
International  Journal  of

Environmental Research

and Public Health

Article

Studies on the Spatiotemporal Variability of River
Water Quality and Its Relationships with Soil and
Precipitation: A Case Study of the Mun River Basin
in Thailand

Zhonghe Zhao 1,2, Gaohuan Liu 1,*, Qingsheng Liu 1,*, Chong Huang 1 and He Li 1

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
zhaozh.16b@igsnrr.ac.cn (Z.Z.); huangch@lreis.ac.cn (C.H.); lih@lreis.ac.cn (H.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: liugh@lreis.ac.cn (G.L.); liuqs@lreis.ac.cn (Q.L.); Tel.: +86-010-6488-9316 (G.L.)

Received: 28 August 2018; Accepted: 23 October 2018; Published: 5 November 2018
����������
�������

Abstract: Human activities can affect soil nutrients, thereby influencing river water quality.
The spatial pattern of precipitation also impacts distributions of water quality. In this paper, we
employed a method that combines point survey, soil, and water quality data to analyze the spatial
relationships between precipitation, soil nutrient and water quality in the basin on the basis of
field surveys and laboratory analysis. The ordinary kriging method was applied to interpolate the
precipitation and soil data, and the spatial pattern was analyzed. The water samples on the main
stream and soil samples in the field were collected during both the dry and rainy seasons to analyze the
water quality and soil nutrients. The results indicate: (1) The water quality in the dry season is better
than that in the rainy season, the water quality in the upper reaches is better than that in the lower
reaches, and agricultural activity is the direct source of water pollution. (2) The precipitation in the
rainy and dry seasons is differente and the dilution effect of precipitation on pollutant concentrations
and transport of water flow affect the spatial distribution of water quality. (3) There is a significant
difference in the spatial pattern of soil nutrients between the dry and rainy seasons, and the soil
nutrient content and the surface runoff directly affect the water quality. Soil nutrients are affected by
human activities, and they potentially act as nonpoint source (NPS) pollution in this river basin. To
improve the water quality, suitable agriculture measures need to be implemented.

Keywords: soil nutrients; water quality; precipitation

1. Introduction

Land use affects the emission and transport of pollutants and has an important influence on
river water quality [1]. However, the multiscale and different distribution patterns of land use have
led to uncertainty with regard to river water quality based on the land use types [2]. As the issue of
water pollution is becoming increasingly serious, the evaluation of water quality has become more
important. The evaluation of water quality involves the theories, methods, and application of water
quality science, which is an important branch of environmental assessment and serves as the basis to
understand and protect aquatic environments [3]. Water quality evaluations have a long history; early
evaluations were mainly conducted to qualitatively describe the sensory properties of water, such as
color, taste, smell, and turbidity. Along with the continuous development of science and technology,
relatively deep understanding of the physical, chemical, and biological properties of water bodies
were improved, and meanwhile, multiple water quality evaluation methods were developed. With the
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introduction of mathematical models, new water quality evaluation methods have continuously
emerged, including the index evaluation method [3–7] and water quality evaluation methods based on
the fuzzy mathematics theory, gray theory, multivariate statistics, and artificial neural networks [8–11].
Of these, multivariate statistical methods, such as factor analysis (FA), clustering analysis (CA), and
discriminant analysis (DA), have been widely applied to sociological, education, and medical research,
and gradually been applied to research on water quality [12]. In particular, the application of principal
component analysis (PCA) is relatively broad [13,14].

Soil pollution can be referred to as nonpoint source (NPS) pollution, and it can also be called
diffused pollution. NPS pollution refers to water pollution caused by dissolved or solid pollutants
flowing into rivers, lakes, reservoirs, and oceans during precipitation events and from runoff erosion.
The main sources of NPS pollution include urban runoff, hydrological variations, agricultural
production runoff, irrigation return flows, solid waste, atmospheric deposition, and riverbed erosion.
At present, two types of NPS pollution that are of particular concern for water pollution are
agricultural/rural NPS pollution and urban NPS pollution [15].

NPS pollution has received widespread attention over the past 40 years. In 1987, the United
States (US) revised Article 319 of the Clean Water Act to clarify NPS pollution regulations. However,
agricultural/rural NPS pollution is still an important problem affecting US water quality. According
to the US national water quality survey in 2000, the water qualities of 39% of river segments, 45% of
lakes, and 51% of estuaries were damaged to varying degrees, which was mainly attributed to the
complicated problem of NPS pollution.

This study aims to study the spatial and seasonal corelations between water quality and
precipitation, water quality and soil nutrients contents. The following contents were addressed:
the characteristics of water quality in the dry and rainy seasons in the Mun River Basin, the spatial
distribution patterns of precipitation in the dry and rainy seasons and their relationship with the water
quality, and the spatial distribution pattern of soil nutrients and its relationship with the water quality.

Changes in soil nutrient contents are the consequence of the interaction between natural factors
and human factors, and changes in land use type inevitably cause changes in soil nutrient content.
By understanding the differences in the soil nutrient contents of different crop cultivations, we
can provide the basis for the rational utilization of land resources and protection of the ecological
environment [13,14]. Further more, the latent NPS pollution potential is high in the region and
could effect the water quality. Understanding this relations will promote the future restoration and
improvement of the ecological environment in the Mun River Basin.

