
fmicb-12-692837 September 19, 2022 Time: 18:29 # 1

ORIGINAL RESEARCH
published: 10 August 2021

doi: 10.3389/fmicb.2021.692837

Edited by:
Matthew Adekunle Adeleke,
University of KwaZulu-Natal,

South Africa

Reviewed by:
Haileeyesus Adamu,

Addis Ababa University, Ethiopia
Meng Qi,

Tarim University, China

*Correspondence:
Zhaoguo Chen

zhaoguochen@shvri.ac.cn

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 09 April 2021
Accepted: 14 July 2021

Published: 10 August 2021

Citation:
Zhang Y, Mi R, Yang L, Gong H,
Xu C, Feng Y, Chen X, Huang Y,

Han X and Chen Z (2021) Wildlife Is
a Potential Source of Human

Infections of Enterocytozoon bieneusi
and Giardia duodenalis
in Southeastern China.

Front. Microbiol. 12:692837.
doi: 10.3389/fmicb.2021.692837

Wildlife Is a Potential Source of
Human Infections of Enterocytozoon
bieneusi and Giardia duodenalis in
Southeastern China
Yan Zhang1, Rongsheng Mi1, Lijuan Yang1, Haiyan Gong1, Chunzhong Xu2,
Yongqi Feng2, Xinsheng Chen2, Yan Huang1, Xiangan Han1 and Zhaoguo Chen1*

1 Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment
for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese
Academy of Agricultural Sciences, Shanghai, China, 2 Shanghai Wild Animal Park, Shanghai, China

Wildlife is known to be a source of high-impact pathogens affecting people.
However, the distribution, genetic diversity, and zoonotic potential of Cryptosporidium,
Enterocytozoon bieneusi, and Giardia duodenalis in wildlife are poorly understood. Here,
we conducted the first molecular epidemiological investigation of these three pathogens
in wildlife in Zhejiang and Shanghai, China. Genomic DNAs were derived from 182
individual fecal samples from wildlife and then subjected to a nested polymerase chain
reaction–based sequencing approach for detection and characterization. Altogether,
3 (1.6%), 21 (11.5%), and 48 (26.4%) specimens tested positive for Cryptosporidium
species, E. bieneusi, and G. duodenalis, respectively. Sequence analyses revealed
five known (BEB6, D, MJ13, SC02, and type IV) and two novel (designated SH_ch1
and SH_deer1) genotypes of E. bieneusi. Phylogenetically, novel E. bieneusi genotype
SH_deer1 fell into group 6, and the other genotypes were assigned to group 1 with
zoonotic potential. Three novel Cryptosporidium genotypes (Cryptosporidium avian
genotype V-like and C. galli-like 1 and 2) were identified, C. galli-like 1 and 2 formed
a clade that was distinct from Cryptosporidium species. The genetic distinctiveness
of these two novel genotypes suggests that they represent a new species of
Cryptosporidium. Zoonotic assemblage A (n = 36) and host-adapted assemblages C
(n = 1) and E (n = 7) of G. duodenalis were characterized. The overall results suggest that
wildlife act as host reservoirs carrying zoonotic E. bieneusi and G. duodenalis, potentially
enabling transmission from wildlife to humans and other animals.

Keywords: Cryptosporidium, Enterocytozoon bieneusi, Giardia duodenalis, genotypes, wildlife, prevalence,
zoonotic potential

INTRODUCTION

Wildlife has been an important source of various high-impact pathogens affecting people, and
zoonoses originated in wildlife remain a major public health issue around the world (Kruse et al.,
2005). Novel diseases continue to emerge, and the responsible pathogens are often from unexpected
wildlife, such as Ebola and Marburg virus (Bats; Amman et al., 2015; Jones et al., 2015); HIV-1 and
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HIV-2 (Primates; Gao et al., 1999); Nipah, Hendra, and Menangle
virus (Bats; Field et al., 2007); West Nile virus (Mosquitoes;
CDC, 1999, 2000); SARS (severe acute respiratory syndrome)–
like virus (Bats; Li et al., 2005); and 2019 novel coronavirus
(COVID-19) (Wildlife; Liu et al., 2020; Xiao et al., 2020),
highlighting the important role of wildlife in the transmission
of zoonotic pathogens. Currently, the ongoing 2019 novel
coronavirus pandemic has resounded the alarm on pathogens
in wildlife. Thus, it is crucial to screen and identify potentially
zoonotic pathogens in wildlife from different geographical
regions for prediction, prevention, and control of zoonotic
diseases outbreaks in humans (Cunningham et al., 2017).

