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Abstract: Cellular defense mechanisms, intracellular signaling, and physiological functions are
regulated by electrophiles and reactive oxygen species (ROS). Recent works strongly considered
imbalanced ROS and electrophile overabundance as the leading cause of cellular and tissue damage,
whereas oxidative stress (OS) plays a crucial role for the onset and progression of major cerebrovascular
and neurodegenerative pathologies. These include Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), stroke, and aging. Nuclear factor
erythroid 2-related factor (NRF2) is the major modulator of the xenobiotic-activated receptor (XAR)
and is accountable for activating the antioxidative response elements (ARE)-pathway modulating the
detoxification and antioxidative responses of the cells. NRF2 activity, however, is also implicated in
carcinogenesis protection, stem cells regulation, anti-inflammation, anti-aging, and so forth. Herein,
we briefly describe the NRF2–ARE pathway and provide a review analysis of its functioning and
system integration as well as its role in major CNS disorders. We also discuss NRF2-based therapeutic
approaches for the treatment of neurodegenerative and cerebrovascular disorders.
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1. Introduction

Oxidative stress (OS), one of the main indications of various pathologic processes, results from
the production of ROS including hydrogen peroxide, superoxide, and hydroxyl free radicals. In
turn, these highly reactive compounds promote lipid peroxidation, protein backbone fragmentation,
genotoxicity, mitochondrial depolarization, and apoptosis that subsequently cause serious damage to
tissues and organs including the brain [1–3]. The majority of this excessive reactive oxidative species
is expected to be produced by oxidative phosphorylation responses in the mitochondria [4,5]. Cells
have developed several defense mechanisms equipped with the capacity to upregulate the expression
levels of cytoprotective enzyme genes in order to scavenge free radicals and reduce the risk for the
cellular damaging effect of ROS [6,7]. Nuclear factor erythroid 2-related factor (NRF2) is one of the
most important transcription factors that enhance the expression of antioxidant reaction to oxidant
stress [5].

NRF2 (a member of the Cap-n-Collar family of basic leucine zipper proteins) as a ubiquitously
expressed redox-sensitive transcription factor, primarily modulates the activation of biological systems
encompassing anti-inflammatory molecules, antioxidants (such as thioredoxin, glutathione, and others),
phase I and II drug metabolizing enzymes (such as cytochrome P450s), phase III enzymes (efflux
transporters), and free radical scavengers [6,8–12]. Consequently, cell vulnerability to the detrimental
effects of ROS and OS damage to mitochondrial function (leading to cell apoptosis) are enhanced by
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downregulation or suppression of NRF2 activity [13–16]. Cellular OS initiates a sequence of biological
responses so that NRF2 (residing in the cytoplasm at a low basal level) translocates into the nucleus [17]
where it forms a heterodimer with small Maf proteins (MafG, MafK, MafF). Coupling with Mafs
endows NRF2 with a DNA-linking capacity to bind to the ARE sequence and initiate the transcription
of ROS detoxification genes [18].

Due to the fact that NRF2 is likely to control, modulate, and sustain the expression of detoxification
and antioxidative response elements and other types of protective elements (which include the
ubiquitary iron exporter ferroportin 1, anti-apoptotic B-cell lymphoma 2, brain-derived neurotrophic
factors, the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the
mitochondrial-nuclear respiratory factor 1 (Nrf1), and the autophagic protein p62) [19–25], its activation
plays a considerable role in counteracting acute injuries, effects of xenobiotics, inflammation, and many
other stimuli that are promoted by OS [17,26]. With regard to OS being implicated in several pathologies,
current research is focused on pathogenic mechanisms that lead to mitochondrial dysfunction and
redox imbalance [26]. In this review, we provide a detailed analysis of the current understanding of
the NRF2–ARE system and its role in major CNS disorders. We also include NRF2-focused therapeutic
approaches for the treatment of cerebrovascular and neurodegenerative diseases.

2. NRF2 Regulation and Response to Oxidative Stress

Domain analysis by high-resolution crystal structure and nuclear magnetic resonance spectroscopy
has shown that the molecular structure of NRF2 includes seven functional domains (Neh1–Neh7) that
regulate its transcriptional activity and stability [27]. The first conserved domain, Neh1, containing basic
bZIP motif binds, to the ARE sequence exposing a nuclear localization signal required for translocation
of released NRF2 from Kelch-like ECH-associated protein 1 (KEAP1) into the nucleus [28–30]. Neh1
and Neh2 play differing roles with respect to NRF2 regulation. While Neh1 modulates NRF2 protein
stability through interaction with the E2 ubiquitin-conjugating enzyme, Neh2, a negative regulatory
domain located in the N-terminal region, promotes NRF2 ubiquitination followed by proteasomal
degradation, which is a result of increased KEAP1–NRF2 binding [31]. While Neh3 (which is located
in the carboxyl-terminal region of the protein) modulates the transcriptional activation of the ARE
genes [27,32], the Neh4 and Neh5 domains play a cooperative role in facilitating NRF2 transcription
by binding to a transcriptional co-activator [33] and also increases NRF2–ARE gene expression by
interfacing with the nuclear cofactor RAC3/AIB1/SRC-3 [33,34]. The Neh6 and Neh7 domains control
KEAP1-independent degradation of NRF2 and regulate the activity of NRF2 so that KEAP1-alternative
pathway of NRF2 degradation arises based on the recognition of phosphorylated Neh6 by the E3 ligase
adapter beta-TrCP [35–37] and Neh7 inhibits NRF2 via interaction with retinoid X receptor α [38].
The main step in detoxification is the nuclear and cytoplasmic disposition of NRF2 so that under
basal conditions, NRF2 is rapidly polyubiquitinated while cellular redox homeostasis is sustained by
the accumulation of the NRF2 in the nucleus to mediate the normal expression of ARE-dependent
genes [26,39].

