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Toward more accurate and generalizable brain
deformation estimators for traumatic brain injury
detection with unsupervised domain adaptation
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Abstract—Machine learning head models (MLHMs) are devel-
oped to estimate brain deformation for early detection of trau-
matic brain injury (TBI). However, the overfitting to simulated
impacts and the lack of generalizability caused by distributional
shift of different head impact datasets hinders the broad clinical
applications of current MLHMs. We propose brain deformation
estimators that integrates unsupervised domain adaptation with a
deep neural network to predict whole-brain maximum principal
strain (MPS) and MPS rate (MPSR). With 12,780 simulated head
impacts, we performed unsupervised domain adaptation on on-
field head impacts from 302 college football (CF) impacts and
457 mixed martial arts (MMA) impacts using domain regularized
component analysis (DRCA) and cycle-GAN-based methods. The
new model improved the MPS/MPSR estimation accuracy, with
the DRCA method significantly outperforming other domain
adaptation methods in prediction accuracy (p < 0.001): MPS
RMSE: 0.027 (CF) and 0.037 (MMA); MPSR RMSE: 7.159 (CF)
and 13.022 (MMA). On another two hold-out test sets with 195
college football impacts and 260 boxing impacts, the DRCA model
significantly outperformed the baseline model without domain
adaptation in MPS and MPSR estimation accuracy (p < 0.001).
The DRCA domain adaptation reduces the MPS/MPSR estima-
tion error to be well below TBI thresholds, enabling accurate
brain deformation estimation to detect TBI in future clinical
applications.

Index Terms—Traumatic brain injury; domain adaptation;
strain and strain rate; kinematics sensor informatics; domain
regularized component analysis

I. INTRODUCTION

In traumatic brain injury (TBI), the brain is damaged by
tissue deformation under the inertial loadings when the skull
sustains high acceleration or deceleration. Therefore, metrics
of brain deformation are effective predictors of TBI. Brain
strain, particularly the maximum principal strain (MPS), has
been shown to correlate with TBI pathologies [1f], [2]], [3],
and the maximum principal strain rate (MPSR) has been
found to correlate with traumatic axonal injury [2], [4] and
effectively in predicting TBI pathologies across species [5],
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[6]. To compute tissue-level strain and strain rate, finite
element (FE) head model, which takes head kinematics as
inputs, is regarded as the state-of-the-art approach[7], [8l,
but its applicability to a broader user community is limited
by its long computation times (approximately 7-8 hours per
impact [9]) and complicated finite element modeling software.
Recently developed machine learning head models (MLHMs)
trained on large quantities of FE head model simulations, in
contrast, can substantially reduce the computational cost (to be
within 1ms per impact reported with a personal computer [9])),
enabling TBI detection that uses brain strain and strain rate
as biomechanics-based quantitative metrics for TBI risks[10],
(91, (L1, (2], [13].

Despite their superiority in computational time, MLHMs are
often biased towards data similar to the distribution of their
training data due to overfitting, which leads to a decreasing
accuracy when the test data is distinctive from the training
data. [9], [14], [15]. To solve this issue, MLHMs were
developed for specific head impact types, and classification
and cluster models were developed to identify the head impact
type to select the adequate MLHM to predict MPS and MPSR
[16], [17]. A limitation of this solution is the availability
of head impact data for specific types. In a previous study
[9], promising accuracy was found using a simulation dataset
of 2,130 impacts, while only several hundred or even less
than a hundred head impacts are available in some types of
head impacts, e.g. NASCAR, wrestling [14], [15]. Directly
combining datasets as the training dataset will lead to a
significant reduction in accuracy[9], so Principal Component
Analysis was applied to simplify the structure of the deep
learning network and reduce the size of the training dataset
needed to develop MLHM just based on data from specific
head impact type. [13].

