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Purpose: In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR), and age-
related macular degeneration (AMD), retinal pigment epithelial (RPE) cells can initiate proliferation and migration and
secrete extracellular matrix (ECM) proteins. (-)-Epigallocatechin gallate (EGCG)—a natural anti-oxidant flavonoid that
is abundant in green tea—has been shown to suppress the migration and adhesion of many cell types, but its effects on
RPE cell migration and adhesion were unknown. Several studies have shown that platelet-derived growth factor (PDGF)
enhances proliferation and migration effects on RPE cells in PVR, and that fibronectin is a major ECM component of
PVR tissue. Therefore, we investigated the inhibitory effects of EGCG on RPE cell migration induced by PDGF-BB, an
isoform of PDGF, and adhesion by fibronectin.
Methods: The migration of RPE cells was detected by an electric cell-substrate impedance sensing (ECIS) migration
assay and a Transwell migration assay. Cells were loaded with 2’,7’-bis-(carboxyethyl)-5(6’)-carboxyfluorescein
acetoxymethyl ester (BCECF/AM), and their adhesion to fibronectin was examined. The interactions of EGCG with
PDGF-BB were analyzed by a dot binding assay. Cytoskeletal reorganization was examined by immunofluorescence
microscopy. The PDGF-BB-induced signaling pathways were detected by western blotting.
Results: In the present study, we find that EGCG can inhibit PDGF-BB-induced human RPE cell migration and, in a
dose-dependent manner, RPE cell adhesion to fibronectin. Our analysis demonstrates that EGCG does not directly bind
to PDGF-BB and the inhibition of EGCG against fibronectin-induced cytoskeletal reorganization is observed.
Furthermore, EGCG is shown to suppress PDGF-BB-induced PDGF-β receptors, downstream PI3K/Akt, and MAPK
phosphorylation.
Conclusions: Our results provide the first evidence that EGCG is an effective inhibitor of RPE cell migration and adhesion
to fibronectin and, therefore, may prevent epiretinal membrane formation.

The retinal pigment epithelium (RPE) plays an essential
role in the proper functioning and maintenance of the neural
retina. Adult RPE cells are quiescent, differentiated, and
reside in the Go phase of the cell cycle. In diseases such as
proliferative vitreoretinopathy (PVR) [1], proliferative
diabetic retinopathy (PDR) [2], and age-related macular
degeneration (AMD) [3], RPE cells can reenter the cell cycle,
initiate proliferation and migration, and secrete extracellular
matrix proteins. Breakdown of the blood-retinal barrier can
expose RPE cells to a variety of growth factors, cytokines, and
neurotransmitter compounds in the subretinal space and in the
vitreous [4–6], which can trigger the activation of RPE cells.
In PVR, RPE cell activation results in epithelial-mesenchymal
transition from mitotically inactive epithelial cells to actively
dividing fibroblast-like cells with the ability to migrate [7,8].
These alterations result in the formation of contractile
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epiretinal membranes in the vitreous cavity and on both
surfaces of the retina, which is mainly composed of
transformed RPE cells and glial cells, and the contraction of
these membranes eventually causes retinal detachment and
the loss of vision [9]. Proliferative diabetic retinopathy is
another proliferative ocular disease correlated with the
migration and proliferation of RPE cells [10].

In AMD, newly formed leaky blood vessels from
choroidal neovascularization (CNV) eventually penetrate the
Bruch membrane and the RPE cell layer, which leads to the
accumulation of blood and serum in the subretinal space,
causing detachment of the retina and the formation of
disciform scars [11,12].Platelet-derived growth factor
(PDGF) plays a vital role in angiogenesis and wound healing
by promoting the proliferation and migration of mesenchyme
derived cells such as fibroblasts, smooth muscle cells, and
pericytes [13].

There are four PDGF isoforms (PDGF-A, -B, -C, and -
D) that form homodimers or heterodimers (PDGF-AA, -BB,
-AB, -CC, and -DD) through disulfide bonds. Ligand binding
induces PDGFR-α and -β tyrosine kinase receptor
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dimerization, resulting in three possible combinations—
PDGFR- αα, - αβ, and -ββ—which have different affinities
toward the different isoforms of PDGF. Platelet-derived
growth factor-A and -B and their receptors are present in RPE
and epiretinal membranes from patients with PVR or PDR,
and their concentration is elevated in the vitreous of PVR eyes
[14–17]. For PDGF-C and -D, through their effects on RPE
functions, recent results have revealed their roles in causing
PVR [18,19].