2. Materials and Methods

2.1. General Information of the Study Area

The Mun River is the largest river on the Korat Plateau in northeastern Thailand and is one of
the important tributaries of the Mekong River, showed as Figure 1. The Mun River is approximately
673 km long and has a river basin area of approximately 82,000 km2. Within the basin, the terrain
is high in the west and low in the east; plateaus and mountains are in the southwestern area, and
plains are in the central and eastern areas. In the southwestern highlands, mountains and rivers are
alternately distributed, with most of them running in a south-north direction in a vertically distributed
manner, creating rugged terrain. In the central and eastern regions, many plains and rivers run
in the south-north direction, which provides sufficient water resources for water cycling in these
plain regions.

The Mun River Basin has a humid subtropical climate, and the climate is most significantly
affected by the tropical monsoons in Asia. The climate and hydrology within the basin show significant
seasonal differences changes brought upon by the seasonal monsoon render distinct wet and dry
seasons in the basin. The annual temperature is not lower than 18 ◦C, and the average annual rainfall
is 1300–1500 mm.
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In summer, the southwest monsoon blowing from the Indian Ocean generates high temperatures
and abundant rainfall. Given the frequent rainfall during this time, summer is generally referred to
as the “rainy season”. The rainy season lasts from mid-May to the beginning of October, with heavy
rainfall generally concentrated in August or September. In winter, due to the strong Mongolian cold
and high pressure, the northeast monsoon brings low temperatures and dry weather, and this period is
generally referred to as the “dry season”. The dry season lasts from November to April of the following
year, with an average temperature of 16 ◦C (high temperature can be up to 40–42 ◦C). The transitional
season is between the dry season and the rainy season, and frequent nondirectional winds occur at
this time. As the dry season and rainy season result from the monsoon effect, an extremely uneven
distribution of rainfall exists during the year.

2.2. Data and Methods

2.2.1. Water Quality Data

Two sets of water quality data were derived from 19 water quality monitoring stations in the
main stream of the Mun River in 2017, one in the rainy season (August) and the other in the dry
season (February). The location of the 19 water quality monitoring stations is shown in Figure 2. We
adopted 10 water quality indexes in this sduty, namely, ammoniacal nitrogen (NH3-N), nitrate nitrogen
(NO3-N), nitrite nitrogen (NO2-N), total phosphorus (TP), dissolved oxygen (DO), biochemical oxygen
demand (BOD), EC, pH, turbidity (nephelometric turbidity units, NTU), and suspended solid (SS).
In particular, DO, BOD, EC, NTU, and pH were measured in situ by a U-5000 (HORIBA, Kyoto, Japan)
multiparameter water quality meter; polyethylene plastic bottles (1 L) were used to collect the water
samples, which were used to test TP, NO2-N, NH3-N, and NO3-N. The water samples were titrated by
sulfuric acid to pH < 2 and placed inside the storage cabin at a temperature < 4 ◦C. The water samples
were then sent to the laboratory to test the water quality. In particular, phosphorus content (mg/L) was
measured using the vanadomolybdophosphoric acid method, NO3-N content (mg/L) was measured
using the brucine method, NH3-N (mg/L) content was measured using the titration method, NO2-N
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content was measured using diazamine coincidence spectrophotometry, and the determination of SS
was completed using the gravimetric method [16].
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Figure 2. Distribution of the water quality monitoring stations in the Mun River.

2.2.2. Precipitation Data

Based on a long-term time series of daily precipitation observational data, statistical analysis of
annual average precipitation in the basin from 1960–2015 was performed. The precipitation trends
during the dry season (November–April of next year) and rainy season (May–October) were also
calculated. There are a total of 144 precipitation observation stations throughout the basin (Figure 3).
To ensure the accuracy of the interpolation results, data from the observation stations in the marginal
region of the basin were retained. By combining geostatistics and kriging interpolation, the spatial
patterns of annual average precipitation and precipitation in the dry and rainy seasons were calculated
for the entire basin.
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2.2.3. Soil Data

In this study, we mainly analyze the spatial patterns and variability of soil nutrients, pH, and EC
in the dry and rainy seasons. Therefore, a consistent sampling method was adopted, different soil and
land use types were considered. The sampling times were February of 2017 (dry season) and August
of 2017 (rainy season), and soil samples were collected from representative sampling points. After
the soil was evenly mixed, it was divided by coning and quartering; samples of approximately 1.5 kg
of soil were retained and dried in the laboratory. The plant roots, leaves, and stones were removed
from the residual soil. To ensure the consistency of the sampling locations, the slope of every sampling
site is <5◦ and GPS was used to record the longitude and latitude coordinates of each sampling point.
The vegetation coverage status, land use and soil moisture were recorded and photographed for
each sampling point. The soil sampling depth is 0–20 cm and total 66 samples in the dry season and
86 samples in the rainy season were celected. The specific location of the soil sampling points is shown
in Figure 4.
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2.3. Data Processing

The water quality data were statistically analyzed according to PCA using Microsoft Excel (Microsoft,
Redmond, WA, USA) and SPSS software (IBM, Armonk, NY, USA); the best-fit interpolation model was
selected for soil nutrient and precipitation data by GS+ 7.0 (Gamma Design Software, LLC, Plainwell, MI,
USA), and then the spatial interpolation was completed in ArcGIS (Esri, Redlands, CA, USA).