Infectious diarrhea remains a major public health concern
worldwide (Walker et al., 2012; Liu et al., 2015; GBD, 2016).
It kills more than 2,000 children every day, more than AIDS,
malaria, and measles (Liu et al., 2015; Chingwaru and Vidmar,
2018; Lemos et al., 2018; Maniga et al., 2018). Multiple pathogens
including viruses, bacteria (Blander et al., 2017), fungi (Liguori
et al., 2015; Hallen-Adams and Suhr, 2017), and protists (Lanata
et al., 2013; Blander et al., 2017) are responsible for diarrhea.
Among protists, Cryptosporidium species, Giardia duodenalis,
and Enterocytozoon bieneusi are the most common etiological
pathogens of the intestinal disease and are known to cause
large disease outbreaks in humans, especially forCryptosporidium
and G. duodenalis (Karanis et al., 2007; Baldursson and
Karanis, 2011; Decraene et al., 2012; Ryan and Cacciò, 2013;
Checkley et al., 2015).

Currently, ∼40 named Cryptosporidium species and close
to 50 genotypes have been reported (Feng et al., 2018; Haghi
et al., 2020). There are∼20 species of Cryptosporidium identified
in humans (Xiao, 2010), of which Cryptosporidium parvum
and Cryptosporidium hominis are the most common species
infecting humans (Feng et al., 2018). C. parvum has a broad
host range that includes humans and various animal species. By
contrast, C. hominis is mainly restricted to humans, non-human
primates, and equine animals (Feng et al., 2018). G. duodenalis is
recognized as a species complex consisting of eight assemblages
(A–H). Assemblages A and B can infect humans and other
mammals, assemblages C and D are frequently found in dogs and
other canids, assemblage E in hoofed animals, assemblage F in
cats, assemblage G in rodents, and assemblage H in pinnipeds
(Ryan and Zahedi, 2019). Until recently, assemblages C to H
were considered host-specific, except that assemblages C, D, E,
and F are occasionally found in humans (i.e., assemblage E has
been found in human samples more frequently than F) (Gelanew
et al., 2007; Broglia et al., 2013; Liu et al., 2014; Štrkolcová
et al., 2015; Scalia et al., 2016; Zahedi et al., 2017). Among 14
species of microsporidia infecting humans, E. bieneusi is the most
common microbe causing diarrhea. E. bieneusi can infect a broad
host range, including mammals, birds, reptiles (Squamata), and
insects (Diptera). Currently, there are more than 600 genotypes,
and most genotypes can be found in both humans and animals,
showing zoonotic potential (Li et al., 2019a,b; Zhang, 2019; Zhang
et al., 2021). The three enteric eukaryotic agents can infect
humans through the fecal–oral route, via direct contact with
infected individuals or ingestion of contaminated water or food
(Yu et al., 2020).

The three microbes can be identified or characterized at
species, subspecies, and/or genotypic level using molecular
techniques. Currently, small subunit ribosomal DNA
(SSU rDNA) has been wildly used for Cryptosporidium
species identification, whereas a genetic marker in the
60-kDa glycoprotein (gp60) gene has been commonly
used for differentiating Cryptosporidium at the genotypic
and subgenotypic levels (Abeywardena et al., 2015). For
G. duodenalis, triose-phosphate isomerase (tpi), β-giardin (bg),
glutamate dehydrogenase (gdh), elongation factor 1-alfa (ef1-α),
and SSU rDNA are commonly used for genotypic identification
(Ryan and Cacciò, 2013). As ef1-α and SSU rDNA are relatively
problematic, and they cannot discriminate G. duodenalis
subtypes within assemblages accurately and are thus not
useful for transmission analyses (Traub et al., 2004). Internal
transcribed spacer (ITS) of nuclear ribosomal DNA is sufficiently
variable for the identification and genotypic characterization of
E. bieneusi (Santín et al., 2009).

Using the approach above, we have explored the microbes
from various animals including wild deer (Zhang et al., 2018b;
Koehler et al., 2020), marsupials (Zhang et al., 2018c), domestic
alpacas (Koehler et al., 2018), cattle (Zhang et al., 2018a),
goats and sheep (Zhang et al., 2020), companion cats and dogs
(Zhang et al., 2019), and humans (Zhang et al., 2018e). We also
established a new phylogenetic classification system of overall
600 E. bieneusi genotypes (Zhang et al., 2021). The present
study aims to identify three pathogens (Cryptosporidium species,
E. bieneusi, and G. duodenalis) in wildlife in Zhejiang and
Shanghai, characterize their genotypes and analyze their zoonotic
potential. The findings in this study would help to understand
the genetic diversity of the three agents and provide critical
information for future global strategies to prevent outbreaks
of their zoonoses.