Identifying head impact type and predicting with specific
MLHM solved the issue of decreasing accuracy, but it requires
developing classifiers and MLHMs for every head impact type
[16], [13], which is unlikely doable considering the number
of head impact types in the realistic. Therefore, we propose
domain adaptation as a new approach to solving the issue. The
domain adaptation enables an automatic model configuration
based on the data collected from a new head impact type, and
then configured model can predict the MPS and MPSR for this
head impact type. In domain adaptation, the source domain is
a large dataset consisting of 12,780 head impacts covering all
potential head impact directions, locations, and speeds using



TABLE I
THE ACRONYMS AND ABBREVIATIONS USED IN THIS PAPER AND THEIR
RESPECTIVE MEANINGS.

Acronym/Abbreviation Meaning
MLHM machine learning head model
TBI traumatic brain injury
MPS maximum principal strain
MPSR maximum principal strain rate
MMA mixed martial arts

CF college football

DRCA domain regularized component analysis
GAN generative adversarial network
mTBI mild traumatic brain injury
KMM kernel mean matching
HM head model simulated dataset
Ang. Vel. Mag. angular velocity magnitude
Ang. Acc. Mag. angular acceleration magnitude
PCA principal component analysis
t-SNE t-distributed stochastic neighbor embedding
DNN deeo neural network
ReLu rectified linear unit
Adam adaptive moment estimation
MAE mean absolute error
RMSE root mean squared error

FE simulations, and the data collected from the new head
impact type is considered the target domain. The drift between
the source and target domains leads to the decreasing accuracy
of MLHM, so the configuration before predicting adapts the
target domain to the source domain, which compensates for
the drift and improves the prediction accuracy.

The configuration of domain adaptation enables the appli-
cation of MLHMs to a new type of head impacts without sac-
rificing accuracy nor developing new MLHM with supervised
model finetuning by running a large amount of FE simulations.
This work will accelerate the application of MLHM in the
various head impact scenarios and ultimately contribute to the
improvement of TBI diagnosis and protection.

II. METHODS
A. Datasets

To provide enough data to train the model, we generated
a large dataset consisting of 2,130 head impacts using FE
models of a pneumatic impactor and hybrid III headform
[18], and then augmented the dataset by switching axes of
kinematics [6], [12], [L1]. The augmented dataset had 12,780
head impacts, which was enough to train the model compared
with previous studies [9]], [12]], [L1], and was then considered
the source domain (denoted as HM).

Two previously published datasets were used to tune the hy-
perparameters in the domain adaption model: college football
head impacts(denoted as CF1) [19], 457 MMA head impacts
(denoted as MMA) [1]], [20]. The data were collected with
Stanford Instrumented Mouthguard [21]], [22]. The datasets
CF1 and MMA are used as the validation datasets to develop
the unsupervised domain adaptation models and to select the
domain adaptation model adopted in configuration.

After selecting the best-performance domain adaptation
model, another two datasets were used to perform additional
hold-out test: 1) 195 recently collected college football head

impacts by Stanford instrumented mouthguards (denoted as
CF2, this dataset has not been published); 2) 260 boxing head
impacts using the Prevent Biometrics Hybrid mouthguards
[23] (dataset Boxing).

B. Feature engineering

The head kinematics in each dataset were represented by a
N x D feature matrices with N denoting the sample size and D
denoting the number of kinematic features. From each sample,
we extracted 510 temporal and spectral features according to
four physical quantities describing the head translation and
rotation: linear acceleration at the brain’s center of gravity
a(t), angular velocity w(t), angular acceleration «(t), and
angular jerk j(t). Four channels are associated with each
quantity: the three anatomical axes (X: posterior-to-anterior,
y: left-to-right, z: superior-to-inferior) and the magnitude. The
reason to include the temporal features was because of their
high predictability of brain strain [9]], [14]. The temporal
features were able to explain a high variance of the 95th
percentile MPS in linear models [[14]]. The reason to include
the spectral features was that based on the spectral features
several basic classifiers were able to reach high accuracy in
classifying different types of head impacts, which indicated
that the spectral features carry much information associated
with the types of head impacts (the domain information in
this study) [16]. Therefore, to develop models that are able to
generalize across different domains, we included the spectral
features in our feature set. The details of the feature extraction
can be found in the publications of previously developed
MLHMs, as it was demonstrated that the extracted features
are sufficient for developing an accurate machine learning head
model for prediction of the MPS and MPSR [24], [9].