KEAP1, the main intracellular regulator of NRF2, is composed of three main domains (totaling
624 amino acids) including the Broad-complex (1), Tramtrack (2), and the Bric-a-Brac (BTB) domain (3)
which includes a cysteine-rich region and a double glycine repeat -DGR- binding site between KEAP1
and NRF2. Several cysteine residues within the BTB domain act as OS sensors and/or inducer ligands
within the cell’s environment [27]. The activity of the NRF2–ARE signaling pathway is controlled
by degradation and sequestration of NRF2 in the cytoplasm through binding with KEAP1 [5,26].
Other factors including post-transcription changes, gene polymorphisms in the promoter region, and
protein–protein interactions are also influenced by NRF2 basal activity [39,40]. It is noteworthy that in
response to mitochondrial oxidative stressors NRF2 provides direct interaction with the mitochondrial
membrane [41].

Under basal conditions, KEAP1 binds to NRF2 in the cytoplasm and enhances the ubiquitination
and proteasomal degradation of NRF2, whereas in response to oxidative stress condition, the NRF2
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DLG motif is released from the DGR domain in KEAP1, which then undergoes conformational changes
and dissociate NRF2 from itself to shift into the nucleus freely [39]. Independently from KEAP1 activity,
not only phosphorylation of NRF2’s serine enhance separation of NRF2 from KEAP1 [26], but also
glycogen synthase kinase-3β (GSK-3β), synthesis of specific microRNAs, methylation of CpG islands,
histone phosphorylation, and acetylation modulate the expression and activation of NRF2 [6,42–44].
This cytoprotective pathway encompasses detoxification systems such as oxidation/reduction factors
(Phase I), conjugation enzymes (Phase II), and drug efflux transporters (Phase III) [39,44]. Phase I
includes more than 500 products encompassing genes encoding proteins for redox balancing factors,
stress response proteins, detoxifying enzymes, and metabolic enzymes such as NAD(P)H:quinone
oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione
S-transferase (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), carbonyl reductase
(CR), and glutamate-cysteine ligase (GCL) [45,46]. Metabolites then undergo Phase II metabolism where
they are conjugated with large polar groups (such as glucuronic acid, glutathione, sulfate, or glycine)
to increase their water solubility and facilitate their excretion. Thus, it seems that NRF2 plays a major
role in modulating/promoting the process of detoxification [5,30]. NRF2 also controls/enhances the
expression of active efflux transporters that remove or keep out potentially detrimental endogenous or
xenobiotics of the cell [39] as well as tight junction (TJ) expression and BBB integrity at the neurovascular
unit [47]. NRF2 nuclear accumulation can also have harmful effects [29] which accounts for the necessity
of autoregulating the cellular levels of NRF2 [32,48]. For this end, the cullin3/ring box 1 (Cul3/Rbx1) E3
ubiquitin ligase complex promotes polyubiquitination of NRF2 coupled with KEAP 1 followed by
NRF2 proteasomal degradation. This mechanism controls the “switching off” of NRF2-activated gene
expression in the nucleus [32].

3. Crosstalk between NRF2 and Other Regulatory Signaling Pathways

According to numerous studies, there is a crosstalk between NRF2, KEAP1, and other signaling
pathways. In the KEAP1-independent degradation pathway mediated by the cullin3/ring box 1
(Cul3/Rbx1) E3 ubiquitin ligase complex, NRF2 acts as a regulator for the complex. This occurs through
NRF2 binding to the KEAP1 region via the Neh2 domain, which enhances NRF2 polyubiquitination and
then degradation by the 26S proteasome [1,26,35]. Moreover, this Cul3/Rbx1-mediated degradation of
NRF2 is controlled by phosphorylation of the Neh6 domain of NRF2 which is regulated by GSK-3 [37].
Furthermore, deletion of PTEN (phosphatase and tensin homolog) deleted from chromosome10
promotes NRF2 accumulation in KEAP1-deficient liver, suggesting that the inactivation of GSK-3 and
the activation of the PI3K-Akt pathway by the loss of PTEN lead to the inhibition of NRF2 degradation
via the Cul1/Rbx1 pathway [7,49].