The PCA method belongs to the FA category [17], and it is a statistical analysis method to identify
the principal correlations among multiple variables. PCA can analyze the main influencing factors,
reveal relationships, and simplify complex questions. The goal for calculating the principal component
involves projecting high-dimensional data to relatively low-dimensional space [18]. The PCA used
in water quality evaluation has two main aspects: (1) establish a comprehensive evaluation index,
evaluate the relative pollution levels between different sampling sites and analyze the pollution level at
various sampling sites; and (2) evaluate the role of each index within a comprehensive index, remove
the secondary indexes, and determine the main compositions of pollution.

In this study, by selecting the optimum interpolation model for SOM, nitrogen, phosphorus, pH,
and EC, we employed ordinary kriging interpolation and analyze the spatiotemporal variability of
soil within the research area. In particular, the optimal model and the spatial interpolation parameters
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were selected using GS+ statistical software, and kriging spatial interpolation was performed using
ArcGIS software.

The semivariance function of samples was calculated using the formula:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− Z(xi)]
2 (1)

where γ(h) is the semivariance of the samples, h is the distance between two sampling points (also
referred to as the lag distance), N(h) is the number of paired data at a distance of the interval h, and
Z(xi + h) and Z(xi) are the measured values at the sampling point of xi + h and of xi, respectively.
The semivariance scatter plots calculated from the actual sampling points need to be fitted using the
semivariance model to obtain the spatially related semivariance curves. In this study, the gaussian
model, spherical model, exponential model and linear model were used to fit the optimal model.

3. Results and Analysis

3.1. PCA of Water Quality

3.1.1. Characteristics of Water Quality in the Dry Season

The PCA of water quality was completed in SPSS. The results of the correlation coefficient matrix
are as given in Table 1:

Table 1. Correlation coefficient matrix for each water quality index.

Item pH EC DO BOD TP NO3-N NO2-N NH3-N NTU SS

pH 1 −0.008 −0.589 0.172 −0.469 0.523 0.456 0.419 0.266 0.136
EC 1.000 −0.331 0.334 0.229 −0.640 −0.573 −0.652 −0.330 0.378
DO 1.000 −0.272 0.389 −0.354 −0.214 −0.236 −0.035 −0.253

BOD 1.000 −0.141 −0.133 −0.001 −0.192 0.017 0.491
TP 1.000 −0.589 −0.446 −0.486 −0.202 0.144

NO3-N 1.000 0.825 0.902 0.451 −0.059
NO2-N 1.000 0.801 0.772 0.055
NH3-N 1.000 0.662 −0.006
NTU 1.000 0.216

SS 1.000

The table shows the correlation coefficient matrix for various water quality indexes. Larger
absolute values of the correlation coefficients between two indexes indicate stronger correlations
between the two indexes. The correlation coefficient between NO3-N and NH3-N is the highest (0.902),
followed by that of NO2-N and NO3-N (0.825) and that of NH3-N and NTU (0.662).

The principle used to extract the number of principal components corresponds to the first principal
components with eigenvalues greater than 1. An eigenvalue is an index that expresses the influence
of the principal component. An eigenvalue less than 1 indicates that the interpretation strength of
this principal component is not sufficient. The cumulative contribution rate of the first three principal
components in Table 2 reaches 78.30%; that is, these three principal components can explain most of
the data variability. Therefore, we select these three principal components for further analysis.
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Table 2. The extracted principal components of water quality indexes.

Component
Initial Eigenvalue Extract Sum of Squares and Load

Total Variance % Accumulation % Total Variance % Accumulation %

1 4.307 43.067 43.067 4.307 43.067 43.067
2 2.244 22.443 65.510 2.244 22.443 65.510
3 1.278 12.785 78.295 1.278 12.785 78.295
4 0.725 7.246 85.541
5 0.474 4.738 90.279
6 0.409 4.088 94.367
7 0.316 3.156 97.523
8 0.149 1.487 99.009
9 0.084 0.837 99.846
10 0.015 0.154 100.000

The load matrix of the principal components indicates the relationships between different indexes
and the principal components. If the absolute value of the correlation coefficient between the index
and a certain principal component is high, the principal component is closely connected to the index.
The Table 3 shows that the loads for the indexes of pH, EC, NO3-N, NO2-N, NH3-N, and NTU in
the first principal component are relatively high, which indicates that the first principal component
reflects the information of these indexes, i.e., mainly human activities and NPS pollution. The loads
of DO, BOD, and SS in the second principal component are also relatively high, which indicates that
the second principal component mainly reflects the information of these three indexes, i.e., mainly
sediment pollution. The loads of TP and SS in the third principal component are relatively high, which
indicates that the third principal component mainly reflects the information of these two indexes,
i.e., mainly water eutrophication pollution.

Table 3. Load matrix of the principal components of each water quality index.

Item
Component

1 2 3

pH 0.597 0.503 −0.287
EC −0.611 0.665 −0.067
DO −0.347 −0.722 0.379
BOD −0.066 0.720 0.235
TP −0.635 −0.204 0.458
NO3-N 0.941 −0.060 −0.129
NO2-N 0.915 −0.028 0.243
NH3-N 0.932 −0.141 0.089
NTU 0.678 −0.004 0.581
SS −0.015 0.666 0.602

The principal component load matrix for each water quality index was used to calculate the
principal component score and comprehensive score of 19 water quality monitoring points (Table 4),
which quantified and described the degree of water quality at each station. The higher the score, the
more serious the pollution degree was. Therefore, the pollution degree of each monitoring station
could be analyzed.
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Table 4. Main component score and comprehensive pollution score.