The reference MPS and MPSR are computed with a vali-
dated finite element head model: the KTH finite element model
(Stockholm, Sweden) [8], which modeled the human brain
with 4,124 brain elements, covering the brain, skull, scalp,
meninges, falx, tentorium, subarachnoid cerebrospinal fluid
(CSF), ventricles, and 11 pairs of the largest bridging veins.
The MPS and MPSR of brain elements are used as labels to
train our models and quantify prediction accuracy.

Given the diverse sources of our impact data, the difference
among datasets can be visualized by the distribution of the
peak rotational kinematics (Fig. , B), the distribution of
the 95th percentile MPS and MPSR (Fig. [IIC, D) and the
visualization of the kinematics features with dimensionality
reduction approaches (Fig. [IE, F), underlining the challenges
of obtaining a generalizable model.

C. Structure and Training of Machine Learning Head Model

DNN models are trained as the deformation estimation
models that map kinematic features to MPS and MPSR,
respectively, using a previously validated protocol [9]. The
model is trained solely on the dataset HM where the dataset
size suffices to yield a reasonably accurate deep neural network
(Fig. 2JA). The DNN consists of five layers in addition to the
input layer (510 neurons) and the output layer (4124 neurons):
1) hidden layer 1: 500 neurons (activation: the rectified linear
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Fig. 1. Distribution of MPS and MPSR of HM, CF1, MMA, CF2 and Boxing datasets. The distribution of the peak angular velocity magnitude (peak Ang.
Vel. Mag., A), the peak angular acceleration magnitude (peak Ang. Acc. Mag. B), the 95th percentile MPS (C) and the distribution of the 95th percentile
MPSR (D). The principal component analysis (PCA) visualization (E) and t-distributed stochastic neighbor embedding (t-SNE) visualization of all types of
head impacts (F). Note: 95th percentile is frequently used in TBI biomechanics research to avoid numerical instability in the maximum values.

unit (ReLU)); 2) dropout layer 1 (dropout rate 0.5); 3) hidden
layer 2: 300 neurons (activation: ReLU); 4) dropout layer 2
(dropout rate 0.5); 5) hidden layer 3: 100 neurons (activation:
ReLU). The design of this structure followed the guidance of
firstly condensing kinematics information from the 510 fea-
tures and then predicting the output variable. The loss function
is the mean squared error coupled to an Lo regularization term
to avoid overfitting. To train the model, the entire dataset HM
(12,780 impacts) was randomly split into 70% training data
for model training, 15% validation data for hyperparameter

tuning and 15% test data for model performance evaluation.

D. Domain Adaptation and MLHM Configuration

1) Baseline: As a baseline, the MLHM trained on the HM
dataset is directly used to predict the target datasets: CF1,
MMA, CF2 and Boxing datasets (Fig. ZB).

2) Domain regularized component analysis (DRCA) Do-
main Adaptation: DRCA converts the kinematics features
to a feature subspace where the scatter between the source and
target domains is minimized while the scatter in each domain
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Fig. 2. The pipeline of the model development. The pipeline consists of a
deformation prediction model and domain adaptation performed by DRCA or
cycle-GAN. Specifically, it shows the development of basis model on dataset
HM (A), the baseline method (B), the DRCA method (C), and the Cycle-GAN
method (D).

is retained. Then, the MLHM is configured by training the
model on the HM dataset converted to the feature subspace.
Because the hyperparameters in both DRCA and model train-
ing are determined on the validation datasets, the configuration
can be performed automatically when the MLHM is applied
to a new dataset. The first two variables in the subspace of
DRCA for all datasets in this paper were plotted in Fig. 2|C.