MATERIALS AND METHODS

Samples and DNA Isolation
In total, 182 fecal samples were collected from 48 species of zoo
animals from Zhejiang zoo (n = 52) and Shanghai Wild Animal
Park (n = 130) from May 2018 to August 2020 (Supplementary
Table 1). Some fecal samples were collected from wildlife rectum
directly, whereas others were fresh deposited fecal samples.
Genomic DNA was extracted directly from 0.1 to 0.4 g of each
of the 182 fecal samples using the FastDNA SPIN Kit for Soil
(MP Biomedicals, Santa Ana, CA, United States) according to the
manufacturer’s recommendations. The extracted DNA was stored
at−20◦C for further polymerase chain reaction (PCR) assay.

Detection of Cryptosporidium Species,
E. bieneusi and G. duodenalis
Nested PCR-Based Sequencing of Cryptosporidium
Species SSU rDNA
The small subunit of ribosomal nuclear DNA locus (target
length 830 bp) of each sample was screened for identification of
Cryptosporidium species (i.e., primers are listed in Table 1). In
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the first run, PCR contained 25 µL of 2 × PCR buffer for KOD
FX (Mg2+ plus) (Toyobo, Japan), 2 mM dNTPs, 100 nM (each)
primer, 1.0 U KOD FX, and 1 µL of DNA template in a total
50 µL reaction mixture. A total of 35 cycles were carried out, each
consisting of 94◦C for 45 s, 55◦C for 45 s, and 72◦C for 1 min,
with an initial hot start at 94◦C for 3 min, and a final extension
at 72◦C for 7 min. A secondary PCR product was then amplified
from 2 µL of the primary PCR products with the same cycling
conditions as the first run, except for 60◦C annealing temperature
(Xiao et al., 1999, 2001; Jiang et al., 2005).

Nested PCR-Based Sequencing of E. bieneusi ITS
Individual genomic DNA samples were subjected to nested
PCR-coupled sequencing of the ITS (243–245 bp) region
(i.e., only 243–245-bp fragment of the ITS was used for
further phylogenetic analyses) using an established technique
(Katzwinkel-Wladarsch et al., 1996). Nested PCR (in 50 µL)
was conducted in a standard buffer containing 3.0 µM MgCl2,
0.4 mM dNTPs, 50 pmol of each primer, 1.25 U of Ex Taq DNA
(TaKaRa Bio Inc., Beijing, China), and DNA template—except
for the negative (no-template) control. The cycling conditions for
both primary and secondary (nested) PCRs were as follows: 94◦C
for 5 min (initial denaturation), followed by 35 cycles of 94◦C for
45 s (denaturation), 54◦C for 45 s (annealing), and 72◦C for 1 min
(extension), followed by 72◦C for 10 min (final extension).

Nested PCR-Based Sequencing of G. duodenalis TPI
G. duodenalis assemblages were identified and characterized by
nested PCR-based sequencing of the tpi gene (∼530 bp) using
the established methods (Sulaiman et al., 2003). PCR was carried
out in a volume of 50 µL containing 3.0 µM MgCl2, 0.4 mM
dNTPs, 50 pmol of each primer, 1.25 U of Ex Taq DNA (TaKaRa
Bio Inc., Beijing, China), and DNA template. A cycling protocol
of 94◦C for 5 min (initial denaturation), followed by 35 cycles
of 94◦C for 45 s (denaturation), 50◦C for 45 s (annealing), 72◦C
for 1 min (extension), and a final extension of 72◦C for 10 min.
The secondary amplification was achieved using the same cycling
conditions, except for the annealing temperature of 55◦C for 30 s.

Known test-positive, test-negative, and no-template
controls were included in each PCR run. The secondary
PCR products were examined by gel electrophoresis on a
1.5% agarose gel containing 4S Green Plus Nucleic Acid Stain
(Sangon Biotech, Shanghai, China) and directly sequenced
using second-round PCR primers in both directions. All
sequences obtained (GenBank accession nos. Cryptosporidium:
MW168840-MW168842; E. bieneusi: MT895455-MT895461
and G. duodenalis: MW048593-MW048601) were inspected for
quality and compared with reference sequences acquired from
the GenBank database.