Green tea has been shown to have anti-oxidant and anti-
inflammatory effects on different types of cells [9]. Extracts
of green tea contain (-)-epigallocatechin gallate (EGCG), (-)-
epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-
epicatechin (EC), and (+)-catechin. Among them, EGCG is
the most abundant and the most active component of green
tea. It has been shown that EGCG has a protective effect on
RPE cells against UVA-induced damage [20] and reduces
retinal ischemia/reperfusion injury [21]; EGCG has also been
shown to suppress the migration [22–29] and adhesion [30–
33] of many cell types, but its effects on RPE cell migration
and adhesion are unknown.

Cell migration is a complex biologic process that entails
sequential adhesion and release from the substrate, a process
in which cell–matrix interactions play a key role [34]. As
PDGF-induced RPE cell migration plays a key role in the
formation of PVR membranes, we first determine the effects
of EGCG on PDGF-BB-induced RPE cell migration using
ECIS migration assays and Transwell migration assays.
Moreover, because fibronectin is a major ECM component of
PVR tissue [35], we investigate whether EGCG prevents RPE
cells adhesion to fibronectin. The possible mechanisms
involved in RPE cell migration and adhesion are also
investigated.

METHODS
Materials: Protease inhibitors, BSA (BSA), and fibronectin
were purchased from Sigma Chemical Co. (St Louis, MO).
Antibodies (Ab) raised against phospho-extracellular signal-
regulated kinase 1/2 (ERK1/2), phosphor-phosphoinositide 3-
kinases (PI3K), PDGF receptor β (PDGFR-β), and β-actin
were from Santa Cruz Biotechnology (Santa Cruz, CA). An
Ab raised against phospho-PDGFR-β at Tyr716 was from
Upstate Biotech Inc. (Lake Placid, NY). Antibodies raised
against phospho-c-Jun N-terminal kinase (JNK) were from
New England Biolabs, Inc. (Beverly, MA). Antibodies for
phospho-p38 were from R&D systems, Inc. (Minneapolis,
MN). A secondary antibody of antirabbit-HRP was purchased
from Santa Cruz Biotechnology. EGCG was purchased from
Sigma Chemical Co.
Cell culture: Adult human retinal pigment epithelial
(ARPE19) cells were purchased from Food Industry Research
and Development Institute (Hsinchu, Taiwan) and were
maintained in DMEM/F12 supplemented with 10% fetal calf

serum (GibcoBRL, Invitrogen Life Technologies, Carlsbad,
CA), 100 units/ml penicillin, and 100 mg/ml streptomycin
(Sigma Chemical Co.). The cells were cultured in a humidified
incubator at 37 °C and 5% CO2. For most of the experiments,
cells reaching a 90%–95% of confluence were starved and
synchronized in serum-free DMEM for 24 h before being
subjected to further analysis.
Electric cell-substrate impedance sensing migration assays:
Eight-well array culture ware (ECIS 8W1E) consisting of one
active electrode (250 μm diameter) and one large area counter
electrode (100 μm2) per well were purchased from Applied
Biophysics (Troy, NY). To study cell behavior with this
instrument, cells are grown in culture wells containing gold
film surface electrodes, with ordinary culture media serving
as the electrolyte. In its normal mode, an approximately
constant current source applies an AC signal of 1 μA, usually
at 4 kHz, between a small measuring electrode (250 μm
diameter) and a large counter electrode. The instrument
monitors both the voltage across the electrodes and its phase
relative to the applied current. In addition to reporting the total
impedance, these data are converted to resistance and
capacitance. As the cells attach and spread on the small
electrode, their membranes constrict the current and force it
to flow beneath and between the cells, resulting in large
increases in impedance. The microampere current and the
resulting voltage drop of a few millivolts have no measurable
effect on the cells and, hence, the monitoring of cell behavior
is noninvasive.

