 31–37). Still, robust immune responses 
against IAV are required to control and clear infection (38–40). 
Mononuclear phagocytes (MNPs)— monocytes, dendritic cells 
(DCs), and macrophages (Mϕ)—are important in IAV infection 
as they are capable of limiting virus release; sensing and phago-
cytosing pathogens; clearing virus and apoptotic cells; releasing 
cytokines to mediate inflammation; directing leukocyte traffic via 
chemokine release; processing and presenting viral antigens; and 
finally activating naïve T cells (41–49).

The distribution and function of immune cells, including 
MNPs, differ between anatomical compartments (50–53). 
However, the exact nature of MNP involvement in human 
IAV infection remains largely unclear. Sampling the human 
respiratory tract in patients during ongoing infection poses 
significant challenges of accessibility and risk of causing further 
injury to the mucosal barrier. Defining human respiratory MNP 
distribution, phenotype, and function during IAV infection can 
therefore offer valuable insights into understanding how the 

immune system maintains the fine balance required to protect 
against infections. In this review, we will summarize insights 
on the role of MNPs in the human respiratory tract during IAV 
infection both in mediating immune protection and as targets 
of the virus.

HUMAn ReSPiRATORY MnPs

The human respiratory tract encompasses a large mucosal 
surface with the densest vasculature of all organ systems, that 
is constantly exposed to the external environment with every 
inhalation (54, 55). MNPs are positioned along the respiratory 
tree, in anticipation of exposure to foreign material and respira-
tory pathogens. MNPs are dually tasked with both promoting 
inflammation and maintaining tolerance, without disrupting 
the mucosal barrier that separates the air-filled alveolar spaces 
from sterile blood in the capillaries (56). A detailed understand-
ing of the distribution and function of respiratory MNPs from 
the nasal cavities to the alveoli is essential, yet currently incom-
plete, largely due to the challenges of accessing these tissues 
in humans. However, recent studies have generated important 
insight in this area and Mϕs, monocytes, monocyte-derived 
DCs (mo-DCs), and bona fide DC subsets have been identified 
from healthy human respiratory tissues. Figure 1 summarizes 
the current understanding of the phenotype and distribution 
of human MNP subsets in respiratory tissues at steady state, as 
reported (41, 51, 52, 57–62).