Another essential crosstalk occurs between the KEAP1–NRF2 system and the cellular autophagy
pathway. Autophagy-adaptor protein p62 competes with KEAP1 for binding with NRF2 using the
STGE motif so that p62 promotes the stabilization of NRF2 and the upregulation of NRF2 activity
through this competition [24]. Interestingly, phosphorylation of the STGE motif in p62 causes enhanced
binding affinity to KEAP1 [50]. A considerable finding is that NRF2 is predominantly degraded through
the proteasome pathway, whereas KEAP1 is degraded through the autophagy pathway maintaining
the integrity and homeostasis of the KEAP1–NRF2 system by governing KEAP1 turnover [51]. Thus,
the KEAP1–NRF2 system is regulated through the two significant cellular proteolysis pathways.

NF-κB is a rapid response factor to harmful cellular stimuli which is associated with Inhibitor of
κB (IκB) proteins (which include IκBα, IκBβ, IκBε, and Bcl-3 although IκBα is the major IκB protein). In
response to noxious stimuli (such as OS and pro-inflammatory cytokines like TNF-α), the IκB proteins
(which under normal conditions mask the nuclear localization signals—NLS—of NF-κB and keep this
factor sequestered in an inactive state in the cytoplasm) undergo phosphorylation by the IκB kinase
complex, followed by ubiquitination, and proteasomal degradation [5]. Degradation of IκB frees NF-κB
can then translocate into the nucleus, and alter (promote) the transcription of genes responsible for both
the innate and adaptive immune responses [52]. Recent findings have confirmed the crosstalk between
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NRF2 and NF-κB signaling pathways under OS conditions as well as a variety of pathophysiological
conditions [53] in us much that pro-inflammatory and immune responses promoted by the activity of
NF-κB are contrasted by upregulation and activation of NRF2 [5]. By contrast, enhanced inflammation
could be associated with downregulation of NRF2 activity (see Figure 1).
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Figure 1. Schematic representation of the NRF2–NF-kB cross talk with respect to oxidative stress
and inflammatory stimuli. Note that an “up arrow” indicates upregulation while a “down arrow”
indicates downregulation.

In a study on NRF2 knock out mice, hypersensitiveness to the inflammation induced by LPS
was observed while these harmful effects were repealed following treatment with sulforaphane as
a NRF2-dependent gene expression enhancer [54]. Although several studies on other cell types
reported similar observations, the interconnection of NRF2 and NF-κB to coordinate anti-oxidative
and inflammatory responses is not completely understood [55–60]. In a study by Cuadrado et al., the
investigators observed that upregulation of RAC1 (a pleiotropic a small G-protein of the Rho family
and a modulator of NF-κB transcription) activated the inflammatory pathway through an interplay
between NF-κB and NRF2 [61] so that RAC1 participated in NADPH oxidase-dependent production of
superoxide, whereas activation of NF-κB was mediated through RAC1 dependent ROS formation [62].
In fact, NRF2 deletion promoted the activation of NF-κB dependent inflammatory markers, while
NRF2 overexpression inhibited RAC1-dependent activation of NF-κB pathway, suggesting that RAC1
affects NRF2 and NF-κB.

4. Role of NRF2 in Aging and Traumatic Brain Injury

Non-effective antioxidative responses to excessive ROS production and changes in redox signaling
playing are one of the major reasons for advanced aging, whereas the inability to properly counteract
OS leads to the progressive accumulation of OS-induced cellular damage [63,64]. Recent studies have,
in fact, shown that age-related OS damages are dependent upon decreased antioxidant responses, as
well as proteasome reduction, and reduced efficiency of mitochondrial proteases. The resulting effect
of this impaired antioxidative response and inability to effectively maintain the redox balance is an
accumulation of intracellular and intramitochondrial aggregates of oxidized proteins [65]. Similarly, the
decreased level NADPH and GSH with aging could likely be due to a decreased cellular antioxidative
capacity, as well as reduced intake of dietary antioxidants. Although there is a lot of dispute over the
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effect of age on the basal expression levels of antioxidative response factors, it seems that the primary
underlying cause is a reduced NRF2 activity [66–68].

In respect to traumatic brain injury (TBI), disruption in the normal brain function following
TBI is one of the foremost causes of death as well as severe emotional, physical, and cognitive
impairments [69–71]. In spite of the pathogenic role of the primary brain injury immediate to TBI, the
post-traumatic secondary injury derived from OS, inflammation, excitotoxicity, enhanced vascular
permeability, and BBB impairment can significantly worsen post-traumatic brain damage as well
as clinical outcomes [72,73]. Excessive ROS generation following cell damage, neuronal cell death,
and brain dysfunction are the results of several secondary biochemical and metabolic changes in
the cells [74]. According to recent studies, NRF2 plays a neuroprotective role in TBI so that NRF2
activation counteracts TBI-induced OS, loss of BBB integrity, etc. Unsurprisingly, impairments of the
NRF2–ARE pathway leading to reduced activity of this protective system can result in more extensive
post-TBI tissue damage, thus aggravating the secondary injury and worsening outcome. Accordingly,
promoting upregulation of NRF2 activity could be exploited to reduce post-traumatic brain injuries,
improve clinical outcomes, and reduce the risk of additional neurological disorders [75,76].