Monitoring Station
Component

F1 F2 F3 Pollution Score

MU18 −834.45 951.48 −56.72 −192.09
MU17.1 −760.00 846.55 −74.08 −184.35
MU17 −754.74 836.04 −72.12 −184.19
MU16 −620.10 694.93 −53.81 −148.14
MU15 −590.45 654.90 −54.74 −143.58
MU14 −694.83 772.36 −61.28 −167.97
MU13 −597.95 694.46 −24.35 −131.38
MU12 −266.07 299.56 −19.13 −62.53
MU11 −266.92 298.84 −17.42 −62.93
MU10 −250.39 281.05 −16.08 −58.78
MU09 −239.91 269.93 −15.38 −56.13
MU08 −144.56 213.49 25.48 −13.52
MU07 −160.45 210.04 6.89 −26.23
MU06 −168.50 215.85 5.24 −29.24
MU05 −166.32 215.99 6.35 −27.82
MU04 −196.83 231.56 −10.54 −42.79
MU03 −155.29 182.50 −9.62 −34.02
MU02 −128.90 151.38 −7.56 −28.20
MU01 −143.25 172.49 −4.36 −29.47

Figure 5 indicates that the water quality gradually declines from the upper reaches to the lower
reaches. In particular, the water quality is highest in the upper reach MU18–MU13, and the water
quality gradually decreases from MU12.
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Figure 5. Comprehensive score of water pollution during the dry season.

3.1.2. Characteristics of Water Quality in the Rainy Season

The correlation coefficient matrix for various indexes of water quality is shown in Table 5. In the
rainy season, the correlations between pH and TP and NO2-N are relatively similar, i.e., 0.587 and
0.507, respectively; the correlations between EC and DO; salt content and NO2-N and NH3-N; and TP
and NH3-N, NO3-N, and NO2-N and the correlations among NH3-N, NO3-N, and NO2-N are also
relatively similar.
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Table 5. Correlation coefficient matrix for each water quality index.

Item pH EC DO BOD TP NO3-N NO2-N NH3-N NTU SS

pH 1.000 0.377 −0.090 0.048 0.587 0.158 −0.507 −0.406 0.100 −0.261
EC 1.000 −0.742 0.084 0.322 0.090 −0.578 −0.481 −0.362 −0.288
DO 1.000 0.112 −0.128 −0.402 0.144 0.077 0.205 0.239

BOD 1.000 0.223 −0.130 −0.546 −0.295 −0.005 −0.383
TP 1.000 0.008 −0.526 −0.465 −0.315 −0.233

NO3-N 1.000 0.188 0.290 0.079 −0.195
NO2-N 1.000 0.792 0.109 0.464
NH3-N 1.000 0.128 0.177
NTU 1.000 0.004

SS 1.000

The cumulative contribution rate of the first four principal components in the PCA (Table 6) of
water quality index reached 78.03%; means these four principal components can explain most of the
data variability. Therefore, these four principal components were selected for water quality extraction
and analysis.

Table 6. Variance decomposition of the extracted principal components of water quality indexes.

Component
Initial Eigenvalues Extract Sum of Squares and Load

Total Variance % Accumulation % Total Variance % Accumulation %

1 3.566 35.655 35.655 3.566 35.655 35.655
2 1.823 18.233 53.889 1.823 18.233 53.889
3 1.310 13.103 66.992 1.310 13.103 66.992
4 1.104 11.035 78.027 1.104 11.035 78.027
5 0.857 8.573 86.600
6 0.504 5.039 91.639
7 0.354 3.537 95.176
8 0.307 3.068 98.244
9 0.112 1.119 99.363
10 0.064 0.637 100.000

Table 7 shows that the loads for the indexes of pH, EC, NO2-N, NH3-N, SS, and TP on the first
principal component are relatively high, which indicates that the first principal component reflects
these indexes. The loads of DO, NO3-N, and BOD are also relatively high in the second principal
component, which indicates that the second principal component reflects these indexes. The loads of
NO3-N, NTU, and SS are relatively high in the third principal component, which indicates that the
third principal component reflects these indexes. The loads of pH, BOD, and SS are relatively high in
the fourth principal component, which indicates that the fourth principal component mainly reflects
these indexes.

Table 7. Load matrix of the principal components of each water quality index.

Item
Component

1 2 3 4

pH −0.634 0.011 0.318 0.617
EC −0.755 0.457 −0.259 −0.090
DO 0.399 −0.805 0.094 0.182
BOD −0.440 −0.462 0.265 −0.556
TP −0.703 −0.075 −0.059 0.366
NO3-N 0.012 0.705 0.508 0.066
NO2-N 0.899 0.290 −0.049 0.087
NH3-N 0.761 0.336 0.200 −0.120
NTU 0.278 −0.211 0.710 0.195
SS 0.531 −0.093 −0.506 0.417
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Lastly, the principal component score and comprehensive pollution score of the 19 water
quality monitoring stations were calculated and the water pollution levels at different stations were
quantitatively described. Higher scores indicate a greater degree of pollution. Therefore, we can
analyze the pollution level at each monitoring station, and the results are shown in Table 8:

Table 8. Main component score and comprehensive pollution score.