Phylogenetic Analysis
Obtained sequences from this and previous studies were
aligned over a consensus length of 735 (Cryptosporidium),
459 (G. duodenalis), and 270 (E. bieneusi; after trimming,
approximately 243-bp fragment of the ITS was analyzed)
positions using previously established methods (Zhang et al.,
2018d) and then subjected to phylogenetic analyses using

the Bayesian inference (BI) and Monte Carlo Markov Chain
methods in MrBayes v.3.2.3 (Huelsenbeck and Ronquist, 2001).
The Akaike Information Criteria test in jModeltest v.2.1.7
(Darriba et al., 2012) was used to evaluate the likelihood
parameters set for BI analysis. Posterior probability (pp) values
were calculated by running 2,000,000 generations with four
simultaneous tree-building chains, with trees saved every one-
hundredth generation. A 50% majority-rule consensus tree for
each analysis was constructed based on the final 75% of trees
generated by BI. The clades and subclades were assigned and
named using an established classification system (Santín and
Fayer, 2009, 2011; Feng and Xiao, 2011; Karim et al., 2015; Li
W. et al., 2015; Koehler et al., 2016; Li et al., 2019a,b; Ryan and
Zahedi, 2019).

RESULTS

Molecular Detection of Cryptosporidium
Species Based on SSU rDNA Gene
In total, three fecal DNA samples were identified
Cryptosporidium species with the prevalence of 1.6% (3/182)
(Table 2). They were all novel SSU rDNA sequences (i.e., < 100%
identity with a sequence on GenBank) uniquely form the zoo
in Zhejiang (Table 3). The three novel SSU rDNA sequences
were assigned to the most closely related species or genotypes
of Cryptosporidium based on sequence identity, representing
Cryptosporidium galli-like 1 (from a species of Psittacidae) and
C. galli-like 2 (channel-billed toucan) and Cryptosporidium
avian genotype V-like (green aracari). C. galli-like 1 and 2
differed by 18 bp (763/781; 97.7%) and 17 bp (765/778; 98.3%)
from the sequences representing C. galli (GenBank accession
no. MG516766), and Cryptosporidium avian genotype V-like
differed by 7 bp (780/787; 99.1%) from a sequence with GenBank
accession no. JX548292 (Cryptosporidium avian genotype V).

The three SSU rDNA sequences were aligned with selected
representative sequences in particular clades and subjected to
the phylogenetic analysis (Figure 1). Genotypes Cryptosporidium
avian genotype V-like clustered with genotype V with strong
statistical support (pp = 1). Cryptosporidium galli-like 1 and 2 fell
in one group and clustered with a clade of C. galli (pp = 0.99).

E. bieneusi Genotype Characterizations
Based on ITS Region
Enterocytozoon DNA was specifically detected by nested PCR
of ITS in 21 of 182 (11.5%) fecal samples from zoo animals in
Zhejiang (3.8%; 2/52) and Shanghai (14.6%; 19/130) (Table 2),
including 10 mammal species: Alpaca (Vicugna pacos), amur tiger
(Panthera tigris altaica), brown bear (Ursus arctos pruinosus),
cheetah (Acinonyx jubatus), fallow deer (Dama dama), lion
(Panthera leo), red deer (Cervus elaphus), sika deer (Cervus
Nippon), snub-nosed monkey (Rhinopithecus species), tiger
(Panthera tigris tigris), and three species of birds: Chestnut-
fronted macaw (Ara severa), great pied hornbill (Buceros
bicomis), and red-and-green macaw (Ara chloropterus) (Table 3).
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TABLE 1 | PCR primers (forward and reserve) used for the amplification of Cryptosporidium, Enterocytozoon bieneusi, and Giardia duodenalis in this study.

Species (genetic marker) Primers (5′-3′) Length (∼bp) References

Cryptosporidium TTC TAG AGC TAA TAC ATG CG 1,325 Xiao et al., 1999

(SSU rDNA) CCC ATT TCC TTC GAA ACA GGA Xiao et al., 2001

GGA AGG GTT GTA TTT ATT AGA TAA AG 830 Jiang et al., 2005

CTC ATA AGG TGC TGA AGG AGT A

E. bieneusi MSP-1 (TGA ATG KGT CCC TGT) 590 Katzwinkel-Wladarsch et al., 1996

(ITS) MSP-2B (GTT CAT TCG CAC TAC T)

MSP-3 (GGA ATT CAC ACC GCC CGT CRY TAT) 508

MSP-4B (CCA AGC TTA TGC TTA AGT CCA GGG AG)

G. duodenalis AL3543 (AAA TTA TGC CTG CTC GTC G) 605 Sulaiman et al., 2003

(tpi) AL3546 (CAA ACC TTT TCC GCA AAC C)

AL3544 (CCC TTC ATC GGT GGT AAC TT) 532

AL3545 (GTG GCC ACC ACT CCC GTG CC)

TABLE 2 | Prevalence of Cryptosporidium species, Enterocytozoon bieneusi, and Giardia duodenalis in Shanghai Wild Animal Park and Zhejiang zoo of China.