5. Ischemic Stroke and Protective Role of NRF2

Stroke, the fifth leading cause of death in the United States and a major cause of permanent
disability, is defined by a bursting or blockage of blood vessels resulting in the sudden interruption
of the local blood supply and the initiation of an anoxic and hypoglycemic state in the affected brain
tissue [4]. Moreover, neuronal cell membrane depolarization causes the release of the neurotransmitter
glutamate, which is the activator of the ionotropic glutamate receptor N-methyl-d-aspartate (NMDA) [5].
The resulting opening of these non-selective cation channels leads to calcium overload and neuronal
cell death [77]. These events are associated with excessive ROS production by the mitochondria
which overwhelm the antioxidant defenses, leading to post-ischemic inflammation and enhanced
brain tissue damage [78–81]. Furthermore, degradation of the structural proteins of the vascular wall
and loss of BBB integrity also occur as a result of blood flow restoration, which suddenly enhances
tissue oxygenation further exacerbating ROS production, inflammatory responses, and OS damage [5].
Adhesion of leukocytes across the blood vessels and transmigration into the brain parenchyma is
facilitated by the concurrent expression of vascular adhesion molecules on the luminal surface of the
vascular walls. Based on these premises, it is evident that control of ROS levels and OS prevention could
be a potential therapeutic strategy to address post-ischemic secondary brain injury and improve stroke
outcome [5,82–84]. Recent studies demonstrated that the protective effect of interactions between p62
and the NRF2–EpRE signaling pathway inhibited OS damage during cerebral ischemia/ reperfusion
in rat undergoing transient middle artery occlusion (tMCAO) and also promoted NRF2 activity to
lower the infarct volume and post-ischemic neurocognitive impairments [85,86]. NRF2 activity is also
crucial to protect the brain against injury. In fact, NRF2 activation through the use of pharmacological
enhancers improved neuronal cell viability, decreased BBB permeability, and promoted the transcription
of cytoprotective genes [87,88]. Furthermore, enhanced infarct size, inflammatory damages, and
neurological deficits were reported in NRF2 KO mice when compared to controls (wild-type mice). By
contrast to controls, the use of NRF2 enhancer in knock out mice did not elicit any beneficial effect [89].
Most recently, other studies have shown that NRF2 downregulated the activity of the NOD-like
receptor protein 3 (NLRP3) inflammasome by acting on thioredoxin-1 (Trx1)/thioredoxin interacting
protein (TXNIP) complex [82]. The NLRP3 inflammasome plays a key role in inflammation damage in
cerebral ischemia-reperfusion injury by promoting the activity of interleukin-23/interleukin-17 axis
which contributes to the ischemic reperfusion damage at the CNS [90]. The activation of NLRP3 is
dependent upon the interaction with TXNIP, which dissociates from the Trx1/TXNIP complex under
OS. Thus, it is clear how targeting NRF2 represent a viable target for the treatment of ischemia and
reperfusion injury.
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6. Role of NRF2 in Neurodegenerative Diseases

Recent discoveries have mentioned OS as a major pathogenesis of neurodegenerative disorders
(NDDs) due to the accumulation of ROS [4,91]. In fact, a failure in maintaining the proper balance
between ROS generation and their neutralization causes a disruption of brain homeostasis leading to
neurodegenerative disorders [92,93] (see Figure 2).
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with impaired redox metabolism and oxidative stress.

As commonly observed in neurodegenerative disorders, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD), ROS
production overwhelms the antioxidative response system causing cellular damage so that elevated
levels of oxidative markers and damaged cell components have been diagnosed in patients with
neurodegenerative diseases [94]. In spite of the poor understanding of the underlying mechanisms
linking NRF2 with the onset/progression of these disorders, proteinopathies are the pathogenic hallmark
shared between these disorders [6]. The impairment of mitochondrial function is another common
feature of these neurodegenerative disorders and also promotes ROS generation, ATP depletion, and
inflammation [6,51,95–98]. Thus, this concept could provide opportunities for interventions focused on
restoring/normalizing the cellular antioxidative response and decreasing inflammation and following
the reduced progression of these diseases.