Alveolar macrophages (AMϕs) are the most abundant phago-
cytes of the human lungs, responsible for internalizing inhaled 
pathogens and antigens, and comprising 95% of cells sampled 
via bronchoalveolar lavage (BAL) (51, 58, 60, 77). Interstitial 
macrophages, a functionally distinct population of Mϕs resid-
ing in lung parenchymal tissue, are less accessible and thus less 
well studied (63, 78). Similar to monocytes in blood, respiratory 
monocytes have been characterized as classical monocytes (CMs: 
CD14+ CD16−), intermediate monocytes (IM: CD14+ CD16+), 
and non-classical monocytes (NCMs: CD14− CD16+) (51, 52, 
58, 64–66). IMs are more frequent in the airways, as opposed to 
blood, where CMs are in abundance; while NCMs seem to be 
the rarest monocyte subset (51, 58–60). CMs are the first cells to 
migrate out of blood to infiltrate sites of inflammation, release 
chemokines to attract other leukocytes; and can differentiate 
into mo-DCs and Mϕs (67, 68). IMs represent a population of 
differentiating monocytes that have been reported to expand 
during inflammation and/or infection (79–82). NCMs have been 
attributed with patrolling functions, debris removal, promoting 
wound healing (64, 81), and to some extent, TLR3 mediated 
type I interferon (IFN) production (69). Mo-DCs are an inter-
esting subset that transiently arises in tissues from (primarily 
classical) monocytes recruited to the site of inflammation (46). 
In comparison to monocytes, DCs are rare in blood, and rarer 
still in the airways. Subsets of CD11c-expressing myeloid DCs 
(MDCs); CD1c+ MDCs, CD141+ MDCs, and more recently, 
langerin+ MDCs (with variable CD1a expression), as well as 
CD123+ plasmacytoid DCs (PDCs) have been described in the 
human respiratory tract (51, 57–60, 70–72). MDCs are excellent 
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FigURe 1 | Mononuclear phagocyte (MNP) phenotype and distribution vary across human respiratory compartments. (A) Respiratory compartments and sampling 
sites. In the human upper respiratory tract, the initial site of influenza A virus infection, immune cells including macrophage (Mϕ), monocyte, and dendritic cell (DC) 
subsets from the nasal cavity and sinuses can be collected with nasal biopsies or nasal wash sampling. Along with pharyngeal palatine tonsils (and tubal and lingual 
tonsils), the adenoids form the Waldeyer’s ring, an anatomical structure comprising a ring of lymphoid tissue guarding the pharynx. In the lower respiratory tract, 
bronchoscopy allows sampling of discrete regions of the airways and lungs. Bronchial washes can be used to sample the cells lining the bronchi and bronchioles. 
Endobronchial biopsies can also be obtained from the mucosal tissue of the bronchial walls. Bronchoalveolar lavages (BALs) sample the most distal airways and 
alveolar sacs. Finally, lung resection samples allow sampling of lung parenchyma and tissue-resident immune cells. (B) Distribution of human MNP subsets. Pie 
charts illustrate broadly pooled data from 21 published studies on human MNP subset distribution in blood, tonsils, BAL, and lung tissue to demonstrate the 
differential distribution of MNPs across anatomical compartments reported from many research groups (51, 52, 57–61, 63–76). As different studies utilize different 
strategies to specifically define MNPs, the pie charts show groups of cells typically including several subsets of cells: Mϕs (beige), monocytes (green), myeloid DCs 
(MDCs) (coral), and plasmacytoid DCs (PDCs) (teal). (C) Surface markers to identify MNP subsets across human tissues. The various MNP subsets across tissues 
can be identified using flow cytometry from HLA-DR+ leukocytes that do not express lineage (T cells, B cells, NK cells, and granulocytes) markers. Apart from 
CD123+ PDCs, the MNP subsets express different levels of the myeloid marker CD11c. Mϕs have been studied in detail in both BAL and lung tissue, where CD169 
expression distinguished alveolar from interstitial Mϕs. Monocyte subsets can be identified from most tissues based on relative expression of CD14 and CD16, as 
first defined in blood. The major MDC subsets are defined by expression of CD1c or CD141. The extended MDC subsets are now distinguished by expression of 
CD207 (langerin), CD1a, or slan (51, 52, 57–61, 63–76).
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antigen-presenting cells, CD141+ MDCs specialize in cross 
presentation via MHC I; and PDCs excel at type I IFN-mediated 
antiviral protection.

In the human respiratory system, the upper respiratory 
tract (URT) is comprised of the nasal cavity, sinuses, and the 
pharynx (Figure 1A). The LRT including the trachea, bronchi, 
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bronchioles, and alveoli, is typically divided into the proximal 
conducting zone and the distal respiratory zone (Figure 1A) (83). 
The LRT accounts for a larger cumulative surface area and conse-
quently higher likelihood of pathogen–immune cell interactions. 
However, it is the URT that is initially involved in prevention of 
pathogen entry (83). MNP distribution in the URT, especially at 
steady state, also remains poorly characterized. Recent studies 
have shown Mϕs, CMs, MDCs, and PDCs in the nasal cavities 
(84, 85); CMs in the sinuses; CMs, MDCs, and PDCs in the naso-
pharynx (43, 44); CD1c+ MDCs in nasal tissue (86); and Mϕs, 
CMs, and several DC subsets (PDC, CD1c+, CD141+, CD207+, 
slan+, Axl+, and CD4+) have been described in human tonsils 
(73–76). What is evident, however, is that the relative distribution 
of MNP subsets at steady state varies greatly across the different 
compartments of the respiratory tract (51, 87). For example, in 
blood, monocytes greatly outnumber all other MNP subsets, 
whereas in tonsils, PDCs are the most abundant MNP subset. 
In BAL, AMϕs make up almost 95% of all cells, but IMs are more 
frequent than DCs. In lung tissues, both alveolar and interstitial 
Mϕs can be found at different frequencies. Monocytes and MDCs 
are also present at greater frequencies than PDCs (Figure 1B). 
The immunological map of the human respiratory tree is becom-
ing more detailed (Figure 1C), enabling a better understanding 
of how the respiratory immune system changes during disease 
including respiratory viral infections like IAV.

MnPs: innATe iMMUne ReSPOnDeRS  
in iAv inFeCTiOn

Respiratory MNPs function as mucosal sentinels and come into 
play rapidly after onset of IAV infection. Monocytes and DCs 
resident in the nasopharyngeal mucosa can rapidly sense the 
 presence of IAV and elicit an early response featuring a predomi-
nance of monocyte-recruiting chemokines like CCL2, CCL17, 
CX3CL1, and MCP3 (45, 88, 89). Mϕs, that are abundant in the 
LRT, are less likely to be involved in uncomplicated human IAV 
infections, when the virus typically remains localized in the URT. 
However, when the virus spreads lower toward the lungs, not 
uncommon among pandemic IAV strains, Mϕs are likely central 
in the innate immune response.