Species Prevalence of each
species (%)

Total no. of positive/total
no. of samples

Prevalence in each region (%)
(no. of positive/no. of samples)

Shanghai Zhejiang

Cryptosporidium 1.6 3/182 0 1.6 (3/52)

E. bieneusi 11.5 21/182 14.6 (19/130) 3.8 (2/52)

G. duodenalis 26.4 48/182 30.8 (40/130) 15.4 (8/52)

The 21 ITS amplicons (243 bp) were aligned to reference
sequences in the GenBank database, and seven distinct genotypes
were identified, including five known (BEB6, D, MJ13, SC02,
and type IV) and two novel genotypes (designated SH_ch1
and SH_deer1) (Table 3). Novel genotype SH_ch1 (n = 2;
from cheetahs) differed by 1 bp (242/243; 99.6%) from the
sequence representing genotypes and KIN-1 (GenBank number
MT231508). Novel genotype SH_deer1 (n = 1; from a sika deer)
showed 8-bp (234/242; 99.7%) differences from the sequence
with GenBank accession number KF261802. Two ambiguous
sequences were derived from two amplicons, each containing
multiple genotypes.

The eight ITS sequences representing seven distinct genotypes
were aligned with sequences representing 10 groups of E. bieneusi
and subjected to phylogenetic analysis (Figure 2). Genotypes
BEB6, D, MJ13, SC02, SH_ch1, and type IV could be assigned
to group 1 (pp = 0.96). Novel genotype SH_deer1 clustered with
genotypes in group 6 with strong statistical support (pp = 0.95).

G. duodenalis Assemblages
Identification Based on tpi Gene
Sequencing of all tpi amplicons identified 48 of 182 (26.4%)
individual fecal samples to contain Giardia based on direct
sequence comparisons, including 8 (15.4%; 8/52) in Zhejiang
zoo and 40 (30.8%; 40/130) in Shanghai Wild Animal Park
(Table 2). Genetic assemblages A (n = 36), C (n = 1), and E
(n = 7) of G. duodenalis were characterized, and four amplicons
contained mixed indeterminate genotypes. In total, eight distinct
sequence types for tpi were defined (Table 3), including four
representing Giardia sub-assemblage A (i.e., one known type
from 16 species of wildlife and three novel sequence types from

cheetah, fennec fox, lion, and snub-nosed monkey), one novel
sequence type from a spotted hyena defined as assemblage C,
and two novel distinct sequence types all representing assemblage
E from giraffes.

The eight distinct tpi sequences representing four distinct
assemblages or sub-assemblages were aligned with sequences
representing Giardia assemblages A–G and subjected to the
phylogenetic analysis (Figure 3). A novel sequence type
(GenBank accession no. MW048604) clustered with assemblage
C with strong statistical support (pp = 1.00).

DISCUSSION

The zoonotic enteric pathogens Cryptosporidium,
Enterocytozoon, and Giardia have been reported in captive,
wild, and zoo animals around the world (Leśniańska et al., 2016;
Li N. et al., 2018; Amer et al., 2019). Their ability to spread via
contaminated food, water, or direct contact with humans (e.g.,
zookeeper) poses a risk to public health.

Cryptosporidium
PCR-based sequencing of all three amplicons from 182 fecal
DNA samples (1.6%; 3/182) revealed three operational taxonomic
units (OTUs) of Cryptosporidium from three birds (channel-
billed toucan, green aracari, and an unknown species of
Psittacidae). Their SSU rDNA sequences were aligned (over
a consensus length of 735 positions) with publicly available
sequences, representing 14 species and an outgroup C. muris
(Figure 1). Phylogenetic analyses of SSU rDNA data revealed
that Cryptosporidium avian genotype V-like clustered with the
genotypes C. galli and Cryptosporidium avian genotype V, which
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TABLE 3 | Summary of all pathogen species, genotypes, and/or assemblages identified in wildlife in Zhenjiang and Shanghai, China, using PCR-based sequencing of
particular genetic markers.

Species/genotype/ assemblage
identified by PCR based on
sequencing (positivity no.)

Genetic
marker used

GenBank
accession no.