Alzheimer’s disease: A neuropathological hallmark of AD is the formation of intracellular
neurofibrillary tangles (NFTs) and extracellular senile plaques (SPs) composed of small Aβ peptides [99].
Several studies propose that OS is an early prodromal event for progressive neurodegenerative
disorders [100]. According to several studies on AD, NRF2 was able to provide a neuroprotective effect
by decreasing ROS generation and ROS-induced toxicity mediated by Aβ [101,102]. Supporting data
have shown that NRF2 activators, such as sulforaphane (SFN) lower toxin-induced Aβ1-42 secretion,
while enhancing cell viability and improving cognitive function [103,104]. These beneficial effects may
be due to the formation of Aβ aggregates or the inhibition of the release of monomer/oligomeric Aβ
from dead cells [105]. A recent study also outlined the role of NRF2 in facilitating autophagy as well as
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altering β-Amyloid precursor proteins (APP) and Aβ processing whereas NRF2 knockout APP/PS1
mice showed increased accumulation of insoluble APP fragments and Aβ as well as mammalian
targets of rapamycin (mTOR) activity [5,106]. The investigators also found that overexpression of
mitochondria catalase in APP transgenic mice (Tg2576), decreases the formation of full-length APPs
and lowers soluble and insoluble Aβ levels. From a clinical perspective, this may translate into
extending the lifespan of the patient while improving working memory [5]. In a recent study, Rojo et al.
demonstrated the protective effect of NRF2 against exacerbation of astrogliosis and microgliosis using
transgenic mouse models [105]. Specifically, the investigators have shown a reduction in homeostatic
responses with aging along with NRF2 activity resulting in reduced protection against proteotoxic,
inflammatory and oxidative stress stimuli [5,107].

Parkinson’s disease: PD is a progressive neurodegenerative disorder characterized by lowered
dopamine levels in the striatum due to the loss of dopaminergic neurons located in the substantia
nigra affecting movement [94]. The initial symptoms in PD patients sometimes are tremors affecting
one hand or slowing of movement. With the progression of the disease controls over movement is
completely compromised and the effects are extended to neurocognitive functions dementia [5]. The
certain diagnosis of PD in both familial and sporadic PD patients is the presence of Lewy bodies
(LBs) as abnormal protein aggregates developing inside nerve cells. The main constituent of LBs is
Alpha-synuclein (αSyn) which is a small protein with 140 amino acids. αSyn is abundant in presynaptic
nerve terminals playing a role in synaptic transmission and dopamine levels adjustment [5]. Recent
studies strongly postulate the association between PD with abnormal ROS production promoted by
the dopamine metabolism, excitatory amino acids and iron content [100]. Moreover, it is emphasized
that this increased OS plays a pivotal role in αSyn proteostasis, whereas NRF2 activity can counteract
αSyn production and the associated cellular damage [101,108–111]. Recently, NRF2 overexpression
has not only confirmed the reduction of the generation of αSyn aggregates in the CNS [112], but also
the activation of NRF2 has appeared to prevent the loss of dopaminergic neurons mediated by αSyn
and the consequent impairment of motor functions [5,113]. NRF2 deficiency and promoted expression
of αSyn experienced enhanced loss of dopaminergic neuron and increased neuroinflammation and
protein aggregation, whereas the enhanced expression level of NRF2 in a mutant αSyn transgenic
mouse model, provided neuroprotective effects [5,57,111].

Huntington’s disease: HD as an inherited neurodegenerative disease is characterized by the loss
of GABAergic inhibitory spiny projection neurons in the striatum [94] due to abnormally elongated
poly-glutamine (polyQ) stretch encoded by the atypical expansion of adenine, cytosine, and guanine
(CAG) trinucleotide repeats at the huntingtin protein (Htt). According to several in vitro studies,
NRF2 activation can play a protective role in the reduction of mHtt-induced toxicity, while in HD
patients the initiation of the NRF2–ARE system in striatal cells in response to OS failed because of the
concurrent activation of the autophagy pathway [114,115]. Moreover, additional data have confirmed
that Htt aggregation directly enhanced ROS generation promoting cell toxicity [116]. Furthermore,
co-transfection of NRF2 with mHtt in primary striatal neurons, reduction of the mean lifetime of mHtt
N-terminal fragments, and, subsequently, improvement of cell viability suggest that NRF2 is more
likely to decrease mHtt -toxicity by negatively affecting its aggregation [117].

Amyotrophic lateral sclerosis: ALS is a progressive neurodegenerative disease characterized
by the loss of motor neurons in the ventral horn of the spinal cord and in the motor cortex. The
disease leads to progressive motor weakness and loss of controls of voluntary movements [5,94].
Although, for more than two decades, the mutation of Cu–Zn superoxide dismutase 1 (SOD1) was
the only genetic aberration relevant to the initiation of familial ALS, recent studies have found more
abnormalities associated with the onset of sporadic and non-SOD1 familial ALS, including a host of
RNA/DNA-binding proteins such as the 43-kDa transactive response (TAR) DNA-binding protein
(TDP-43) and the fused in sarcoma/translocated in liposarcoma (FUS/TLS) [5]. Several recent studies
support that NRF2 activation plays a protective role against OS and cell death promoted by the SOD1
mutant protein so that glial NRF2 overexpression improves the survival of the spinal cord’s motor
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neurons and extends their viable lifespan [118,119]. Additional studies will be required to evaluate the
impact of NRF2 on cellular proteostasis as well as other ALS-associated gene mutations and the effect
of NRF2 stimulation on late-stage microglia activation to prevent OS.