DRCA [235] is briefly reviewed as follows: DRCA looks for
a projection hyper-plane on which the difference between the
projected source domain (the dataset HM) and target domain
(the dataset CF1/MMA) is minimized. If we denote the sam-
ples on the source domain as xf eRP, i= 1,2,...,N% and
the ones on the target domain as aszT eRP, i= 1,2,...,NT,
where D is the original feature dimension, the statistics of the
data distribution can be calculated as follows.

NS s
a) The mean of the source-domain data: p° = Eﬁi{gﬁ €
D . T ENT xT D
IR", of the target-domain data: u* = =%+ € IR”, and of
NSXMSJrNTXM .

these data combined: p = NSINT ;
b) The within-domain scatter of thg: source-domain data and
of the target-domain data: S5 = XNV (7 — p¥)(2F — p®)7
T
RP*P and 57 = 2 o7 — )@l - 1) € RPAP;
¢) The between-domain scatter of the source-domain data

and of the target-domain data: S, = N° x (u¥ — p)(u® —

w" +NT < (p" = p)(p" = p)" € RP*P

The goal of the DRCA is to find a projection matrix
P € RP*? (d < D) to reduce the between-domain scatter
while maintaining the within-domain scatter on the projected
hyper-plane. Suppose the sample z; is projected onto z;:
#; = PTx; € RY. Then, the same three types of summary
statistics can be calculated on the projected data. For example,
the within domain scatter on the projection hyper-plane is
represented as: S5 = PTSSP ¢ R™? and ST = PTSTP e
IR%* The between domain scatter on the projection hyper-
plane is represented as: Sy, = PTS,P € R¥*?. Therefore,
to minimize the domain difference while maintaining the data
spread from each domain of data on the projection hyper-
plane, we have the problem:

tr(PTS5P + aPT ST P)
tr(PTSbP) ’

(D

maxp

where « is a hyperparameter. The convex optimization prob-
lem in the fractional format can be reformulated as a con-
strained optimization problem. With a Lagrangian multiplier,
the Lagrangian can be represented as:

L(P,0) = tr(PTS5 P+aPTSLP)—0(tr(PTS,P)—)\) (2)

By taking the derivative of the Lagrangian with respect to
P and setting it to zero, the problem can be solved as an
eigenvalue decomposition problem: S, (S5 + aST)P = 6P,
where P is the eigenvector matrix. By ranking the eigenvec-
tors based on the eigenvalues, we extract the d eigenvectors
associated with the d largest eigenvalues. Projected onto these
eigenvectors, the data matrix is transformed from N 5% D and
NT x D to N® xdand NT x d.

3) Cycle-GAN-based Domain Adaptation: Cycle-GAN was
used to map head impact data from the target domain to the
source domain (Fig. [2D). Because the features were mapped to
the same space, instead of the features subspace, the MLHM
in the cycle-GAN and the baseline are the same. In the
configuration, the cycle-GAN model is trained to transfer the
data from the target domain to the source domain, so MLHM
does not need to be trained in the configuration as DRCA and
can be preset.

Cycle-GAN is briefly reviewed as follows: Cycle-GAN
model contains two generators (G, G) and two discrimina-
tors (D, D,). The loss function is defined as a combination
of the cycle-consistency losses and the classification losses.
The noise z was added by randomly dropping out certain di-
mension of features with probability p. Details of the structure
optimization can be found in the supplementary materials.

L = \||Ge(Gs(zs, 2), 2") — x| + M ||Gs(Ge (e, 2’

—DS(Gt({Et, Z/)) —

),z) — x|
Dt(GS(me))
3)

where z and 2’ are random vectors from A(0,7), and A
and ); are weight factors. The first two terms are the cycle-
consistency losses and the last two terms are the classification
losses. The optimization is defined as a minimax problem
mincsygt maxp, D, L.



4) Shift-GAN-based Domain Adaptation: To further reduce
the potential domain drift between source and target domains
after cycle-GAN-based adaptation, we applied shift-GAN, in
which the Kernel Means Matching (KMM) is performed on the
target dataset transferred by cycle-GAN to further minimize
the discrepancy of the data in kernel space [26]. Similar to
the configuration of cycle-GAN, only the target dataset is
transferred, so the MLHM can be preset.