Host (Latin name) Positivity no. for each
wild animal species

Cryptosporidium species V-like (1) SSU MW168842* Green aracari (Pteroglossus viridis) (1)

C. galli-like 1 (2) SSU MW168841* Psittacidae (species unknown) (1)

C. galli-like 2 MW168840* Channel-billed toucan (Ramphastos vitellinus) (1)

Giardia duodenalis A (40) tpi MW048593 Alpaca (Vicugna pacos) (2)

MW048598* Siberian tiger (Panthera tigris altaica) (2)

MW048599* Black-necked Crane (Grus nigricollis) (2)

MW048600* Blue-headed macaw (Propyrrhura couloni) (3)

MW048601* Cheetah (Acinonyx jubatus) (3)

MW048594a Fennec fox (Vulpes zerda) (2)

MW048595a Giant Eland (Tragelaphus derbianus) (1)

MW048596a Giraffe (Giraffa camelopardalis) (3)

MW048597a Golden takin (Budorcas taxicolor bedfordi) (1)

Great pied hornbill (Buceros bicomis) (1)

Hippopotamus (Hippopotamus amphibious) (1)

Lion (Panthera leo) (2)

Malabar pied hornbill (Anthracoceros coronatus) (1)

Snub-nosed monkey (Rhinopithecus roxellana) (8)

Ostrich (Struthio camelus) (2)

Peafowl (Pavo cristatus) (2)

Scarlet macaw (Ara macao) (1)

Sika deer (Cervus Nippon) (1)

Sun parakeet (Aratinga solstitialis) (1)

Tiger (Panthera tigris tigris) (1)

G. duodenalis C (1) tpi MW048604* Spotted hyena (Crocuta crocuta) (1)

G. duodenalis E (5) tpi MW048602 Giraffe (Giraffa camelopardalis) (4)

Kangaroo (Macropus species) (1)

(2) tpi MW048603* Giraffe (Giraffa camelopardalis) (2)

Enterocytozoon bieneusi BEB6 (3) ITS MT895455 Alpaca (Vicugna pacos) (1)

Fallow deer (Dama dama) (1)

Red deer (Cervus elaphus) (1)

E. bieneusi D (8) ITS MT895457 Siberian tiger (Panthera tigris altaica) (2)

Lion (Panthera leo) (2)

Snub-nosed monkey (Rhinopithecus roxellana) (2)

Tiger (Panthera tigris tigris) (2)

E. bieneusi MJ13 (1) ITS MT895460 Red-and-green macaw (Ara chloropterus)

E. bieneusi SC02 (3) ITS MT895459 Great pied hornbill (Buceros bicomis) (2)

Red-and-green macaw (Ara chloropterus) (1)

E. bieneusi SH_ch1 (2) ITS MT895458* Cheetah (Acinonyx jubatus) (2)

E. bieneusi SH_deer1 (1) ITS MT895456* Sika deer (Cervus Nippon) (1)

E. bieneusi type IV (1) ITS MT895461 Chestnut-fronted macaw (Ara severa) (1)

E. bieneusi BEB6-like (1) ITS MT895462a Red deer (Cervus elaphus) (1)

E. bieneusi MJ17-like (1) ITS MT895463a Brown bear (Ursus arctos pruinosus) (1)

*Novel genotypes.
aMixed (indeterminate) genotypes.

are typically found in birds (Xiao et al., 2004), and novel
OTUs (genotypes C. galli-like 1 and 2 grouped, with strong
nodal support (pp = 0.99). This analysis clearly showed that
C. galli-like 1 and 2 represent a new and distinct clade.
As the sequence variation (0–1.2%) within novel C. galli-
like group was substantially less than differences (2.7–3.7%)

between C. galli group and C. galli-like 1 and 2 upon pairwise
comparison (Figure 1 and Supplementary Table 2), we propose
that the latter two genotypes may represent a novel species of
Cryptosporidium. However, it should be cautious to draw this
conclusion. Definitely, further histological and morphological
studies are needed. Sequencing SSU rDNA from many more
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FIGURE 1 | Relationships among Cryptosporidium taxa inferred from the phylogenetic analysis of partial small subunit ribosomal rDNA gene (SSU rDNA) sequence
data by Bayesian inference (BI). Posterior probabilities are indicated at all major nodes. Bold font indicates Cryptosporidium species or genotypes characterized from
fecal DNA samples in this study. In parentheses are the numbers of samples representing a particular species, genotype, and sequence (GenBank accession
numbers indicated). Novel genotypes (∗). Scale bar represents the number of substitutions per site. Most clades were strongly supported (pp = 0.96–1.00).
pp < 0.95 was not shown.

representatives of Cryptosporidium to conduct a comprehensive
phylogenetic analysis is also required.