The electrode array was placed in an incubator and a
medium (200 μl/well) was added to cover the electrodes. The
ARPE19 cells were then inoculated at a concentration of
70,000 cells/well in the arrays and incubated for 24 h, while
attachment and spreading were followed by means of
impedance measurements. The experiments were conducted
on wells where the impedance had achieved a steady-state.
Then the wells were submitted to an elevated voltage pulse of
40 kHz frequency, 4 V amplitude, and 10 s duration, which
led to death and detachment of the cells present on the small
active electrode. The medium were then changed to a serum-
free cell culture medium with or without PDGF-BB (20 ng/
ml) and 10 μM of EGCG. The cells surrounding the small
active electrode that have not been subjected to the elevated
voltage pulse then migrated inward to replace the killed cells,
and the migration was assessed by continuous impedance
measurements for 25 h.
Transwell migration assay: Migration assays with RPE cells
were performed using a modified Boyden chamber model
(Transwell apparatus; 8.0 μm pore size; Costar,, Cambridge,
MA) [36]. The lower face of the polycarbonate filter
(Transwell insert) was coated with 0.3 mg of fibronectin for
30 min in the laminar flow hood. The Transwell insert was
placed back onto the 24-well plate and the lower chamber was
filled with 0.6 ml of DMEM/F12 serum-free medium, with or
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without 20 ng/ml of PDGF-BB, and 1, 3, and 10 µM of EGCG.
The EGCG was dissolved in phosphate buffered saline (PBS).
Human RPE cells (5×104 cells/well) in 200 µl medium were
plated to the upper chamber. After 5 h of incubation at 37 °C,
all non-migrated cells were removed from the upper face of
the Transwell membrane with a cotton swab, and migrated
cells were fixed and stained with 0.5% toluidine blue in 4%
permanganate aldehyde-fuchsin (PAF). Migration was
quantified by counting the number of stained cells per 100×
field (high power field, HPF) with a phase-contrast
microscope (DMIL® ; Leica, Wetzlar, Germany), and 20 HPFs
were photographed and counted in each migration.
Cell adhesion assay: Ninety-six-well plates (Costar) were
coated with 50 μl of fibronectin (15 μg/ml) in PBS at 4 °C
overnight. After a brief wash with PBS, the plates were
blocked with 10% BSA at 37 °C for 1 h. After trypsinization,
suspended RPE cells were labeled with BCECF/AM (10 μg/
ml) for 30 min at 37 °C. Until it is cleaved by the intracellular
esterase to become green fluorescent BCECF, BCECF/AM is
intrinsically nonfluorescent. The labeled cells were washed
and resuspended in DMEM to a density of 1×105 cells/ml. The
suspended cells (95 μl) were incubated with 5 μl of PBS or
various concentrations of EGCG for 1 h at 37 °C. After
washing twice with PBS and after the addition of a
radioimmunoprecipitation assay buffer, the non-adherent
cells were removed by aspiration and the 96-well plates were
subjected to measurement with a Wallac Victor 3 1420
multilabel counter (Perkin Elmer, Turku, Finland) using
excitation and emission wavelengths of 485 and 535 nm,
respectively. Eight plates were quantified for each assay.
Dot binding assay: A nitrocellulose membrane (Bio-Rad
Laboratories, Hercules, CA) was soaked in a buffer (25 mM
Tris, 192 mM glycine and 20% methanol) for 30 s.
Recombinant PDGF-BB (2 μg/ml in 50 μl) was applied to the
membrane with a Bio-Dot microfiltration apparatus (Bio-Rad
Laboratories, Hercules, CA) by suction. 2.5 μl of PBS, 3 mM
and 10 mM of EGCG, and 5 mM of lycopene were directly
spotted on the same membrane. The membrane was then
blocked with BSA (5% in PBS) for 0.5 h. After washing with
PBS, the membrane was incubated with PDGF-BB (0.5 μg/
ml) in PBS for 1 h at room temperature (RT). A brief wash
was followed, and the membrane was then incubated with
anti-PDGF-BB Ab (2 μg/ml in 1% BSA-containing PBS) for
1 h at RT. After another brief wash, the membrane was
incubated with horseradish peroxidase-conjugated Ab before
being developed by enhanced chemiluminescence (ECL;
NEN, Boston, MA).
Immunofluorescence microscopy: The procedure for staining
actin cytoskeleton has previously been described [37].
Briefly, the trypsinized RPE cells were suspended at 37 °C for
30 min, and then pretreated with or without EGCG for an
additional 1 h. The cells were then allowed to adhere on glass
coverslips that were precoated with fibronectin (15 μg/ml) for