5) DRCA-GAN-based Domain Adaptation: Furthermore,
DRCA was performed based on the dataset transferred by
cycle-GAN to see if it improve the performance. Because
DRCA’s outputs are in the subspace, both the cycle-GAN
model and the MLHM need to be trained in the configuration.

E. Model performance validation and hold-out test

On the two validation datasets (dataset CF1 and dataset
MMA), we validated the feasibility of improving the accu-
racy of MPS and MPSR prediction and selected the domain
adaptation model. The domain adaptation model and the
subsequent MLHM were trained, validated, and tested on these
two datasets. Then, the best domain adaptation model was
selected by comparing the mean absolute error (MAE) of MPS
and MPSR. The hyperparameters were tuned in this process,
including the dimensionality of the projection hyperplane d
and relative weight on the target domain data o for DRCA;
the number of layers, the number of neurons, the weight in
the loss function As; and )\, the number of epochs for the
cycle-GAN; the number of layers, the number of neurons, the
learning rate and the number of epochs for the MLHM.

Upon optimizing the hyperparameters and selecting the
domain adaptation approach. We performed the additional
model performance test on the two hold-out test datasets (CF2
and Boxing) with the hyperparameters fixed after the model
validation process on the hold-out test datasets. The model
performance in MAE and root mean squared error (RMSE)
was reported in the results section.

F. Statistical Test

To evaluate the changes in model accuracy when compared
with the baseline method, on the hold-out test datasets, we
computed the MAE between the reference results given by
the KTH finite element model and the predictions given by
the tuned models on all the test impacts. To test the statistical
significance, the paired t-test was used.

III. RESULTS

To quantify the overall accuracy of the prediction, we com-
puted the MAE and RMSE of MPS and MPSR over all brain
elements and then calculated the mean over all test impacts.
According to the results shown in Table 2, in terms of the
MAE, for the MPS prediction, the DRCA method reduces the
MAE from 0.036 to 0.017 for dataset CF1, from 0.103 to 0.020
for dataset MMA; for MPSR prediction, the DRCA method
reduces the MAE from 6.005 to 4.094 for dataset CF1 and
from 1577.2 to 6.086 for dataset MMA. When compared with
the previously reported model performance on the simulation

dataset, the MAE in the MPS prediction was in the same level
as the MAE reported in our previous studies when the model
predicts the MPS on the test impacts originated from dataset
HM without any domain drift (MAE: 0.015), on which the
models were trained with the same kinematics features as in
the current study [24]. In terms of the RMSE, for the MPS
prediction, the DRCA method reduces the mean RMSE from
0.063 to 0.027 (MPS, dataset CF1), from 1.582 to 0.037 (MPS,
dataset MMA), from 12.449 to 7.159 (MPSR, datset CF1),
and from over 10° to 13.022 (MPSR, dataset MMA). With
DRCA, the MPS prediction error was approximately 1/10 the
presumed human concussion (mild TBI) thresholds (0.3-0.4
[27], [228], [8]) and the MPSR prediction error was also much
smaller than the threshold for accurate axonal injury prediction
in large animal models (120s~!) [4], which suggested the
capacity of MLHM with DRCA to detect the injury cases in
on-field dataset.

To visually demonstrate the prediction accuracy, we selected
two example impacts and visualized the reference MPS/MPSR
values, prediction values from the baseline method, and the
DRCA method in Fig. 3] To show the prediction of cases with
relatively high brain deformation, the two example cases are
at the 70th percentile after we ranked the impacts by the 95th
percentile of the reference MPS/MPSR. It should be mentioned
that the 95th percentile instead of the 100th percentile was
used to avoid potential computational artifacts from analysis
[29]. The high-strain and high-strain-rate regions predicted by
the DRCA method better represented those output by the finite
element modeling when compared with the predictions given
by the baseline method without any domain adaptation.