7. Role of NRF2 in Blood-Brain Barrier (BBB) Integrity and Function

In the central nervous system, the vascular endothelium acquires a set of specific characteristics
and functions that differ from other vascular beds [120]. This specialized endothelium, which forms
the BBB, becomes a dynamic functional interface between the blood and the brain that strictly regulates
the passage of substances, maintains the brain homeostasis, and protects the brain from pathogens
as well as endogenous and xenobiotic substances [69]. According to numerous studies, there is a
relationship between NRF2 and BBB relevant to cerebrovascular disorders, so that NRF2 signaling
plays a neurovascular protective role in the conservation of the BBB and CNS [8,11,121,122]. With
regard to BBB endothelium, it has been emphasized that NRF2 upregulates the expression of tight
junctional proteins (TJ), promotes redox metabolic functions, and produces ATP with mitochondrial
biogenesis [3,11,122,123]. In fact, recently published data from side by side experiments investigating
the impact of electronic cigarettes (e-Cig) versus TS on mouse primary brain microvascular endothelial
cells (BMVEC) clearly showed that NRF2 was strongly activated by the resulting OS and promoted
upregulation of its downstream signaling molecule NQO-1 [122], whereas NQO-1 exerts acute
detoxification and cytoprotective functions. However, chronic exposure to these pro-oxidative stimuli
ended up compromising NRF2 activity and that of its downstream effector NQO-1. These resulted in an
overall impairment of BBB integrity associated with increased permeability to paracellular markers and
decreased trans-endothelial electrical resistance (TEER) [83,122]. In addition to the loss of BBB integrity,
in vivo data also showed upregulation of inflammatory markers including vascular adhesion molecules
and pro-inflammatory cytokines as well as blood hemostasis changes favoring blood coagulation and,
therefore, risk of stroke. Recent preliminary data and work by others have also clearly demonstrated that
NRF2 modulates mitochondrial biogenesis, redox metabolism, and antioxidant/detoxification functions,
thus, strongly suggesting that impairment of NRF2 activity can negatively affect mitochondrial
biogenesis and function [3]. Altogether, these studies have shown that NRF2 plays a major role in critical
BBB cellular functions ranging from modulation of barrier integrity, inflammatory responses, redox
metabolism, and antioxidative responses [4–6,44,66,88,105,121,122,124,125]. In fact, cerebrovascular
and neurodegenerative disorders such as subarachnoid brain hemorrhage, MS, ALS, AD, PD, stroke, and
type-2 diabetes mellitus (TD2M) have been tied to dysfunctions of NRF2 activity [6,11,51,121,126–130].
Unsurprisingly, the activation of the NRF2–ARE system can potentially prevent/reduce the BBB
impairments and, consequently, decrease some types of brain injury [131]. Since vascular endothelial
dysfunction and consequent CNS damages have been relevant to ROS [132–134] and OS-driven
inflammation [135], NRF2 activation is likely to preserve the BBB by maintaining ROS homeostasis
that ultimately leads to a decrease in the risk of cerebrovascular, neurodegenerative, and CNS
disorders [85,131,136–138]. For instance, the well-known NRF2 promoter/activator Sulforaphane (SFN)
has been shown to have neuroprotective characteristics that counteract oxidative stress by enhancing
NRF2 activation [51,131,139–146] and regulating antioxidant reactions [18].

8. Role of NRF2 in Tobacco Smoke-Induced Cerebrovascular Disorders

Cerebrovascular and BBB dysfunction promoted by tobacco smoke (TS) are also associated with
the initiation of various neurovascular and neurodegenerative diseases linked to dysregulation of NRF2
activity such as stroke, vascular dementia, and previously noted neurogenerative disorders [39,85,122].
This is not surprising since TS contains over 7000 chemicals including nicotine and various ROS (e.g.,
H2O2, epoxides, nitrogen dioxide, peroxynitrite-ONOO−, etc.) that cross the lung alveolar wall and
raise systemic OS. At the cerebrovascular level, this promotes oxidative damage and BBB breakdown
via tight junction (TJ) modification and the activation of proinflammatory pathways [11,147]. Under
normal conditions, ROS are scavenged by endogenous antioxidants involving vitamins such as
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ascorbic acid and α-tocopherol or intracellularly converted into less reactive molecules by superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). However, containing excessive
pro-oxidant substances, chronic exposure to active and passive smoking can overwhelm these protective
mechanisms. Furthermore, the protective nature of NRF2 may be altered in smokers by means of
somatic mutation, epigenetic alteration, and accumulation of disruptor proteins, thereby promoting
cell resistance and proliferation of cancerous cells as indicated by other studies [122,148,149].