1 h. Afterwards, they were washed, fixed with 1% PAF for 20
min, and permeabilized with 0.1% Triton X-100 for 10 min.
After blocking with 3% BSA, the cells were incubated with
fluorescein isothiocyanate (FITC)-conjugated phalloidin
(1:200; Sigma). The coverslips were mounted under an
Olympus BX51 microscope and the immunofluorescence
images were taken using a Spot RT Camera System
(Diagnostics Instruments, Inc., Sterling Height, MI).
Cell lysate preparation and western blot analysis: Platelet-
derived growth factor-BB (10 ng/ml) was preincubated with
a vehicle or EGCG for 30 min and was then added to human
RPE cells. The effect of EGCG on PDGFR-β, PI3K, and
MAPKs phosphorylation was analyzed by western blotting.
Retinal pigment epithelial cells were washed with prechilled
PBS and lysed in a radioimmunoprecipitation assay buffer
(20 mM Tris–HCl, pH 7.4, 137 mM NaCl, 2 mM EDTA.
One mM sodium fluoride, 1% Triton X-100, 0.5% sodium
deoxycholate, 0.1% SDS, 10% glycerol, 1 mM sodium
orthovanadate, 1 mM PMSF, and 1 μg/ml aprotinin and
leupeptin [freshly prepared]). After sonication, the lysate was
centrifuged (14,000× g for 15 min at 4 °C) and the supernatant
was transferred to a tube. The protein content was quantified
with the Pierce protein assay kit (Pierce, Rockford, IL). Total
protein was separated by electrophoresis on 10% SDS
polyacrylamide gels and the proteins were electroblotted onto
polyvinylidene fluoride (PVDF) membranes and probed using
the specific antibodies mentioned. Immunoblots were
detected by enhanced chemiluminescence
(Chemiluminescence Reagent Plus; NEN, Boston, MA). For
some of the experiments, the PVDF membrane was stripped
at 60 °C for 30 min with a stripping buffer containing 62.5 mM
Tris-HCl, pH 6.7, 2% SDS, and 100 mM β-mercaptoethanol.
Statistical analysis: Data are expressed as mean±standard
error (SE), unless otherwise indicated. Comparison of the
means of two groups of data are made using an unpaired, two-
tailed Student's t test. We consider p values <0.05 as
statistically significant. The data are analyzed using
SigmaPlot for Windows Version 10.0.

RESULTS
(-)-Epigallocatechin gallate inhibits platelet-derived growth
factor-BB-induced retinal pigment epithelial migration: In
the ECIS migration assays, cultured RPE cells were plated in
chambers containing gold electrodes, and time-dependent
impedance measurements were made (Figure 1). When
incubated with PDGF-BB, ARPE19 cell migration was
stimulated and the impedance (7933±305 mOhm at 24 h)
increased faster and was significantly larger compared to cells
without PDGF-BB (6989±491 mOhm at 24 h, p<0.05). (-)-
Epigallocatechin gallate inhibited ARPE19 cell migration
even in the absence of PDGF-BB (6989±491mOhm without
EGCG and without PDGF-BB versus 3600±238mOhm with
EGCG at 24 h and without PDGF-BB, n=4, p<0.05). For
ARPE 19 cells treated with PDGF-BB, the impedance
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(7933±305 mOhm at 24 h) was significantly reduced with the
addition of 10 μM EGCG (4743±370 mOhm at 24 h, p<0.05),
indicating that EGCG inhibits PDGF-BB-induced RPE cell
migration.

In the Transwell migration assay, coating with the
fibronectin alone was observed to induce only a small amount
of ARPE19 cell migration when compared to samples without
the coating (data not shown).Without EGCG or PDGF-BB,
PBS served as the control. Significant RPE cell migration was
observed after PDGF-BB stimulation for 5 h at 37 °C
(153±5.6% of control; Figure 2). We found that EGCG
suppressed RPE cell migration without PDGF-BB (Figure
2A). Quantitative analysis indicates that in the absence of
PDGF-BB, 55% of migration (45±4.2% of control) was
inhibited by 10 μM of EGCG (Figure 2C). Moreover, EGCG
suppressed PDGF-BB-induced RPE cell migration in a dose-
dependent manner (106.4±3.1%, 83.1±3.2% and 55.3±3.7%
of control for 1, 3 and 10 μM of EGCG, respectively; Figure
2B). A total of 64% of PDGF-BB-induced RPE cell migration
(153±5.6% versus 55.3±3.7% of control, p<0.05) was
inhibited by 10 μM of EGCG (Figure 2C). Therefore, the
Transwell migration assay demonstrates that EGCG inhibits
PDGF-BB-induced RPE cell migration (n=8).
(-)-Epigallocatechin gallate inhibits retinal pigment
epithelial cell adhesion to fibronectin: We further studied the
inhibitory effects of EGCG on RPE cell adhesion to