Monitoring Station
Component

F1 F2 F3 F4 Pollution Score

MU18 −300.44 176.34 −96.14 −26.97 −117.76
MU17.1 −224.86 133.00 −79.01 −13.32 −88.14
MU17 −299.82 178.19 −100.15 −24.14 −117.34
MU16 −300.20 177.47 −78.55 −15.58 −112.81
MU15 −350.19 209.18 −121.79 −29.57 −137.82
MU14 −299.01 175.54 −100.38 −24.69 −117.69
MU13 −222.75 129.92 −73.28 −16.28 −87.32
MU12 −204.16 118.58 −67.13 −13.19 −79.90
MU11 −170.53 94.61 −16.95 −0.32 −59.61
MU10 −121.33 58.71 102.78 35.65 −19.85
MU09 −151.73 82.05 0.78 5.14 −50.07
MU08 −161.79 94.71 −17.08 8.33 −54.37
MU07 −147.18 83.90 9.33 10.88 −45.30
MU06 −156.48 86.23 10.88 5.69 −49.50
MU05 −149.89 87.21 −4.54 11.11 −48.11
MU04 −112.58 67.59 −3.10 20.37 −33.92
MU03 −105.32 57.70 32.04 16.73 −27.39
MU02 −100.02 58.76 6.01 22.12 −28.37
MU01 −70.19 62.81 −55.02 56.77 −19.25

Figure 6 shows that the water quality in the rainy season was generally lower than that in the
dry season, and this difference is mainly related to the enhancement of agricultural cultivation and
pollutant emissions during the rainy season. In the rainy season, the water quality was relatively high
in the upper reaches, and from the upper reaches to the lower reaches, the water quality gradually
declined. In particular, the water quality of MU18–MU13 was relatively high, and the water quality of
MU12–MU01 was relatively poor.
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3.2. Spatial Distribution of Precipitation

The parameters provided by the geostatistical analysis further reveal the characteristics of the
spatial distribution of precipitation throughout the Mun River Basin. The nugget value indicates the
random variation likely caused by human activities and sampling errors. The sill value indicates the
total variation in precipitation exhibited under the current scale. Table 9 lists the geostatistical analysis
results of model parameters of precipitation in the Mun River Basin.

Table 9. Model parameter list.

Item Optimal Model C0 C0+C C/(C0+C) Range (A) R2

Annual average exponential model 8800 41,850 0.790 2.325 0.903
Dry season spherical model 119 439.9 0.729 0.632 0.629

Rainy season exponential model 7700 52,280 3.426 0.853 0.944

There are 144 precipitation stations, and the distribution of these stations is uniform; thus,
the statistical results are relatively robust. We selected the optimal model by the GS+ calculation.
In particular, the relevant indexes of the exponential model of annual average precipitation are as
follows: the nugget value is 8800, the sill value is 41,850, and the spatial heterogeneity ratio is 0.790,
which indicates that the spatial correlation of the annual average precipitation is relatively weak.
The optimal model of annual average precipitation is the exponential model.

The optimal model of the dry season precipitation is the spherical model. The nugget value is
119, the sill value is 439.9, and the spatial heterogeneity ratio is 0.729, which suggests moderate spatial
correlation; the maximum correlation distance is 0.632 m.

The optimal model of the rainy season precipitation is the exponential model. The nugget value is
7700, the sill value is 52,280, and the spatial heterogeneity ratio is 3.426, which indicates that the spatial
correlation is relatively weak; the maximum correlation distance is 0.853, and the spatial correlation
distance is larger than that of the dry season.

From the upper reaches to the lower reaches of the Mun River, the annual average precipitation
gradually increased (Figure 7a,b). The maximum precipitation reaches 1711 mm, and the minimum
precipitation is 955 mm. Based on the precipitation contours, we can observe a “vortex” shape in the
upper, middle, and lower reaches.

The distribution pattern and variation trend for precipitation in the rainy season in the Mun
River Basin are similar to those of the annual precipitation (Figure 7c,d), which is because most of the
annual precipitation occurs in the rainy season. The spatial distribution trend during the rainy season
gradually increases from the upper reach to the lower reach; the maximum precipitation is as high as
1617 mm, and the minimum precipitation is 880 mm.

The spatial distribution of precipitation in the dry season is opposite to that in the rainy season
as the precipitation gradually decreases from the upper reaches to the lower reaches (Figure 7e,f).
In the upper reaches, most precipitation occurs in the southwest, which is directly related to the
topography. The elevation in the southwest region is relatively high, and it is mainly covered by
forest, which is conducive to precipitation. The precipitation is relatively low in the middle and lower
reaches, and it exhibits an uneven step-like decrease, which is likely related to the vegetation and
topographic conditions.

A comprehensive analysis of the spatial interpolation results of precipitation and the PCA of
water quality indicates that the water quality in the upper reaches is relatively high, the water quality
in the middle reach is average, and the water quality in the lower reach is the lowest. This pattern
is related to precipitation, i.e., high amounts of precipitation can dilute pollutants, thereby reducing
the pollutant concentration; however, due to the transport of water flow, pollutants are transported
from the upper reach to the lower reach, and the pollutant concentration in the lower reach can in turn
increase as pollutants accumulate.
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Figure 7. Spatial patterns of annual precipitation in the Mun River Basin. (a) is the map of average
annual rainfall; (b) is the map of average annual rainfall contour; (c) is the map of rainfall in the rainy
season; (d) is the map of rainfall contour in the rainy season; (e) is the map of rainfall in the dry season;
(f) is the map of rainfall contour in the dry season.