On model performance test on the two hold-out datasets,
the model accuracy was shown in Fig. ] On the dataset of
195 recently video-verified college football impacts, DRCA
significantly reduced the MAE (p < 0.05) on both 1) the MPS
predictio: mean MAE (over test impacts) reduced from 0.036
to 0.022 (38.9% relative error reduction), mean RMSE (over
test impacts) reduced from 0.061 to 0.043 (29.5% relative
error reduction); and 2) the MPSR prediction task: mean MAE
reduced from 6.560 to 4.629 (29.4% relative error reduction),
mean RMSE reduced from 14.744 s—1 to 8.773 s~! (40.5%
relative error reduction). On the dataset of 260 boxing impacts,
similar results were achieved on both 1) the MPS prediction:
mean MAE reduced from 0.022 to 0.018 (18.2% relative error
reduction), mean RMSE reduced from 0.037 to 0.025 (32.4%
relative error reduction); and 2) the MPSR prediction task:
mean MAE reduced from 4.576 s~! to 3.674 s~! (19.7%
relative error reduction), mean RMSE reduced from 7.475 s~*
to 5491 s~1! (26.5% relative error reduction). To sum up,
the DRCA, as an unsupervised domain adaptation approach
is effective in generating more accurate brain strain and strain
rate estimators for the measured head impacts.

IV. DISCUSSION

Machine learning head models (MLHMs) have been re-
cently developed to function as approximators of the time-
consuming finite element modeling for rapid whole-brain
deformation estimation for detection and real-time intervention
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TABLE II
THE MODEL PERFORMANCE METRICS OF THE MPS AND MPSR ESTIMATION WITH THE BASELINE METHOD AND DIFFERENT DOMAIN ADAPTATION

APPROACHES.
Target  Dataset Method MAE RMSE Relative Relative
MAE Change RMSE Change

MPS CF1 Baseline 0.036 0.063 0 0

MPS CF1 DRCA 0.017 0.027 -52.8% -57.1%
MPS CF1 Cycle-GAN 0.037 0.052 +2.8% -17.5%
MPS CF1 Shift-GAN 0.034 0.049 -5.6% -22.2%
MPS CF1 Cycle-GAN+DRCA  0.032 0.050 -11.1% -20.6%
MPSR CF1 Baseline 6.005 12.449 0 0

MPSR CF1 DRCA 4.094 7.159 -31.8% -42.5%
MPSR CF1 Cycle-GAN 8.406 12.702 +40.0% +2.0%
MPSR CF1 Shift-GAN 8.019 13.301 +33.5 % +6.8%
MPSR CF1 Cycle-GAN+DRCA  7.764 13.854 +29.3% +11.3%
MPS MMA Baseline 0.103 1.582 0 0

MPS MMA DRCA 0.020 0.037 -80.6% -97.7%
MPS MMA Cycle-GAN 0.038 0.054 -63.1% -96.6%
MPS MMA Shift-GAN 0.041 0.054 -60.2% -96.6%
MPS MMA  Cycle-GAN+DRCA  0.069 0.089 -33.0% -94.4%
MPSR  MMA Baseline 1577.2  130157.7 0 0

MPSR  MMA DRCA 6.610 12.206 -99.6% -100.0%
MPSR  MMA Cycle-GAN 10.328 15916 -99.3% -100.0%
MPSR  MMA Shift-GAN 8.872 17.455 -99.4% -100.0%
MPSR  MMA  Cycle-GAN+DRCA  13.489 23.125 -99.1% -100.0%

for TBI [10], [9], [L1], [12], [13]. The MLHMs developed
by previous researchers can significantly reduce the time
of whole-brain strain and strain rate estimation from 7-8
hours per impact by finite element modeling to within 1
ms per impact by MLHMs. Although the previously devel-
oped models have performed well on the lab-reconstructed
or simulated impacts, they suffer significantly from sharp
accuracy deterioration when used on on-field datasets due to
the data distribution drifts potentially caused by limited data
quantity of on-field datasets, different measurement devices,
the measurement noises, and varying types of head impacts
[15], [9]. This has also been shown in the present study: for
example, without any domain adaptation, on dataset MMA, the
MPS and MPSR prediction RMSE was 1.582 and 130,157.7,
which were even greater than the injury thresholds (MPS: 0.3-
0.4; MPSR: 120 s~ [27], [128], [8], [4]). Therefore, the models
cannot be used for brain deformation estimation for MMA
impacts.