The diverse functional capacity of monocytes translates 
into their involvement in several aspects of immunity to IAV, 
as depicted in Figure  2. Monocytes rapidly infiltrate the URT 
following IAV infection where increased nasal CM numbers 
and cytokine (MCP3, IFNα2, and CCL17) levels can predict 
disease severity (43–45). Similarly, in patients infected with 
the pandemic A/CA/07/09 (pH1N1) strain, high numbers of 
CD14+, TNF-producing monocytes were reported in blood, that 
positively correlated with disease severity in young, otherwise 
healthy adults (88, 90). In addition, exposure to IAV also drives 
differentiation of monocytes into mo-DCs in vitro (91). Studies 
on human IAV infections demonstrate causal association between 
CCR2-dependent lung monocyte and mo-DC recruitment and 
IAV-induced mortality in an NOS-2-dependent manner (91–95).

Mucosal tissue-resident DCs in peripheral tissues like the 
respiratory tract sense and take up antigens. They then migrate 
to draining lymph nodes to present processed antigen to T cells. 

Antigen-specific, clonally expanded T cells migrate back to the site 
of infection to control and clear infection (128–131) (Figure 2). 
This process is critical to restoration of homeostasis as well as for 
induction of potent adaptive immune responses. Murine models 
have elegantly demonstrated DC function during IAV infection 
(96–100, 132). What remains to be described is the exact role 
of human DC subsets. During pediatric IAV infection, MDCs 
and PDCs mobilize to the nasopharynx while DC numbers are 
reduced in blood (43, 44). The potential redistribution of DC 
subsets remains to be characterized in adults as well as over the 
course of infection. The different DC subsets each likely perform 
individualized tasks during IAV infection. CD1c+ MDCs are 
the most abundant MDCs in the airways (51, 58, 60), and are 
excellent at pathogen recognition (101, 133), inducing expansive 
T helper responses (107–109); and cytokine secretion (101). 
CD141+ MDCs possess superior MHC I cross-presenting abili-
ties that can aid IAV clearance by CD8+ T cells (73, 107). TLR3 
mediated cytokine production (TNF, IL-6, IL-12, and IFN-β) and 
importantly, type III IFN production by CD141+ MDCs, assist in 
enhanced innate MNP protection against IAV (57). PDCs medi-
ate type I IFN-dependent antiviral protection that is beneficial 
during IAV infection. In addition to transcriptional activation of 
many IFN-stimulated genes (ISGs), PDCs also promote both T 
and B cell responses (75, 76, 102–104, 110–112).

Macrophages contribute during IAV infection by clearing 
cell debris, chemokine and cytokine production to modulate 
inflammation, recruitment of other MNPs, and to restore sub-
sequent tissue homeostasis (Figure  2A) (105, 113). AMϕs are 
of particular importance when the infection reaches the LRT, 
where the AMϕs are in vast abundance. Severe influenza with 
LRT pathology is often accompanied by AMϕ involvement 
(114–118). Unhindered AMϕ-associated cytokinemia can result 
in devastating consequences for patients, ranging from delayed 
recovery to fatal lung pathology (116). Several factors control the 
extent of Mϕ involvement, two of the most likely contributors 
being IAV subtype/strain and Mϕ phenotype (90, 105, 113, 114, 
118–120, 134) (Figure 1C). For example, Mϕ cytokine produc-
tion differs across H5N1 and pandemic/seasonal H1N1 strains 
(119). The protective and pathologic roles of MNP subsets during 
IAV infection have also been summarized in Figure 2B.

Murine models of IAV infection have extensively characterized 
the role of MNPs in antiviral protection (92, 100, 132, 135–137). 
A potent immune response to human IAV infection is also likely 
dependent on synergy between the different MNP subsets and 
their functions (53, 138–141). However, MNP susceptibility to 
IAV infection can easily upset the balance, impacting both virus 
clearance and return to homeostasis.