3.3. Spatial Distribution Pattern of Soil Nutrients and Its Relation with Water Quality

3.3.1. Spatial Distribution of Soil Nutrients and Its Relation with Water Quality in the Dry Season

Based on the semivariance function model and related parameters, the ordinary kriging method
was used to perform optimal spatial interpolation for SOM, TN content, AP, pH, and EC in the dry
season. Moreover, the spatial distributions of SOM, TN content, AP, pH, and EC were mapped (Figure 8),
providing an intuitive description of the spatial distribution of the soil characteristics in the study area.

The interpolation results for SOM were affected by various systems or random factors and showed
complex spatial variability; however, the interpolation results could still explain the patterns of the
SOM distribution. The SOM in the dry season showed a concave distribution as a whole, with patchy
distributions in some areas. The central plains had a flat terrain and were mostly farmland, and the
SOM content was highest in these areas; the areas of the upper reaches had relatively high terrain and
were mostly dry land and forestland, and the SOM content was high; the lower reaches had the lowest
SOM content.
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Figure 8. Spatial patterns of (a) SOM, (b) TN, (c) AP, (d) pH and (e) EC in the dry season.

The TN content was significantly correlated with the SOM, AP, and soil sand content at the
0.05 level. The spatial distribution of the soil TN content was similar to that of SOM, showing that
the spatial correlation of TN and SOM was strong. The soil TN content was medium to high in some
regions of the upper and lower reaches, whereas it was low in the middle reaches of the Mun Basin.

The soil AP content had a spatial distribution that was low in the middle reaches and was medium
and high in the upper and lower reaches. In the middle reaches, the irrigation conditions were good
with a sufficient water supply and two to three crop growth seasons per year; the soil was subjected
to great interference by human activities, and crop uptake and flooding had great impacts on the
AP content. The spatial distribution of AP was mainly related to fertilization, cycling, and mobility
of phosphorus.

The distribution of the pH values showed a pattern of relatively low pH values in the middle
reaches, which may be related to the leaching of calcium and magnesium ions due to the high amounts
of rainfall in the central region. The areas with low soil pH were also conducive to the accumulation
of SOM. The upper reaches had high pH values; due to the sandy soil, the amount of evaporation
exceeded the amount of precipitation, which resulted in serious soil salinization. The pH values in the
lower reaches were relatively high.

The distribution of EC throughout the study area showed a trend of high in the west and low in the
east, which was closely related to land use/planting patterns, geographical factors, and climatic factors.

The relationships between soil and water quality based on Pearson correlation analysis are shown
in Table 10. The comprehensive score of water quality in the Mun River is significantly correlated with
SOM (0.05 level), with a Pearson coefficient of 0.483. Water quality is also significantly correlated with
soil total nitrogen (TN) (0.01 level), with a Pearson coefficient of 0.783, and soil EC (0.01 level), with a
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Pearson coefficient of 0.638. The EC of water is significantly correlated with SOM, soil TN, and soil EC.
The TP content of water and soil EC are significantly correlated (0.05 level), with a Pearson coefficient
of 0.468. NO3-N of water is significantly correlated with soil available phosphorus (AP), soil TN, and
soil EC. NO2-N and NH3-N of water are significantly correlated with soil AP and soil EC, respectively.

Table 10. The relationships between soil and water quality in dry season.

AP-Soil SOM-Soil TN-Soil EC-Soil pH-Soil

pH-Water Pearson −0.344 0.029 −0.071 0.352 0.431
significance 0.149 0.907 0.772 0.14 0.065

EC-Water
Pearson 0.327 −0.534 * −0.778 ** −0.643 ** −0.162

significance 0.171 0.019 0 0.003 0.508

DO-Water
Pearson 0.429 0.034 0.275 −0.125 −0.364

significance 0.067 0.891 0.255 0.611 0.125

BOD-Water
Pearson −0.222 −0.144 −0.148 −0.172 0.044

significance 0.361 0.555 0.546 0.482 0.859

TP-Water
Pearson 0.429 −0.093 −0.095 −0.412 −0.468 *

significance 0.067 0.704 0.699 0.08 0.043

NO3-N-Water
Pearson −0.606 ** 0.418 0.469 * 0.756 ** 0.446

significance 0.006 0.075 0.043 0 0.056

NO2-N-Water
Pearson −0.586 ** 0.078 0.32 0.624 ** 0.121

significance 0.008 0.751 0.181 0.004 0.621

NH3-N-Water
Pearson −0.552 * 0.296 0.454 0.605 ** 0.259

significance 0.014 0.219 0.051 0.006 0.284

Pollution
Composite Score

Pearson −0.357 0.483 * 0.738 ** 0.638 ** 0.137
significance 0.134 0.036 0 0.003 0.576

** The correlation was significant at the 0.01 level (both sides). * The correlation was significant at the 0.05 level
(both sides).

3.3.2. Spatial Distribution of Soil Nutrients and Its Relation with Water Quality in the Rainy Season

Ordinary kriging was used to perform optimal spatial interpolation on the SOM, TN content,
AP, pH, and EC in the rainy season based on the obtained semivariance function model and related
parameters, and the spatial distributions of SOM, TN content, AP, pH, and EC in the study area were
graphed (Figure 9) to intuitively describe the spatial distribution of the soil properties in the Mun
River Basin.

The spatial pattern of SOM in the rainy season was similar to that in the dry season, and SOM
was relatively stable within a year. The SOM content in the upper and lower reaches was medium and
high, whereas that in the middle reaches of the region was low.