To address this issue, this study develops a two-stage model
configuration combining unsupervised domain adaptation with
MLHMs, which manifests that with domain adaptation meth-
ods based on DRCA, the accuracy of brain strain and strain
rate estimation for target datasets can be evidently improved,
which is validated on four datasets of on-field college football
head impacts, mixed martial arts impacts and boxing impacts.
Particularly, with DRCA, the model accuracy can be signifi-
cantly reduced to be even closer to the prediction performance
on the simulated impacts (MPS MAE 0.015, MPSR MAE
2.818 s~ [24]), which is much smaller than 1/10 of proposed
concussion (clinically defined mTBI) thresholds [30], [4]. It
should be noted that this level of model accuracy cannot be
achieved in previous publications of MLHMs which use the
data fusion strategy to combine the simulated impacts with
some on-field impacts.

Furthermore, in this study, we used the strategy of unsuper-
vised domain adaptation. Based on the DRCA and cycle-GAN,
we only used the target domain data in an unsupervised man-
ner. Unlike transfer learning which requires users to compute
the reference MPS/MPSR of the targeted impacts (on-field
impacts from different types of head impacts, measured by
sensors) for the fine-tuning of pre-trained models developed
on the large simulated impact datasets, the domain adaptation
approaches used in this study do not necessitate any labels
on the target domain (on-field data). Because the function
of MLHMs is to rapidly and accurately estimate brain strain
and strain rate as a substitute for finite element modeling
in real-world applications, the users of the MLHMs either
should not have access to the finite element models to compute
the ground-truth MPS and MPSR, or their application cannot
rely on the finite element models to estimate whole-brain
strain and strain rate due to the large computational cost.
With only the head kinematics measured by wearable sensors,
the users cannot leverage the transfer learning to fine-tune
the pre-trained MLHMs to get better accustomed to the data
distribution of a specific type of on-field impact dataset. In this
case, the unsupervised domain adaptation methods investigated
in this study can benefit the users by accurately estimating
the whole-brain strain and strain rate caused by the on-field
impacts. Therefore, research labs, clinicians and sports teams
who do not have access to the resources to compute the
reference MPS and MPSR can also apply MLHMs in their
work. The users only need to input their impact datasets into
the two-stage model and the model will perform the domain
adaptation and output the strain and strain rate.

The domain adaptation methods we used in this study
also warrant further discussion. The general assumption of
domain adaptation methods in this study is that we assume
that the domain drift is not relevant to the estimation of whole-



brain strain and strain rate. When developing MLHMs, the
models learn the mapping from the kinematics features to the
labels (MPS/MPSR). What the models are learning involves
both the brain physics (the ground-truth mapping from the
domain-invariant kinematics features to the strain and strain
rate) and the dataset-specific characteristics associated with
each type of head impacts (simulated impacts, college football
impacts, mixed martial arts impacts and boxing impacts). In
order to mitigate the influence exerted by the dataset-specific
characteristics, we performed the domain adaptation to mini-
mize the influence of the domain drift but keep the domain-
invariant information in the features. Ideally, the domain-
invariant relationship between the kinematics features and
the brain strain/strain rate is learned by the MLHMs after
domain adaptation, while the dataset-specific characteristics
get discarded and the domain drifts are compensated before
the development of MLHMs.