According to several recent studies, NRF2 enhancers can counteract OS and possibly decrease the
burden of neuropathologies including ischemic and cerebral stroke [5,85,150–153]. Recently Prasad
et al. have confirmed the upregulation of NRF2 upon acute TS/e-Cig exposure and its impact on
mitochondria biogenesis and bioenergetic functions at the BBB. Their results strongly confirmed
the positive role of NRF2 in regulating the redox metabolic interplay that triggers the expression
of antioxidative active elements and ultimately the protection of the BBB against OS damage [122].
NRF2 nuclear translocation and increased transcription of detoxifying enzymes and antioxidants
effectively protect against chronic TS exposure [5]. However, they demonstrated impairment of NRF2
activity by chronic TS exposure, resulting in a suboptimal antioxidative response and consequent
cellular OS damage, while acute exposure to TS and vapors from an electronic cigarette (e-Cig) initially
enhances NRF2 expression and activation [11,85,122,123,154,155]. This facet of chronic TS and e-cig
exposure and their effect on the NRF2–ARE system needs to be considered due to early-stage former
smokers remaining at a high risk of developing cerebrovascular disorders for years after quitting [39].
Similar results have been observed in our recent work confirming TS/e-Cig induced cerebrovascular
dysfunction and possibly other detrimental xenobiotics affects the BBB via oxidative stress [156]
(see Figure 3).
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9. Role of NRF2 in Hyperglycemia

Hyperglycemia or high blood sugar is described as an abnormally elevated rate of blood sugar
(fasting levels of glucose > 130 mg/dL) and a sign of type 1 and type 2 diabetes [5]. Recent studies on the
impact of hyperglycemia on NRF2 expression have revealed that while hyperglycemia does not directly
affect NRF2 expression, it promotes its nuclear translocation [5,11]. It appears that both acute TS
exposure and hyperglycemia significantly increase the nuclear/cytoplasmic NRF2 ratio and subsequent
activation of antioxidant mechanisms. Indirectly, these data also suggest that TD2M-promoted and TS
promote OS damage through similar mechanisms [8]. This is part of an acute response system activated
in response to oxidative stress. In fact, recent studies have shown that inhibition of NLRP3 by NRF2
can improve diabetes-mediated cognitive and cerebrovascular impairments [157]. However, chronic
persistence of hyperglycemia and/or exposure to TS impairs NRF2 activity leading to cerebrovascular
damage and heighten the risk of neurological disorders.

In spite of the observed facts such as enhanced TS-induced NRF2 activation by hyperglycemia
(accounting for the existence of a cooperative effect) and enhanced-activation of endothelial
pro-inflammatory responses by hyperglycemia, additional studies will be necessary to validate
the underlying mechanisms and determine the corresponding pathophysiological implications relevant
to the cerebrovascular system.

10. NRF2 Enhancers for the Treatment of Cerebrovascular Disorders: Repurposing of
Antidiabetic Drugs

Recent studies have provided several dietary and therapeutic agents currently approved for the
treatment of non-vascular and non-neurodegenerative pathologies that, on the contrary, do possess
protective effects against the initiation/progression of neurodegenerative [1] and cerebrovascular
diseases [5,122]. Metformin (MF), an oral anti-hyperglycemic agent, not only can enhance neurogenesis
for the injured or degenerating neurovasculature [158], but it is also likely to diminish BBB disruption and
decrease/inhibit ischemic injury upon stroke and impairment in neurodegenerative disorders [159–163].
MF has been shown to activate counteractive mechanisms which drastically reduce OS toxicity at
the cerebrovascular and BBB levels such as those promoted by chronic TS exposure [83,122]. These
beneficial effects are seemingly mediated by MF‘s activation of NRF2 [159] and include the suppression
of TJ proteins downregulation and loss of BBB integrity by TS, the reduction of inflammation and
oxidative stress, the renormalization of the expression levels of the major BBB glucose transporter
Glut-1 and that of the anticoagulant factor thrombomodulin. Both AMPK-dependent and independent
mechanisms are known to be involved in the mechanism of action of Metformin [164,165]. According
to a study by Montalvo et al., treatment with Metformin resulted in an increased lifespan of aging
mice brought about by the increase in antioxidant property and AMPK activation [166]. In addition,
pre-treatment with MF has been discovered in distinct research to avoid ischemia-induced brain injury
by activating the AMPK and NRF2 pathways and promoting rearrangement with ZO-1, occludin,
and claudin-5 [159,160]. Recently our team showed that pretreatment with MF in vitro prevented
downregulation of tight junction protein (ZO-1 and occludin) following chronic exposure to soluble
cigarette smoke extract (sCSE). This effect was dependent upon activation of the NRF2 and AMPK
pathways. Our study also revealed that that NRF2 activation (upregulation and translocation to the
nucleus) is not exclusively dependent upon the activation of AMPK [122].