TN and SOM content were significantly correlated at the 0.05 level, and the spatial distribution of
soil TN was similar to that of SOM, indicating that the spatial correlation between TN and SOM was
strong. The TN content was moderate to high in the upper and lower reaches and was relatively low
in the middle reaches.

The spatial pattern of AP showed adequate similarities with the patterns in the dry season, with
both seasons showing a pattern of relatively low in the central region yet high in the upper and lower
reaches. The spatial distribution of AP in the rainy season had a close relation with fertilization, uptake,
and utilization by crops as well as the flow of surface water and river water.

The spatial distribution of pH was generally similar to that in the dry season, albeit with
differences in some localities. The pH value in the middle reaches was low, and the pH in the
upper reaches was high, followed by the lower reaches.
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The spatial pattern of EC was similar to that observed in the dry season, showing a trend of high
in the upper reaches and low in the lower reaches. EC is influenced by factors such as salt content,
moisture, temperature, SOM content, and soil texture.Int. J. Environ. Res. Public Health 2018, 15, x 15 of 19 
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In the Mun River Basin, there are correlations between water quality and soil in the rainy season as
showed in Table 11. In particular, the comprehensive scores of water quality and soil EC are significantly
correlated (0.05 level), with a Pearson coefficient of 0.507. Water quality is also significantly correlated
with the soil pH (0.05 level), with a Pearson coefficient of 0.487. The pH values of water and soil
are significantly correlated (0.01 level), with a correlation coefficient of −0.472. The TP of water is
significantly correlated with the soil TN, soil EC, and soil pH. The NH3-N of water and soil AP are
significantly correlated. The NH2-N of water is significantly correlated with SOM, soil TN, soil EC,
and soil pH value. The NH3-N of water is significantly correlated with soil TN, soil EC, and soil pH.

The above analysis indicates that from the upper reaches to the lower reaches of the Mun River
Basin, the pollution index of water quality exhibits an increasing trend, which is consistent with the
gradient of EC in the basin. That is, the EC in the upper reaches is low, and the EC in the lower reach
is high. The contents of other nutrients exhibit step-like distributions in the direction of water flow.
Precipitation is continuously injected from the upper reaches, supplying large amounts of nutrients,
which causes the gradual increase in the water pollution in the lower reach. In addition, the degree of
variation in the soil nutrient contents and water quality during the rainy season is more dramatic than
that in the dry season, which is mainly related to human activities. Crop growth, fertilization, and the
use of pesticides in the rainy season are more intense than those in the dry season, and all of these
activities can affect soil nutrients and water quality.
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Table 11. Correlation of water quality and soil in rainy season.

AP-Soil SOM-Soil TN-Soil EC-Soil pH-Soil

pH-Water Pearson −0.111 −0.331 −0.448 −0.425 −0.472 *
significance 0.652 0.167 0.055 0.07 0.041

EC-Water
Pearson −0.076 −0.207 −0.336 −0.446 −0.445

significance 0.756 0.395 0.16 0.056 0.056

DO-Water
Pearson −0.232 −0.029 0.068 0.001 −0.029

significance 0.339 0.906 0.781 0.996 0.908

BOD-Water
Pearson −0.216 −0.351 −0.251 −0.264 −0.18

significance 0.375 0.14 0.3 0.275 0.46

TP-Water
Pearson −0.311 −0.375 −0.534 * −0.604 ** −0.562 *

significance 0.195 0.113 0.018 0.006 0.012

NO3-N-Water
Pearson 0.529 * 0.117 0.121 0.209 0.235

significance 0.02 0.633 0.622 0.39 0.333

NO2-N-Water
Pearson 0.274 0.542 * 0.659 ** 0.644 ** 0.600 **

significance 0.256 0.017 0.002 0.003 0.007

NH3-N-Water
Pearson 0.041 0.346 0.544 * 0.767 ** 0.677 **

significance 0.869 0.147 0.016 0 0.001

Pollution
Composite Score

Pearson 0.267 0.37 0.421 0.507 * 0.487 *
significance 0.269 0.119 0.073 0.027 0.034

** The correlation was significant at the 0.01 level (both sides). * The correlation was significant at the 0.05 level
(both sides).

4. Discussion

In the analysis of soil nutrients, and based on other scholars’ research [19–22], this study has
the following shortcomings: first of all, the spatial distributions of soil nutrients described here are
based on data from only two sets of field samplings, and no continuous, long-term monitoring data
are available. Second, the soil nutrient absorbing capacities of different crop types were not considered.
Some studies indicated that paddy fields have different nutrient absorption and utilization capabilities.
Different crop types have various effects on the acidity or basicity of the soil. Some studies indicated
that paddy fields are suitable for weakly alkaline environments, whereas dry land is suitable for
weakly acidic environments. Lastly, there is also a difference in the soil nutrient content under different
farming modes; under the various planting modes of dry land, paddy fields, fallow fields, and forested
land, the differences in the residual nutrient elements of soil are relatively large.

The influence of human activities on soil and water quality is not negligible. In this study, we
qualitatively study only the relationships between water quality and soil nutrients and precipitation,
without considering the interference of human activities. Through the field investigation and household
survey, we found that the type and amont of fertilizers used in the Mun River Basin are quite
different; most farmers apply fertilizer according to previous experience without scientific guidance
or considering the relationship between soil residual nutrients and postfertilization conditions. This
practice not only could affect the imbalance of soil nutrients but also could affect the crop yield.
Irregular water utilization by the residents in the Mun River Basin is observed: according to a survey,
the rivers are used by residents for irrigation during the high flow periods, and the water consumption
is unknown. The aforementioned shortage of data and information could affect the accuracy of
this study.