Figure 1. Impedance measurements on retinal pigment epithelium
(RPE) cells as a function of time. Cultured adult human retinal
pigment epithelial (ARPE19) cells were plated in chambers
containing gold electrodes, and impedance measurements were made
at fixed time intervals for 24 h. The epigallocatechin gallate (EGCG)
inhibited ARPE19 cell migration, even without the presence of
platelet-derived growth factor (PDGF)-BB. For the cells treated with
20 ng/ml PDGF-BB, the impedance increased faster and was
significantly higher at 24 h than the cells treated without 20 ng/ml
PDGF-BB (p<0.05) or with 10 μM EGCG (p<0.05). The experiment
was performed four times with similar results. Each value represents
the mean of four replicates.

fibronectin. Figure 3 shows that RPE cell adhesion did not

Figure 2. Effects of epigallocatechin gallate (EGCG) on retinal
pigment epithelium (RPE) cell migration. A, B: Epigallocatechin
gallate inhibits platelet-derived growth factor (PDGF)-BB-induced
RPE cell migration. Transwell inserts were coated with fibronectin.
Human RPE cells were seeded in the upper chamber in the presence
of vehicle or EGCG. The inserts were assembled in the lower
chamber, which was filled with serum-free ([−]PDGF-BB; A) or
PDGF-BB-containing medium ([+]PDGF-BB; B) and preincubated
with a vehicle or EGCG on the polycarbonate filter of the insert for
30 min. PBS, without PDGF-BB or EGCG, served as the control
(A, left). Human RPE cells that migrated to the underside of filter
membrane were photographed and counted in high-power field
(HPF, magnification, 100×) under a phase-contrast light microscope.
The scale bar represents 100 μm. The black spots are the pores of the
Transwell membrane and the grayish fusiform cells are the ARPE
cells. C: Quantitative analysis of migrated cells. Twenty HPFs were
counted in each migration. All experiments were conducted in
duplicate and similar results were obtained at least two to three times.
Data are presented as percent of control (the first unfilled bar, PBS
only) in cell counts. *p<0.05 significantly differs from PDGF-BB-
stimulated cells (the first filled bar).
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take place without fibronectin and was only activated when
fibronectin was added (609.2±86.1% of control). The addition
of ECGC significantly inhibited RPE cell adhesion in a dose-
dependent manner (426.5±64.1%, 304.8±25.7%, and
187.5±13.6% of control at 1, 3, and 10 μM, respectively,
p<0.05, n=5).

(-)-Epigallocatechin gallate does not directly bind to platelet-
derived growth factor-BB in dot binding assay: Recombinant
human PDGF-BB, EGCG, and lycopene were immobilized
on the nitrocellulose (NC) membrane. After incubation with
or without PDGF-BB, the membrane was further incubated
with antibodies against PDGF-BB and then developed. We
observed that immobilized PDGF-BB can be recognized by
the anti-PDGF-BB Ab, suggesting the specificity of Ab. The
3 mM and 10 mM of EGCG did not directly bind to PDGF-
BB, but a positive binding signal was detected on the lycopene
spot incubated with PDGF-BB. The data indicates that EGCG
cannot directly bind to PDGF-BB (Figure 4).

(-)-Epigallocatechin gallate changes actin cytoskeleton
organization during cell adhesion: We next determined if
actin cytoskeleton organization during cell adhesion would be
affected by EGCG. Our immunofluorescence microscopy
confirmed that fibronectin-adherent RPE cells spread well.
Typical long stress fibers running across the cell body were
observed (Figure 5A). In the presence of EGCG, the changes
in the organization of actin cytoskeleton, indicated by the

Figure 3. Epigallocatechin gallate (EGCG) inhibited human retinal
pigment epithelium (RPE) cell adhesion to fibronectin in a dose-
dependent manner. Suspended RPE cells were loaded with 2’,7’-bis-
(carboxyethyl)-5(6’)-carboxyfluorescein acetoxymethyl ester
(BCECF/AM) and pretreated with different concentrations of
EGCG. The cells were added to 96-well plates precoated with
fibronectin (15 μg/ml) and incubated for 1 h at 37 °C. Cell adhesion
was then measured by a fluorescence plate reader. Eight plates were
quantified for each assay. Results are expressed as fluorescence
intensity and represented by mean±SEM. *p<0.05 significantly
differs from platelet-derived growth factor (PDGF)-BB-stimulated
cells (the fifth bar).

disappearance of the stress fibers and the generation of
protrusions at the cell periphery, were prominent (Figure 5B).