MF also has shown a neuroprotective effect on TS-induced cerebrovascular/BBB impairments
to diminish the cerebrovascular toxicity accounting for a functional role of NRF2 and NRF2–ARE
signaling pathways in protecting BBB integrity in chronically TS-exposed human BBB microvascular
endothelial cells [11,85,122,123,159]. A recent study also demonstrated that treatment with MF in TS
exposed mice restored levels of NRF2 and NQO1 to control levels in a dose-dependent manner. Along
with these effects, levels of TJ proteins ZO-1 and Occludin were also restored [83]. In supporting the
neuroprotective effect of anti-diabetic drug against oxidative stress in another study, Rosiglitazone
(RSG) is a thiazolidinedione compound used for the treatment of TD2M that is well known to improve
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insulin resistance by regulating adiponectin gene expression [167]. Rosiglitazone is also considered as
a transcription factor peroxisome proliferator-activated receptor (PPARγ) agonist [168,169]. Although
the exact mechanism of action of rosiglitazone is not fully understood, recent studies have shown
that this drug also possesses antioxidative features and can protect against OS damage and inhibit
the inflammatory cascade through signaling inactivation by p38, JNK, and NF-κB [170–172]. Recently,
Ceolotto et al. demonstrated that RSG protects endothelial cells against glucose-induced OS with an
AMPK-dependent mechanism [156,168]. AMPK has been shown to promote NRF2 activity via nuclear
accumulation further implying that RSG-mediated upregulation of PPARγ can be also associated
with increased NRF2 activity [156]. In another study, Kadam et al. observed upregulation of NRF2
and its downstream target HO-1 as well as downregulation of toll-like receptor 4 (Tlr4) following
RSG administration [173]. Activation of Tlr4 promotes NF-κB activity followed by pro-inflammatory
cytokine production and stimulation of the innate immune system. A very recent study by our group
has shown that RSG can seemingly mediate NRF2 upregulation and activation through upregulation of
PPARγ expression [156]. Our data strongly suggest the possibility for a PPARγ-mediated mechanism
of NRF2 upregulation/activation leading to the repairing of BBB integrity, decreased endothelial
inflammatory responses as well as upregulation of NRF2 downstream signaling molecule NQO-1
which exert acute detoxification and cytoprotective functions [122]. Along this line, it is conceivable that
other drugs presenting similar NRF2 enhancing effects (including nutritional dietary phytochemicals)
could be repurposed for the treatment of OS and pro-inflammatory-dependent cerebrovascular and
neurological disorders. However, more in vitro and in vivo studies will be necessary to confirm the
feasibility and the beneficial effects of each treatment.

11. Conclusions

NRF2 plays a pivotal role in regulating redox homeostasis as well as the activation and
modulation of antioxidant, anti-inflammatory, drug metabolism, detoxification, and radical scavenging
functions [5,44]. Indeed, the NRF2–ARE signaling is significant for cytoprotection of cell survival
against oxidative stress and preservation of the proper redox balance in cells and tissues by
promoting antioxidative defenses neutralizing ROS and also blocking transcription of pro-inflammatory
genes [174,175]. Nowadays, there is a growing research interest in investigating the cerebrovascular
and neurodegenerative protective effect of NRF2 on maintaining the functional integrity of the BBB,
preventing harmful CNS disorders, and the initiation/progression of neuroinflammatory and also the
identification of novel approaches targeting NRF2 to prevent and/or reduce brain injury [14,88,125].
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Abbreviations

αSyn Alpha-synuclein
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
AMPK AMP-activated protein kinase
ARE Anti-oxidant response element
BBB Blood–brain barrier
BMVEC Brain microvascular endothelial cells
CAT Catalase
CNC Cap‘n’collar
COPD Chronic obstructive pulmonary disease
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EGCG Epigallocatechin gallate
Glut 1 Glucose transporter
GSH Px Glutathione peroxidase
HD Huntington’s disease
HO-1 Heme oxygenase-1
ICAM-1 Intercellular adhesion molecule-1
IKK IκB kinase
KEAP1 Kelc-like ECH-associated protein 1
MF Metformin
MS Multiple sclerosis
NLRP3 Nod-like receptor protein 3
NQO-1 NAD(P)H: quinone reductase I
NTF2 Nuclear factor erythroid 2-related factor
PAMPs Pathogen-associated molecular patterns
PD Parkinson’s disease
PGC-1α Proliferator-activated receptor gamma coactivator 1-alpha
PKC Protein kinase C
PPARγ Peroxisome proliferator-activated receptor gamma
PRR Pattern recognition receptor
ROS Reactive oxygen species
RSG Rosiglitazone
SFN Sulforaphane
SOD Superoxide dismutase
TD2M Type-2 diabetes mellitus
TBHQ Terbutylhydroquinone
TBI Traumatic brain injury
TEER Trans-endothelial electrical resistance
TLRs Toll-like receptors
TJ Tight junction
TMCAO Transient middle artery occlusion
TS Tobacco smoking
Trx1 Thioredoxin-1
ZO-1 Zonulae occludentes-1
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