MnPs AnD ReSPiRATORY ePiTHeLiUM 
(Re): MUCOSAL BARRieRS AnD 
TARgeTS OF iAv inFeCTiOn

During IAV infection, the virus is largely confined to the air-
ways, where the RE is primarily targeted (13, 106, 142–147). 
The RE and MNPs represent an interesting functional 
dichotomy—both are targets of the virus and also capable of 
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FigURe 2 | Human mononuclear phagocytes (MNPs) play a multitude of roles to mediate immune protection during influenza A virus (IAV) infection. (A) MNP 
subsets have many overlapping functions. Macrophages (Mϕs) clear up cell debris and release cytokines. Monocytes and dendritic cells (DCs) can also release 
cytokines and present antigens to initiate adaptive responses. (i) Following IAV infection of respiratory epithelium, Mϕs, monocytes, and DCs respond to the virus 
and cell debris, launching potent cytokine responses (TNFα, IL-6, IL-12p40, and IL-10), including interferon (IFN)α. Induction of interferon-stimulated genes (ISGs) 
promotes an antiviral state in bystander cells, protecting them from infection. (ii) The antigens taken up by monocytes/DCs are processed and presented via MHC I 
and II to CD8+ and CD4+ T cells, respectively. Antigen-specific CD8+ T cells perform effector functions via cytotoxic granule- and FasL-mediated caspase-
dependent apoptosis. (iii) CD4+ T cells mature into subsets with specific functions. Th1 cells primarily produce IFNγ, IL-2, and TNFβ; and aid CD8+ T cell 
proliferation. Th2 cells on the other hand, produce IL-4, IL-5, and IL-13 and assist B cells, especially during antibody class switching, promoting production of 
neutralizing antibodies. Induction of broadly neutralizing antibodies against all strains of influenza virus remains a challenge in the field of influenza immunology  
(45, 57, 75, 76, 96–106). (B) The table summarizes the individual functions of MNP subsets that can protect against IAV infection, but also contribute to pathology. 
Most MNP subsets are susceptible to IAV infection, as demonstrated by in vitro studies. As a consequence of IAV infection, MNP function can be directly affected, 
prompting them to respond in a protective or pathologic fashion (25, 37, 42–45, 73, 75, 76, 91, 102–105, 107–127).
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immune functions to limit infection (25). The epithelial tight 
junctions constitute a mechanical barrier against the exterior 
and secrete antiviral molecules. The RE senses IAV via TLRs 
and RIG-I; with RIG-I signaling concentrated at the tight 
junctions, resulting in type I and type III interferon-mediated 
antiviral protection (106). Chemokines secreted from the RE 
aid neutrophil and MNP recruitment to the site of infection, 
enhancing innate protection. While potently responding to 
IAV, the RE is also highly susceptible to the cytopathic effects 
of IAV infection (Figure 2A). Loss of mucosal barrier integrity 
promotes bacterial adherence, contributing to secondary bacte-
rial infections and lung pathology often associated with severe 
IAV infection (118, 147–149).

Mononuclear phagocytes are well located in the human respira-
tory mucosa to be targeted by the virus upon entry (135), and 
the endocytic and migratory properties of MNPs are likely 
favorable to viral infection and dissemination (120, 134).  
In vitro IAV infection of human Mϕs and DCs has been shown 
to result in productive infection with release of infectious par-
ticles (119–121) but has also been reported to result in abortive 
infection (42, 108, 121, 122), the contrast being discussed in 
great detail in Ref. (42). Which of these alternatives prevail in 
clinical cases, and what host factors determine their own fate, are 
questions that are yet to be answered. In addition, the negative 
implications of IAV infection, from an immunological perspec-
tive, they may be more pronounced for MNPs than for epithelial 
cells as MNPs are central in establishing a protective, specific 
immune response.

COnSeQUenCeS OF iAv inFeCTiOn  
OF MnPs

Mononuclear phagocyte susceptibility to IAV infection can impair 
their many functions. For example, MDCs are crucial for T cell 
activation but they are also readily susceptible to IAV  infection, 
impairing their ability to present antigens via both the direct 
presentation and cross presentation pathways (46, 121, 150).  
Most seasonal and low-pathogenic IAV strains infect respira-
tory human Mϕs and DCs but replication is typically abortive 
and therefore skews in favor of host defense (120). However, 
highly pathogenic strains of IAV can overcome this barrier and 
productively infect Mϕs and DCs, which in turn can impact 
viral amplification, dissemination, as well as pathogenicity and 
immunogenicity (123). Primary human monocytes exposed to 
H5N1 or highly pathogenic avian influenza strains in vitro exhibit 
a reduced antiviral response, as a consequence of impaired NF-κB 
signaling (91, 114, 115). In a murine model of IAV infection, 
CCR2+ inflammatory monocytes accumulate in lungs (92, 94). 
Impaired virus clearance by MNPs triggers IFN-mediated recruit-
ment of CCR2+ monocytes inflammatory in a positive-feedback 
loop, resulting in severe lung pathology (92) (Figure 2B).