(-)-Epigallocatechin gallate inhibits platelet-derived growth
factor-BB-induced platelet-derived growth factor receptor-
β, downstream PI3K/Akt and MAPK phosphorylation: It has
been reported that PDGF-BB binding to a PDGF receptor
(PDGFR) is associated with dimerization,
autophosphorylation, and activation of PDGFR-tyrosine
kinase activity [38], which subsequently causes RPE cell
migration through activation of PI3K/Akt and MAPKs
signaling [39]. To determine whether a PDGF-BB-induced
signaling pathway is affected by EGCG in human RPE cells,
the extent of phosphorylation of PDGFR-β and its
downstream components was examined. We observed that
stimulation of RPE cells with PDGF-BB results in PDGFR-β
phosphorylation, as determined by western blotting with Abs
directed against phosphotyrosine and PDGFR-β at Tyr716

(Figure 6). All concentrations of EGCG at or above 3 μM
significantly inhibited PDGF-BB-induced PI3K/Akt,
ERK1/2, and p38 phosphorylation in human RPE cells in a
concentration-dependent manner. However, JNK
phosphorylation was not significantly affected by EGCG.

DISCUSSION
The human retinal pigment epithelium is composed of highly
specialized epithelial cells that are important for retinal
homeostasis. The cells adapt to the increase in retinal areas
associated with growth and age, but have limited proliferative
capacity. However, under pathological conditions, such as
PVR, these cells acquire the ability to migrate and proliferate.

Figure 4. Epigallocatechin gallate (EGCG) cannot directly interact
with platelet-derived growth factor (PDGF)–BB in dot binding
assay. Human recombinant PDGF-BB, phosphate buffer saline
(PBS), the indicated concentrations of EGCG, and lycopene (Lyc)
were applied onto the nitrocellulose (NC) membrane. The membrane
was incubated with PDGF-BB in PBS and then developed by probing
with Ab directed against PDGF-BB. Epigallocatechin gallate cannot
directly interact with PDGF-BB, but lycopene can. The results
presented are representative of three independent experiments.
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In PVR, the RPE cells migrate through the retina and come in

Figure 5. Inhibition of fibronectin-induced human retinal pigment
epithelial (RPE) cell cytoskeletal reorganization by Epigallocatechin
gallate (EGCG). Suspended RPE cells pretreated with phosphate
buffer saline (PBS, control) or 10 μM EGCG for 1 h were seeded and
allowed to adhere on collagen-precoated glass coverslips for an
additional 1 h. After fixation, permeabilization, and blocking with
3% BSA (BSA), cells on coverslips were incubated with fluorescein
isothiocyanate (FITC)-phalloidin. Mounted cells were analyzed and
photographed under a microscope. Actin formed in adherent cells
(A), but there was a modification of cytoskeletal reorganization in
EGCG-treated cells (B).

contact with the vitreoretinal interface, where they proliferate
and form traction epiretinal membranes [40–42]. Moreover,
in patients with PVR, the PDGF level is elevated in the
vitreous and is expressed by RPE and glial cells within PVR
membranes [5,43–50]. The contraction of the epiretinal
membrane or vitreous constitutes a major contribution to
retinal detachment in the later stages of PVR, while PDGF
enhances the contraction of fibroblasts [51] and RPE cells
[46,52,53]. The increased expression of PDGF-B in the retina
enhances the formation of epiretinal membranes, and traction
retinal detachment is an important feature of proliferative
retinopathy [53]. Furthermore, PDGF-BB shows strong
stimulatory effects on the proliferation and migration of RPE
cells [19].