For the water quality study, only the water around each monitoring station was analyzed, but
without considering the confluence process. Because the influence of confluence on the water quality
and soil nutrients was not considered, the qualitative analysis of the water quality according to only
the limited monitoring data could affect the accuracy of the research result.
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In this study, we adopted a geostatistical analysis method. We first calculated the sill value, partial
sill value, and range, and then adopt kriging interpolation to interpolate the precipitation and soil
nutrient contents throughout the basin according to the sampling points. Although the simulation
results of this method are obviously improved in comparison with the results of other methods, the
simulation for the entire basin still has some uncertainties because of the limited number of sampling
points for the soil nutrients. We should increase the number of sampling points while ensuring the
representativeness of the sampling points and further correctly conduct a qualitative analysis.

5. Conclusions

By combining a field investigation with water quality data and soil nutrients data, we quantitatively
and intuitively described the relationships between precipitation, soil nutrient content and water quality
in the Mun River Basin through the spatial kriging interpolation and PCA method. The main conclusions
and findings are as follows:

(1) The SOM, TN, AP, pH, and EC in the Mun River Basin exhibited obvious spatial variations.
According to the analysis of the differences between the dry season and rainy season, the output
potential of NPS pollution in the soil is relatively high, and the land use types and fertilizer dosage
have relatively significant effects on the soil nutrient content. Generally, for soil nutrient content in
the dry season, except for AP and EC, whose changes are obvious, the changes of SOM, TN, and pH
are expressed more subtly, and the changes are slightly higher in the upper reaches than those in the
lower reaches.

There are various factors that affect the soil nutrient content. For example, the SOM is mainly
subject to the influence of animal and plant residues and microbial activities. The microorganisms in
the soil have an extremely important relationship with the soil nutrient content and thereby determine
the nutrient content and material circulation of the soil. The nitrogen content in soil is mainly affected
by human activities, including cultivation, fertilization, and irrigation, which affect the cycling and
decomposition of nitrogen. The phosphorus content in soil is mainly affected by the parent material,
land use types, and erosion. This study found that the nitrogen, phosphorus, and organic matter
contents in the soil are not only affected by the various factors of fertilization, irrigation, and field
tillage but also affected by seasonal factors. The TN in the rainy season is higher than that in the dry
season, which is likely related to fertilization. The SOM and AP contents in the dry season are higher
than those in the rainy season, which is mainly related to the soil texture and human interference.
As the area of cultivated land rapidly increases, the latent NPS pollution potential remains high in
the region and could become the limiting factor for the future restoration and improvement of the
ecological environment in the Mun River Basin.

(2) Precipitation in the Mun River Basin displays a marked seasonal difference. The annual average
precipitation increases from the upper reaches to the lower reaches, and the trend of precipitation in
the rainy season is the same as that of annual precipitation. Precipitation in the dry season gradually
declines from the upper reaches to the lower reaches, which is opposite to that in the rainy season and
annually. The differences in precipitation are related to topographic factors; the elevation in the upper
reach is relatively high, and the terrain in the middle and lower reaches is flat. In the dry season when
the precipitation is relatively low, the upper reach region is more prone to precipitation than the other
regions. However, the difference in the precipitation is also related to meteorological factors.

(3) The water quality is affected by precipitation and soil nutrient content. Precipitation can
increase the confluence into rivers and dilute the pollutants in rivers; however, it can increase the
surface runoff, which can transport soil nutrients to rivers. During the dry season, the precipitation
in the upper reaches is higher than that in the lower reaches, whereas during the dry season, the
soil nutrient content in the upper reaches is higher than that in the lower reaches. The maximum
precipitation in the upper reach during the dry season is only 121 mm, which is not sufficient to form
adequate surface runoff, and hence, fewer soil nutrients are transported into rivers. If the precipitation
is high, the pollutant concentration in rivers could decline; therefore, the water quality in the upper
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reaches is relatively high in comparison with the lower reaches. In the lower reach, the precipitation is
even lower, and the pollutant concentration could increase, thereby causing the lower water quality in
the lower reaches.

In the rainy season, the amount of precipitation is sufficient to allow surface runoff. A large
amount of soil nutrients flows into rivers. Both precipitation and the soil nutrient content are relatively
high in the upper reach. The surface runoff collects and transports nitrogen and phosphorus into rivers,
and therefore, the water quality in the upper reach region is relatively poor. Due to the confluence of
water flow and the high precipitation in the lower reaches (higher than the precipitation in the upper
reaches), more water and sediments are concentrated in the lower reaches. Especially the rainy season
is the cultivating season, more fertilizer are used and transported to river, the water quality in the
lower reaches is lower than that in the upper reach. This result is likely because the addition of soil
nutrient is relatively greater than the addition of water.

In this study, we found that the water qualiy has an obvious seasonal difference, and such
difference was caused by different factors. The spatial interpolation of soil and precipitation can be
used for analysis of water quality distributions. The main NPS pollution is the agricultural activities.
The results can induce a further study in future for quantitative analysis of relations betwwen water
quality and agriculture management. For example, water pollution contribution percentage of fertilizer,
water quality change caused by crop type, rational agriculture measures for reducing water pollution.
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