To achieve the domain adaptation goals, we applied DRCA
and cycle-GAN-based methods in this study. Firstly, as is
reflected by the objective function shown in Eqn. (1), the
DRCA method finds a linear transform to project the data
from the original high-dimensional feature space to a lower-
dimensional feature space, on which the between-domain
scatter is minimized while the within-domain scatter is main-
tained. We propose that the reason it works well is that the
minimization of between-domain scatter enables the different
data distribution across domains to be mitigated. Meanwhile,
the maximization of the within-domain scatter maintains the
information that is going to be used to train the models to
learn the relationship between the domain-invariant kinematics
features to the strain and strain rate.

Secondly, the cycle-GAN-based approaches take a different
path to solve the domain adaptation issue: instead of finding
a regularized lower-dimensional feature space between source
domain and target domain, they directly translate the target
domain to the source domain via a domain-translator based
on generative adversarial networks. The domain discriminator
enables the evaluation of the translated data, which drives the
domain generator to be better at generating the source domain
data based on the target domain data. According to the pipeline
shown in Fig. 2] the target domain data (on-field impacts) gets
transferred to the source domain, where we can leverage the
MLHMs trained on the source domain (simulated impacts).

As a result, generally, both types of approaches work in
improving the estimation of strain and strain rate on the
target domain data. We deem that the comparison among these
domain adaptation approaches is fair since all of them leverage
the features of the simulated impacts and target impacts while
the subsequent development of the MLHMs only used the
labels on the simulated impacts. We hypothesize that the
DRCA performs better than cycle-GAN-based approaches in
that small datasets, particularly the small on-field datasets, may
not enable generalizable information of each data distribution
to be learned by the powerful cycle-GAN-based approach. The
cycle-GAN-based approach may overfit to the large quantities
of the source domain data and there may be a loss of informa-
tion of the target domain data after they get transferred to the
source domain. On the contrary, the DRCA is a less flexible

and less complicated domain adaptor in terms of model
parameters and degrees of freedom when compared with the
cycle-GAN-based approaches. DRCA simply computes the
between-domain scatter and within-domain scatter based on
the statistical estimation of expectation and variance on the
two domains. Therefore, the DRCA method is less likely to
overfit to the source domain data and enables the domain-
invariant features to be kept and used to train the MLHMs.

Although this study manifests the effectiveness of using
domain adaptation to improve the generalizability of MPS
and MPSR estimation for on-field head impacts, there are
several limitations. Firstly, in this study, the domain adaptation
was done in the unsupervised manner and we regarded all
the on-field impacts as unlabeled data. Therefore, we tuned
the hyperparameters of the domain adaptation approaches and
reported the best results on the target domain data. In the
future, with the collection of more on-field data, more inde-
pendent new datasets of CF impacts and MMA impacts solely
used to assess the model performance are warranted to ensure
the models did not overfit. Secondly, in the development of
the combination domain adaptation approaches, i.e. shift-GAN
and GAN+DRCA, we tuned the hyperparameters of KMM
and DRCA based on the best-performing cycle-GAN, which
restricted the degrees of freedom. It is also likely that these
two approaches can be further optimized if the cycle-GAN is
deemed as another flexible variable.

V. CONCLUSION

The decreasing accuracy across diverse types of head
impacts hinders the application of machine learning head
models in TBI detection due to the data distribution drifts
in different impact datasets. In this work, we are the first
to propose an adaptive brain deformation estimator, a two-
stage model configuration that integrates domain adaptation
with a deep-learning brain deformation prediction network.
To perform domain adaptation, we apply either a cycle-GAN-
based architecture or a non-deep-learning method, DRCA,
and find that DRCA achieves a substantially higher accuracy
as quantified by the mean absolute error and root mean
square error of the brain strain and strain rate estimation.
Together, our results indicate that domain adaptation can
greatly improve the accuracy of brain deformation estimation
for different types of on-field head impact data and thus
solve the generalizability problem of MLHMSs. This study
will significantly enable fast and accurate brain deformation
estimation for TBI detection in potential clinical applications
and for better protection of soldiers, contact-sports players and
motorists who are frequently at the risks of sustaining TBI.

VI. CODE AND DATA AVAILABILITY

The code and data associated with study can be found on
https://github.com/xzhan96-stf/drca-mlhm.
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