In this study, we investigated the effects of EGCG on
PDGF-BB-induced cell migration and adhesion of human
RPE cells. The inhibitory effect of EGCG on PDGF-BB
induced migration is shown by the ECIS migration assays and
the Transwell migration assays. Moreover, EGCG can inhibit
RPE cell adhesion to fibronectin in a dose-dependent manner.
Our previous studies have shown that lycopene, a kind of
carotene with inhibitory effects on the RPE cell migration
[54], binds to PDGF-BB in dot binding assay [36,55].
However, this study demonstrates that EGCG does not
directly bind to PDGF-BB. Cytoskeletal reorganization is
considered critical for the adhesion of RPE cells, and our
results show that EGCG changes actin cytoskeleton

Figure 6. Effects of epigallocatechin gallate (EGCG) on PDGFR-β,
PI3K, and MAPKs phosphorylation in human retinal pigment
epithelium (RPE) cells. Platelet-derived growth factor-BB (10 ng/
ml) was preincubated with a vehicle or 1, 3, and 10 μM of EGCG for
30 min and then added to human RPE cells. Western blotting was
used to analyze PDGFR-β, PI3K, and MAPKs phosphorylation. All
concentrations of EGCG at or above 3 μM significantly inhibited
PDGF-BB-induced PI3K/Akt, ERK1/2, and p38 phosphorylation in
human RPE cells in a concentration-dependent manner. However,
there was no effect of PDGF-BB and EGCG on c-Jun N-terminal
kinases (JNK) phosphorylation. The results presented are
representative of four independent experiments.
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organization during cell adhesion. Furthermore, we found that
EGCG suppresses PDGF-BB-induced PDGFR-β,
downstream PI3K/Akt, and MARK phosphorylation.

Our results from the dot binding assay demonstrate that
EGCG does not directly bind to PDGF-BB while lycopene
does. Therefore, we can exclude the effect of the direct
binding between PDGF-BB and EGCG. EGCG, however,
may bind to the PDGF receptors and affect the cytoskeletal
reorganization and the PDGF downstream signaling in RPE
cells. The exact mechanism behind this effect of EGCG is now
being investigated in our laboratory

As the regulation of cell cytoskeleton organization plays
a key role during cell adhesion, we examined the effects of
EGCG on fibronectin-induced RPE cell adhesion. In our
study, the inhibitory effects of EGCG against fibronectin-
induced cytoskeletal reorganization during RPE cell adhesion
were observed using immunofluorescence imaging. This
finding is consistent with the inhibitory effects of EGCG on
RPE cell adhesion to fibronectin.

Previous studies have shown the relatively high
expression of PDGFR-β compared to PDGFR-α and the
absence of a stimulatory effect of PDGF-AA suggest an
important role of PDGFR-β in the activation of the signaling
pathways leading to RPE cell migration and proliferation
[19]. Since the PI3K-Akt pathway is involved in all cell
responses investigated (production of vascular endothelial
growth factor [VEGF], cell migration, and proliferation),
inhibition of this pathway may be a promising method to block
RPE cell responses in proliferative retinopathies. This
conclusion is in accordance with previous studies, suggesting
a central role of PI3K in experimental PVR [56]. In RPE cells,
PDGF is known to evoke activation of PI3K [39,56,57],
ERK1/2 [39,58], and P38 [39] signaling. Our results show that
PDGF activates three signal transduction pathways in RPE
cells, namely, the MEK-ERK1/2, p38 MAPK, and PI3K-Akt
pathways. These pathways differentially regulate PDGF-
evoked cell responses. In our study, all concentrations above
3 μM EGCG significantly inhibited PDGF-BB-induced PI3K/
Akt, ERK1/2, and p38 phosphorylation in human RPE cells
in a concentration-dependent manner. However, JNK
phosphorylation was not significantly affected by EGCG.

Therapeutic management of PVR is an important issue.
Currently, the only effective therapy is to surgically remove
the membranes. Furthermore, most clinicians use systemic
corticosteroid to inhibit cell proliferation even though the
effect is not always beneficial. Recently, there have been
several published studies that demonstrate that certain
substances have an inhibiting effect on the proliferation of
RPE cells in vitro [59–63]. However, the possible toxic side
effects restrict the usefulness of these substances as treatment
for PVR. EGCG, on the other hand, is a major polyphenolic
compound from green tea, which is one of the most widely
consumed beverages in the world and has been shown to

promote anti-tumor activities such as inhibiting adhesion,
migration, and proliferation of tumor cells [37]. This study
provides the first evidence that EGCG also inhibits human
RPE cell migration and adhesion. Additional studies are
required to determine whether EGCG may prevent PVR or
epiretinal membrane formation.
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