E. bieneusi
E. bieneusi was identified in three wildlife fecal DNA samples
in Zhejiang zoo (3.8%; 2/52) and 19 in Shanghai Wild Animal
Park (14.6%; 19/130), with a total prevalence of 11.5% (21/182).
Similarly, Li J. et al. (2015) and Yu et al. (2017) studied the
prevalence of E. bieneusi in Shanghai wildlife animal park
and reported 44.8% (30/67) and 69.1% (38/55), respectively.
These cited prevalences are all higher than that in our study;

however, they uniquely focused on the populations of non-
human primates. By contrast, Li et al. (2016) studied 70
different wildlife species (272 fecal samples) in Chengdu zoo
and Bifengxia zoo with prevalences of 10.6% (21/198) and 29.7%
(22/74), respectively, both of which are higher than that in
Zhejiang zoo, but E. bieneusi positivity in Chengdu zoo was
lower than that in Shanghai, indicating that E. bieneusi might
be widespread in Shanghai wild animal park. Internationally,
the overall prevalences of E. bieneusi in farmed and/or captive
wildlife and zoo animals globally ranged from 1.4% in Australia
(Zhang et al., 2018c) to 53.3% in China (Yu et al., 2020). The

Frontiers in Microbiology | www.frontiersin.org 6 August 2021 | Volume 12 | Article 692837

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-692837 September 19, 2022 Time: 18:29 # 7

Zhang et al. Wildlife –Zoonotic Source of Microsporidiosis and Giardiasis

FIGURE 2 | Relationships among the genotypes of Enterocytozoon bieneusi recorded in the wildlife in this study inferred from the phylogenetic analysis of sequence
data for the internal transcribed spacer (ITS) of nuclear ribosomal DNA by Bayesian inference (BI). Statistically significant posterior probabilities (pps) are indicated on
branches. Individual GenBank accession numbers precede genotype designation (in italics) followed by sample and locality descriptions. The Enterocytozoon
bieneusi genotypes identified and characterized from fecal DNA samples in the present study are indicated in bold type. Clades were assigned group names based
on the classification system established by Karim et al. (2015) and Li et al. (2019a). The scale bar represents the number of substitutions per site. The E. bieneusi
genotypes PtEbIX (DQ885585) and CD8 (KJ668735) from dogs were used as outgroups. All the groups were strongly supported (pp = 0.96–1). pp < 0.95 were not
shown.

variety of E. bieneusi prevalences might be due to host species,
health status, and immunity of animals; management; locations;
sample size; and environmental factors—season, temperature,
sunlight, and humidity.

In total, five known (BEB6, D, MJ13, SC02, and type IV)
and two novel genotypes (designated SH_ch1 and SH_deer1)
were identified in this study. The predominant genotype
here was genotype D (38.1%; 8/21), followed by BEB6 and
SC02 (each 14.3%; 3/21), SH_ch1 (9.5%; 2/21), and four
other genotypes (each 4.8%; 1/21). Genotype D is frequently
identified in humans and nearly 70 species of animals,
including birds (Anseriformes, Columbiformes, Falconiformes,
Galliformes, Gruiformes, and Passeriformes) and mammals
(Artiodactyla, Carnivora, Lagomorpha, Perissodactyla, Primates,

and Rodentia) (Zhang, 2019; Zhang et al., 2021), indicating
that genotype D has the capability of intra-species transmission.
Similarly, genotype BEB6 has also been found in humans
and 23 animal species (Zhang, 2019; Zhang et al., 2021),
and fallow deer (reported here) is the first record of this
genotype. Genotype SC02 was found in human and bear
(Wu et al., 2018), giant panda (Li W. et al., 2018), horse
(Deng et al., 2016b), Pallas’s squirrel, raccoon (Li et al.,
2016), red-bellied tree squirrel (Deng et al., 2016a), rhesus
macaque (Zhong et al., 2017), and wild boar (Li et al.,
2017); great pied hornbill (Buceros bicomis) identified in
this study is the first such published record. Similarly, red-
and-green macaw (Ara chloropterus) is the first host record
of genotype MJ13. Predominant genotypes BEB6, D, and
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FIGURE 3 | Relationships among Giardia taxa inferred from the phylogenetic analysis of partial triose-phosphate isomerase gene (tpi) sequence data by Bayesian
inference (BI). Posterior probabilities are indicated at all major nodes. Bold font indicates Giardia species or genotypes characterized from fecal DNA samples in this
study. In parentheses are the numbers of samples representing a particular species, genotype, and sequence (GenBank accession numbers indicated). Novel
genotypes (*). Scale bar represents the number of substitutions per site. All groups were strongly supported (pp = 0.96–1.00). pp < 0.95 were not shown.