Impaired MNP responses have also been observed in IAV 
patients. Peripheral blood monocytes and to some extent PDCs, 
exhibit attenuated IFN responses indicating dysregulation at a 
systemic level, in particular in infants and the elderly, two of 
the largest risk groups for severe influenza disease (151–153). 

Human PDCs that potently produce large amounts of type I 
IFN, in response even to low doses of IAV, can rapidly undergo 
apoptosis when exposed to high doses of the virus (25, 124). 
Possibly related to that, it has been reported that pregnant 
women, a risk group for influenza, have fewer PDCs in circula-
tion that are also less efficient at IFN production, which could 
contribute to more severe IAV disease during pregnancy (125) 
(Figure 2B).

As undesirable as depressed MNP function is, excessive acti-
vation of MNPs can also be equally dangerous, by contributing 
to IAV-induced immune pathology leading to fatal respiratory 
distress. Human monocyte-derived pro-inflammatory Mϕs 
exposed to IAV in vitro exhibit augmented phagocytic capability 
and strong cytokine responses (119). While this can encourage 
adaptive responses, it also contributes to the cytokine storm that 
is a hallmark of severe influenza disease (37, 126). Prolonged IFN 
signaling can also destroy alveolar epithelium and contribute to 
development of secondary bacterial infections, the most common 
complication associated with influenza infections (93). TNF/
iNOS-producing DCs, a subset of inflammatory DCs, accumulate 
in the LRT and promote CD8+ T cell responses in an IAV mouse 
model, but are also positively correlated with higher lethality (123). 
However, in vitro, human CD8+ T cells can rapidly induce mono-
cyte differentiation into tip-DCs that in turn prime naïve CD4+ 
T cells and promote protective Th1 responses (154) (Figure 2B).

Not all respiratory MNP–IAV interactions have adverse impli-
cations. Virus-induced human in  vitro mo-DCs express both 
CLEC9A and CD141, as do blood CD141+ MDCs. But uniquely, 
mo-DCs express CD141 on the cell surface and CLEC9A intracel-
lularly (91). CD141+ DCs can efficiently prime and drive CD8+ 
T cell proliferation, while CLEC9A is linked to antigen uptake. 
CD141+ MDCs also subvert IAV infection by resisting virus 
entry in a RAB-15 dependent manner, instead relying on uptake 
of apoptotic virus-infected CD1c+ MDCs (and other cells) as a 
source of antigens (127) (Figure  2B). Virus-induced CD141+ 
DCs also exhibit type I IFN secretion and upregulate ISGs 
(tetherin, viperin, and IFITM3) and RIG-I/MDA5, suggesting 
an important protective role for them during infection; despite 
poor expression of co-stimulatory molecules (CD40, CD86, and 
HLA-DR), weaker pro-inflammatory cytokine expression, and 
impaired ability to activate naïve CD4+ T cells (46). Induction 
of CD141+ DCs could therefore be employed in vaccination/
therapeutic strategies. To summarize, while IAV infection of 
MNP compromises some aspects of innate protection, biological 
redundancy due to the overlapping functions of MNP subsets can 
likely prevent loss of essential immune responses.

COnCLUDing ReMARKS

Respiratory MNPs are important in the immune responses 
to IAV infection. At the same time, MNP susceptibility to IAV 
infection poses an interesting immunological challenge. Several 
key questions still remain to be further addressed to understand 
this dichotomy better. Does compromised MNP function result 
in altered innate immune responses? Do altered innate immune 
responses subsequently impair efficient induction of adaptive 
responses, ultimately contributing to increased host morbidity 
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and mortality? If on the other hand, robust, unchecked innate 
responses lead to prolonged inflammation, causing irreparable 
damage to the host, is there a commonality in host responses 
across the various demographics affected by influenza? To answer 
these questions, and delineate the role of respiratory MNPs in 
human IAV infection, it will be critical to detail the function of 
the different MNP subsets—for example, functional assessment 
of sorted cells from the respiratory system and performing 
RNA sequencing or epigenetic analyses. Prospective studies of 
human IAV patients where detailed analyses of tissue samples can 
be correlated to clinical parameters are likely required to fully 
understand how MNPs contribute to disease severity.
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