SC02 were also found in water samples (Ayed et al., 2012;
Li et al., 2012; Huang et al., 2017; Li W. et al., 2018),
indicating that they might spread via E. bieneusi spores–
contaminated water.

Phylogenetic analyses revealed that novel genotype
SH_deer1 clustered with genotypes CAM1 (camel), horse
2 (horse), MAY 1 (human), and Nig3 (human), falling
into group 6. Previously, genotypes in this group were
predominantly found in animals. Thus, group 6 was
typically considered as the host-adapted group. However,
with more genotypes from this group identified in humans
(Akinbo et al., 2012; Qi et al., 2018), demonstrating
that group 6 revealed zoonotic potential. Additionally,

we have also created a phylogeny using all nearly 600
unique genotypes from all published studies employing
complete ITS sequences, with the aim of assessing the
relationships of the genotypes and the validity of groups
(Zhang et al., 2021), proving the zoonotic potential
of group 6. The overall results indicate that wildlife
carrying zoonotic genotypes have the capacity to transmit
from them to humans.

G. duodenalis
In the present study, 48 wildlife tested positive for G. duodenalis
with a total prevalence of 26.37% (48/182), which was higher than
that of Cryptosporidium (1.6%; 3/182) and E. bieneusi (11.5%;
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21/182), indicating that G. duodenalis is more widely spread
than the other two microbes. The prevalences of G. duodenalis
in Shanghai Wild Animal Park and in Zhejiang were 30.8%
(40/130) and 15.4% (8/52), respectively, both of which were
higher than that in a number of studies of G. duodenalis globally
(Matsubayashi et al., 2005; Lallo et al., 2009; Beck et al., 2011b;
Majewska et al., 2012; Oates et al., 2012; Aghazadeh et al., 2015;
Reboredo-Fernández et al., 2015; Adriana et al., 2016; Mynarova
et al., 2016; Mateo et al., 2017; Helmy et al., 2018). Additionally,
the prevalence of G. duodenalis in wild animals worldwide
ranged from 1.1% in zoo in Japan (Matsubayashi et al., 2005)
to 29.0% in Zagreb zoo in Croatia (Beck et al., 2011a); 30.8%
(40/130) here in wildlife in Shanghai is the highest prevalence
around the world. The overall results indicate relatively high
G. duodenalis infections in zoo animals in this study. However,
it cannot be entirely excluded that G. duodenalis cysts might
only pass through the gastrointestinal tract (pseudoparasitism),
as identification of G. duodenalis DNA from fecal samples is not
a direct evidence of infection.

In total, three assemblages A, C, and E of G. duodenalis
were characterized. Zoonotic assemblage A is predominant (75%;
36/48) in this study, followed by genotype E (14.58%; 7/48)
and C (2.08%; 1/48). Genotype A has been reported in humans
and a large number of animal species with the capacity of
cross-species transmission (Ryan and Zahedi, 2019). In this
study, assemblage E was mostly identified in giraffe, except
for one positivity in kangaroo. This is the first time that
kangaroo was recorded in the G. duodenalis assemblage E. This
assemblage has been mainly reported in hoofed animals, but
it was also detected in human specimens in Brazil (Fantinatti
et al., 2016), Egypt (Foronda et al., 2008), and Australia (Zahedi
et al., 2017), posing less risk to public health. Phylogenetically,
the novel tpi sequence found in spotted hyena (Crocuta
crocuta) clustered with assemblage C (Figure 3), which has
been frequently reported in canids and occasionally reported
in humans (Hopkins et al., 1997; Monis et al., 1998). The
overall results indicate that zoo animals can harbor zoonotic
G. duodenalis and potentially act as a host reservoir for human
infections of giardiasis.

CONCLUSION

Exploring the genetic composition of Cryptosporidium species
E. bieneusi and G. duodenalis populations in animals and
humans is important for understanding transmission patterns
of enteric disease and for its prevention and control. By
conducting the present molecular-phylogenetic investigation of
three pathogens target sequences derived from fecal samples
(n = 182) from zoo animals in China, we found (phylogenetically)
a novel species of Cryptosporidium. We also identified genotypes
or assemblages (E. bieneusi: BEB6, D, MJ13, SC02, SH_ch1,
SH_deer1, and type IV; G. duodenalis: A, C, and E), all of
which have zoonotic potential. The overall results indicate that
wildlife carrying zoonotic E. bieneusi and G. duodenalis can
potentially transmit the pathogens to humans, thus posting a
public health risk.
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